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Abstract. We show that the orthogonal wavelet basis
suitably normalized under Wiener condition is an unconditional
basis in L?(R). This basis is a bounded Besselian basis in the
space for 1 < p < 2, and bounded Hilbertian basis in for 2 <
p < oo. Under the Wiener condition, we show that the pre-
wavelet basis with stable shift is a frame, we also construct the
dual frame. We show that this frame provides an unconditional
basis in LP(R)(1 < p < o) using Calderon-Zygmund operator.

1. Introduction. The purpose of this paper is to construct uncondi-
tional bases for LP(R) (1 < p < co) using ‘nice’ wavelet bases of L?(R). The
research presented here is motivated by Meyer’s result in [12].

The structure of a Banach space with a basis is simple since it is isomet-
ric to a sequence space. However, in general, not a lot more can be asserted.
A very useful class of bases with more interesting properties is the class of

unconditional bases [11], [16].

Definition 1.1. A basis (f,) is unconditional in a Banach space if any
.convergent series ) anf, converges unconditionally; that is, the series

> n Ox(n)fr(n) CONverges to the same limit for all permutations m of N (or
Z). '

For instance, the natural bases of /(p > 1) are unconditional bases. It
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168 KUEI-FANG CHANG [September

is well known [16] that the space L([0,1)] has no unconditional basis. Any
orthonormal base in a separable Hilbert spaces is unconditional. From [16,
Theorem 16.1] we know that unconditional bases can be characterized as

follows.

Theorem 1.2. Let (f,) be a basis in a Banach space. Then the fol-
lowing properties are equivalent:
(1) (frn) is unconditional.
(i1) There ezists a positive constant C' such that, for all n, for all ¢; = %1
and for all scalars ay,...,a,,

n

Z fiaifi

i=1

<C

n
> aifi
i=1

This equivalence will be used to prove the nature of unconditional bases

of LP(R) in the next two sections.

Recently, Meyer [12] showed that if ¢ and its derivative % satisfy the

decay condition
[p(@)], 19 ()] < C(L +|2])~7,

and if the functions v;,(-) = 29/2¢(27 - +k), j,k € Z, form an orthonor-
mal basis for L?(R), then v;, form an unconditional basis of LP(R) for
1 < p < oo. This theorem requires the Calderon-Zygmund operator and
the Marcinkiewicz interpolation theorem. In order to understand Calderon-
Zygmund operators we need to review a classic theorem of harmonic anal-
ysis, the Calderon-Zygmund decomposition {12, vol, II] or [8] and the space
L2, (R).

If f is a measurable function on R and 0 < p < 0o, we define
[/l = (sup 0¥y @) 7,

where wy(a) = m{z : |f(x)| > o} (the distribution function of f) and we
define Lf __, (R) to be the set of all f such that [f], < co. [], is not a norm:

weak
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it is easy to verify that [cf]; = |c|[f]p, but the triangle inequality fails.
However, L% . (R) is a topological vector space. The relationship between
LP(R) and L? __, (R) is the following:

LP(R) C Loear(R) and  [flp < ifllp-

The following theorem of Calderon-Zygmund decomposition is taken
from [8, p. 178].

Theorem 1.3. Let f € L*(R) and let a > 0. Then there ezists a

sequence of pairuise disjoint intervals Qy, such that
a<m(@)™ [ Ifl<2
Qr

for allk € N and |[f(z)| < @ as v € E = R\ UpenQs. Set

9@ = fex + 3 (M@~ [ 1) xau(@)

(@) = [ - m(@u [ 1#l]xens 5=t

Then f = g+ h. Moreover
@ lgl<a v
(i) fo, ki =0 and hj(z) =0 as z ¢ Q.
(iii) flglls + 225 1Rl < 3I1f1l1-
(iv) m(Uren@s) < o I f]l1-

Next we define a wide class of Calderon-Zygmund operators on R (see
[8, p. 221-223]). Assume that D(R) denotes the class of all C°°-functions

with compact supports in R.

Definition 1.4. A bounded linear operator.Sin L?(R) is call a Calderon-
Zygmund operator if there exists a function K(z, y) defined for z,y € L%(R),
x # y such that for all f € D(R) and z ¢ suppf,

(S)(&) = /R K(z,3)f ()dy
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for which the integral kernel satisfies

C .
1.5 K(z,y)| < 77—
(1.5) |K (z, )] T
) _ o . 1
. _ I < Iy y' o < = —

(1.6) |K(z,y) — K(z,9')| < C—_Ix e ly -yl < Slz —9l,
and

. T — | 1
0N K@ -KE ISR o< gl -l

Here, > 0 and 0 < C < oo are constants.
For now on we keep « fixed and set

[15llec = [IS]] + inf C.

Remark. If K is continuously differentiable and

F) )
: — K <>
(1.8) taxK(w,y) +}5‘y (z,9)| < PRl

then (1.6) and (1.7) are satisfied for oo = 1.
The following theorem is an application of Theorem 1.3 (see [8, p. 224]).

Theorem 1.9. A Calderon-Zygmund operator S is a bounded operator

from L(R) to LY . (R) and Sf1 < C1||S|lallfllx-

weak

Once we know that S maps L?(R) to L%(R) and L*(R) to L _, (R),

weak
we can extend S to othere LP(R) spaces by the Marcinkiewicz interpolation
theorem [5, p. 195].

Theorem 1.10. Suppose that S is a linear operator from LP:(R) to
L% (R); where 1 <p; < g < oo fori=0,1, and o #¢q1. Let 0 <t <1

e

and define

11—t t 1 1-t ¢
P po . P14 Qo a1
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If [Sfle: < Cillfllp: for i = 0,1, then ||Sflly < Byl fll, where B, depends
only on p;, q;,C; and p.

Combining Theorems 1.9 and 1.10, we have the following main property

of Calderon-Zygmund operators (see, [8, p. 224]).

Theorem 1.11. If S is a Calderon-Zygmund operator on L*(R), then
S extends to a bounded operator from LP(R) to LP(R) for all p with 1 <p <
oo and [[Sfllp < |ISllallfllp-

Note that if we choose €, = £1, and define K(z,y) = 37 ; e;x¥x (%)
¥ix(y). Then K(z,y) satisfies the inequalities (1.6) and (1.7). Thus, Theo--
rem 1.11 implies that the operator S defined by

S(F) = er(fr i) ¥ix
jik
is a bounded operator from LP(R) to LP(R). This is an outline of the proof

of Meyer’s theorem.

This paper is organized as follows. In Section 2, we \prOVe that if ¢
satisfies the Wiener condition and {;}; » forms an orthonormal basis, then
the result of Meyer extends without using the Calderon-Zygmund operators.
Section 3 is devoted to the connection between pré—wavelets and Meyer’s

result.

2. Besselian and Hilbertian Bases from orthonormal wavelets.
In this section, the Besselian and Hilbertian bases are studied in spaces
LP(R). We prove the classical result that the space L?(R) is linearly isomet-
ric to LP([0,1]), for all 1 < p < co. Let ¥ be a function that v satisfies the
Wiener condition [17]; that is, ¢ is a continuous function on R and satisfies
the folldwing inequality:
¥l :== ), max |¢(z + k)| < oo.

0<z<1
keZ

Define a sequence of functions by
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Y () :=2/Pp(27 - +k) j,k€Z and 1<p<oco.

It follows that ||9% ||, = [[¥llp; in particular, {¢%, : 4,k € Z} is a bounded
sequence. Our goal will be to show that {¢/%, };x is a unconditional basis
in L?(R), 1 < p < oo. Moreover, in the spaces LP(R), where 1 < p < 2,
Y%, form a bounded and Besselian basis. Consequently, in the spaces L?(R),
where 2 < p < 00, {45}, is a bounded and Hilbertian basis. The basis
{gb;-’k };k is simultaneously Besselian and Hilbertian if and only if p = 2.
Recall that a basis

{¢n : n € N(or Z)}

is called a Riesz Basis in Hilbert space if there exist positive constants C;

and C5 such that, for all scalars ay,...,a,,

> ai;

=1

<Cy

From this motivation, we have the following definition (see [16, p. 338]).

Definition 2.1. A basis (frn) of a Banach space is said to be

(i) Besselian if there exists a positive constant C' such that, for all scalars

> aifi |
i=1

(ii) Hilbertian if there exists a positive constant C such that, for all scalars

ai,...,0y, and for all n,

a1,...,0q, and for all n,

n
> aif;
=1

<cC zn:|ai|2.
=1

It is clear that a Riesz basis for a Hilbert space is equivalent! to an
orthonormal basis. Thus, it must be both bbunded and unconditional. On

the other hand, any bounded unconditional basis is equivalent to a Riesz
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basis in any seprable Hilbert space (see [16, p. 640]). The following theorem

gives some characterizations of Besselian and Hilbertian bases.

Theorem 2.2 [16, Theorem 11.1]. Let (f,) be a basis of a Banach
space E. Then the following statements are equivalent:
(i) (fn) is Besselian (Hilbertian).
(i) There ezists a continuous linear mapping u of E into £* (£ into E)
such that

uw(fn) =€n (ulen) = fa)
where (e,) 15 the unit vector basis of £>.

Next we want to show that if ¢ satisfies the Wiener condition and {1}
form an orthonormal basis for L?(R), then {4%,} is an unconditional basis
of LP(R), for all 1 < p < co. The idea of the proof presented here comes
from a proof of it by Burkholder [2]. It is well known that the Haar basis
is an unconditional basis of LP(R) (1 < p < o0). This result is due to
Paley [14], but Burkholder gave an elegant and elementary proof. The trick
of Burkholder’s proof is also used to prove our main result, Theorem 2.5

below.

Define a function v : R*> — R by

z+y P

2

r—y

P
— * Y4
(p*~1) 5

(2.3) v(z,y) =

where 1 < p < co and p* := max{p,p/(p —1)}. In order to prove this result
we construct a function g : R> — R with continuous first partial derivatives

as follows:

Lemma 2.4 [2]. There ezists a function g with continuous first partial
derivatives such that
(i) For given = and y in R, g(-,y) and g(z,-) are concave.
(i) v < g on R v
(i) g(z,y) <0 if zy = 0.
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Outline of Proof:
We define
A ={(z,y):z2>0 and (1-2/p")a<y<z},
Ay={(z,y):2>0 and —z<y<(l-2/p")z}.

Set o, = plp*/(p* — 1)]'P and let g be the continuous function on R?
satisfying

9(z,y) = 9(y,z) = g(—=x, —y),

and the following further condition: if 1 < p < 2, then

9(z,y) = v(z,y) if (z,y) €A
pr(z — y)]
2z
If p > 2, then A; and A, are interchanged.

9(z,y) = opa? [1 - if (z,y) € A,.

Theorem 2.5. Let v satisfy the Wiener condition and assume that
{¢;r} is an orthonormal basis for L*(R). Then {5} is a bounded uncondi-
tional basis of LP(R) for all1 < p < 00. Moreover, we have, for all €jr = =*1

and all scalars aji,

asnP
E : €5k 5k Y S

(4,k)EF

> andl

(4,k)EF

(2.6)

b

<(p*-1)

p

for any finite set F in Z x Z.

Proof. Assume that n = §F,, and use induction on n. Let Z, : R — R?

be the function given by Z, = (X,,Y,), where

Xn = Z (Ejk -+ 1)ajk¢§.’k,
(§,k)EF,
and

Yn = Z (ij - l)ajk’(p;’k.

(4,k)EF,

Let the function v be defined as in (2.3). Then we have
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\/ﬂ%fu o Z’n = Z ejka’jk’(p;’k‘ Z ajk’(;b?k

(J,k)EFn (7,k)EF,
Clearly (2.6) is equivalent to

P. P
- (-1
p

P

/UOZnSO.
R

By Lemma 2.4, there exists a function g on R? such that 2.4(i)-(iii) hold.

Moreover, g satisfies

/goZn<oo for all n
R

To establish this, fix n and write

/R Z ajk¢?k(t)lpdtS/(, < Z Iajk|2|¢;’k(t+l)l> dt

(4,k)EFn (4,k)EFn leZ
P
S( > lag D max | §k(t+l)l)
(J,k)EF, ez ~
Y4
=< > 2_j+"/plajk|) 4llE < oo.

Similarly, we can prove that for each n, X,, and Y,, are integrable on R. So
isvoX,.
Since X;Y; = 0, we know that fzgo Z; < 0. In fact, the first partial

derivatives g, and g, exist so, by the concavity condition,
(2.7) gz +h,y+h) < g(2,y) + 9o (z,9)h + gy(z,9)k LRk =0

if hk = 0. It is now a short step to

(2.8) /goZnS/goZﬁlg---S/goZlfo,
R R R

which, since v < g, gives (2.6). Let n > 2. By (2.7) and
: (Xn - Yn)(Yn ~Y,1)=0,
we have

go Zn S go Zn—l + gz © Zn—l(Xn - Xn—l) + gy © n—l(Y'n, - Yn—l)-
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Consequently, (2.8) will follows if we can show that

/ﬁ 0o (Zne1 (£)) (X (£) — Xo_1())dt
(2.9)

~ [ 0 Zacs @)X lt) ~ Yors ()t =0.

Each of the integrands in (2.9) is equal to the product of ﬁ/}?ﬂkn with a

function of ¥%,, (j,k) € Fn—1. Since the sequence {%;;} is orthonormal in
L?(R), by induction, (2.9) follows.

Notice that similarly, we can also prove that 1);; form a unconditional
basis of LP(R), for all 1 < p < co. Next we want to show that LP(R) is
linearly isometric to LP([0,1]). In general cases, it is sufficient, up to an

isometry, to work with L?([0,1]) or £” instead of general LP-spaces (see [9,
chapter 5]).

Theorem 2.10. The space LP(R) is linearly isometric to LP([0,1}), for
all1 < P < 00.

Proof. The set [0,1] and R can be written as countable unions of disjoint

half-open intervals by

[O, 1] = U';.Loz]_‘[n and H - U;o=1Jn,
where I, = [;—h,%), and Jop, = [n — 1,n) and Jy,—1 = [-n — 1, —n),

respectively. If f € L?([a, b]) and g(t) = fla+ =5 (b—a)], then g € LP([c, d]).
Use the fact that there exists a linearly isometric mapping A,, n =1,2,...
from LP(J,) onto LP(I;). Define a map A from LP(R) onto L?([0,1]) by

o0
Af =) (fx1.)-
. n=1
We find that A is linear and norm-preserving since
Al e o,y = |l zAn(fXJn)”LP(I,.) = Z Wfxs ey = If Ly
for all f € LP(R).

The next result is easily proved with the aid of Theorem 1.2.
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Theorem 2.11. Let X and Y be two Banach spaces and let A be an
isometry from X onto Y. If {z,} is an unconditional basis, then {Az,} 1

also an unconditional basis.
Combining Theorems 2.5, 2.10, and 2.11 leads to the following result.

Theorem 2.12. The set {AY],} is o bounded unconditional basis of
L?([0,1]), for all p € (1, 00).

The fbllowing is a well known result [16, Proposition 14;1] about

bounded unconditional bases in L?(]0,1]), for 1 < p < oo.

‘Theorem 2.13.
(i) If1< p< 2, every bounded unconditional basis is Besselian in LP ([0, 1])
(i) If 2 < p < oo, every bounded unconditional basis i1s Hilbertian in
([0, 1))-
(iii) A bounded unconditional basis is simultaneously Besselian and Hilber-
tian in LP([0,1]) if and only if p = 2.

The proof of Theorem 2.13 relies on the Khinchin inequality (see, [16,
p. 425]). This states that there exist two positive constants A, and B, such

that for any n and for any scalars as,...,an
n 1/2 qn p 1/p n 1/2.
Ao Slall) < ([ [|>Zano @) < B (3l
i=1 0.1 1= , i=1 .

Here the Rademacher functions r; on [0,1] are defined by
r;(t) = sign sin(2'7t) (i =1,2...).
Combining Theorems 2:12 and 2.13, we have the following main results.

Theorem 2.14. Under the hypotheses of Theorem 2.5, in the spaces
| LP(R), where 1 < p < 2, {5} is a bounded and Besselian basis.. Conse-
quently, in the.spaces LP(R), where 2 < p < oo, {¢§.’k} is a bounded and
Hilbertian basis. The basis {1#;’ .} is simultaneously Besselian and Hilbertian

if and only if p= 2.
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Proof. By Theorem 2.5 and 2.12, there exists a linearly isometric map
A from LP(R) onto LP([0,1]), for all 1 < p < oo, such that {A(y],)} is a
bounded unconditional basis in LP(R) since {37, } is. Theorem 2.12 implies
that {A(¢%,)} is Besselian for p € (1,2] and Hilbertian for p € [2,00).
Moreover, {%%,} is a besselian and Hilbertian basis if and only if p = 2.
H1<p<2and {wﬁk} is a Besselian basis, then by Theorem 2.2, there
exists a continuous linear mapping u of LP([0,1]) into £2(Z x Z) such that
u(APE,) = ejk, where ;i form the unit vector basis of £2(Z x Z); that is, the
composition operator u o A of u and A is also a continuous linear mapping
from LP(R) onto £*(Z x Z) by 47, + e;r. Consequently, the basis {47}
is Besselian by Theorem 2.2 again. Similarly, we can prove that the basis
{#%,} is Hilbertian for all 2 < p < co.

3. Unconditional bases from Biorthonormal wavelets. In order
to generalize the Meyer’s theorem we need some terminology. A pre-wavelet
is a square-integrable function 1 such that (27 - +k) is orthogonal to (2™ -
+1) for all k,l € Z and all integers j # m. This terminology “pre—wavelet”;
first was used by Battle [1]. A linear space B of functions on R™ is said to be
shift invariant if for any f € B and k € Z", Tx f € B where the translation
operator T is defined by T f(-) = f(- + k). A family {9;}ic;r (I may be
countable or uncountable) in a Hilbert space is said to be stable when there
exist two positive constants C; and C; so that the inequalities

CiY_lal <D atul* < C2 Y Jayf?
hold for all a in ¢%(I). In particular, if ¥ is an element of L?(R™) whose
integer shifts make a stablé family, we shall say that 1 have stable shifts.

Assume that 9 and its derivative ¢’ satisfy the decay condition O(|z|?),
(p < —n). It is well know [4] that if 9 has stable shifts, then there exists
a bi-orthogonal function 1 whose integer translates are stable. We want
to show that both function 9 and ¢ have the same rate of decay. This is

related to a Wiener-Tauberian Theorem with a “weight”. Let o be a positive
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sequence satisfying the condition
(3.1) ok +1) < o(k)o(l), forall k€7

Following Gelfand, et al. [6] for one-dimension or Mitjagin [13] and Lei [10]
for multi-dimensions, we denote by Wo] the set of all formal power series
f = kez ax X" for which

£l == Z larlo(k) < oo.
keZ™

Here X is an indeterminate vector, X := (X1,...,Xy). It plays the role of
a dummy variable in defining the formal power series. From (3.1) it follows
that if W(o] contains two series f = )", axX* and g = Y, bp X, it also

contains their formal product

S e = 5 (Som )

m m

and that

o(m)

1ol =3 | S iy
m l
<Y lamitlo(m = Dlbila(l)
m l
=I£1l ligl

Thus, W{o] is a Banach algebra having a unit under the formal operations

on power series. Let M be a maximal ideal of W{o]. Then the residue class
algébra W o]/M is isomorphic to the complex number field. If we denote by
f(M) the complex number corresponding to f € W (o] under this canonical
mapping, then |f(M)]| _<_||f|| For each p € {1,...,n}, the complex number
X, (M) is non-zero since X, is invertible. Let 2 be the element in C™ whose
p-th component is X,(M). Then for each k € Z*, z¥ = X*(M) and

|2*] = |X*(M)| < IIX*|| = o(k).

This leads us to consider the set
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Sy :={zeC"\{0}:|z*| <o(k) forall kecZ}.

It is clear that for any formal power series Y., ax X" in W{o], the power

series >, az®

converges uniformly in z on S,. This implies that every
element f in W{o] defines a continuous function on S,, still denoted by f.

In our application, o is chosen to be
(32) o(z) = (1+|lz])?, = eR",

where p is a positive number. Thus, o(z + y) < o(z)o(y). Lei [10] proved
that S, is exactly the torus 7" in C". The following theorem follows im-

mediately from [6, Sect.6, Theorem 1].

Theorem 3.3. Let o be as in (3.2). If f is a member of W{o] and if G
1$ analytic on a neighborhood of the range of the function on T™, then there

exists a member g in Wo] such that G(f(2)) = g(2) for all z € T™.

This theorem is useful in estimating the decay rate of é in terms of that
of ¢, where ¢ is a stable function, and ¢ is a bi-orthogonal stable function
with respect to ¢. We can show that ¢ has the same decay rate. Moreover,
we will show that

llo@llw == 4 LA [(eg)(z + k)| = zk:”é?‘?ﬁ" lo(z + k)ll4)(z + k)| < oo.

Given a function ¢ on R™ and a sequence a on Z", the semi-discrete convo-

lution product ¢ +’ a is, by definition, the sum ), ax (- + k) (see, [7]).

Theorem 3.4. Let p be a positive number. If ¢ belongs to C(R™) with
logllw < oo and has stable shifts, then there exists a sequence b for which
the formal power series g :== >, b X* is in Wo] and ¢ := ¢+ b has stable
shifts with od]lw < co.

Proof. Let a be the sequence given by aj := ¢ x ¢*(k) and let f be the
formal power series )., axX*. We want to show that f belongs to W|o].
For any k € Z" and z € R", we have
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S o®lesl < 3 o(h) [ 1o(a)ito+ iz
k k R” v
<3 [ (co@lie) e + Blds

< o)z + )| |[(cd)(z + k+1)|dx
SES [ Noote Dl s+
< llodlls < oo

Thus, f € W[o]. Since ¢ has stable shifts, f(z) is positive on T™ (see {7,
Theorems 3.3]). By Theorem 3.3, there exists a sequence b for which the

formal power series g := ), ka k is in W|o] and
= 9(2).
f (

This implies that ¢ := ¢ +' b (see, [7]) is bi-orthogonal with respect to ¢.

Indeed, by the Poisson summation formula,

Trey b2k ) 3(e) = fig(f) ’
3(0) (;k )¢<§) AL

and hence

> (x4 (k)ED = S Ide+pP =1.
k

2k l¢(§ +E)?

This implies that
$x¢* (k) =0(k #0), ¢xg*(k)=1(k=0).
Hence
[ dto+ )3+ Rde =62 6°G ~ B = 83
Finally, in order to show [|od|lw < 0o, we note that
Z max [(0g)(z + k)| < ZZ max_ l(o¢)(z +k + D) lo(Dbi]

< Il(fd)llwl!gll < oo.

That is ||o@|lw < co. Thus, ¢ and é have the same decay rate.
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Corollary 3.5 Assume that |lo¥|l. < 0 and |lo9'|lw < co. If ¢ has
stable shifts, then there exists a sequence b € £*(Z) such that v=1+band
W =1« b with ||oP)w < 00 and |Jod' ||, < co.

Recall the definition of frame.

Definition 3.6. A family {¢; : ¢ € I'} is said to be a frame for a Hilbert

space H if there exist positive constants A, B such that the inequalities
3.7) AlFIP < DI 01 < BIFI
hold for all f in . The numbers A and B are called bounds for the frame.

We want to give an equivalent condition for a frame. First, a lemma is

needed.

Lemma 3.8 [15]. Suppose that X and Y are Hilbert spaces, and S is
a bounded linear operator from X to Y. Then S is surjective if and only
if the adjoint operator S* is bounded below; that is, there exists a constant

m > 0 such that ||S*g|| > mllg||. For everyy €Y.

Theorem 3.9. For a family {¢; : k € I} in H the following are
equivalent: '
(i) {6} is o frame,
(ii) The map S: {a;}ier — X; ai¢i is a bounded operator from £%(I) onto
H.
Proof. Suppose that the operator S is bounded from ¢2(I) onto H.

Using Lemma 3.8 we conclude that the adjoint operator $* is bounded
below and S*f (i) = (f, ¢;) for all ¢ € I and f € H since

(S{ai}, f) = (Z a:¢i, [) = Zai(%f) = Zai(f, $i) = ({ai},S*f)-

Thus {¢;} is a frame. On the other hand, assume that {¢;} satisfies in-
equalities (3.7) and let a be any element of £2(I). Put f:= ). a;¢;. Then
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' 2
I£1% =1, A1 = < Z IaiIZZ (7, 00)1” < ANFIP D lasl®.

Z a; (fo ¢z)
Dividing by ||f]|?, we find || 3", a:¢:|> < A", |a;|>. This implies that the
map S : {a;} = ), a:¢; is well-defined and bounded so that the adjoint
operator S* is bounded below by (3.7). Lemma 3.8 again implies that S is

onto.

Corollary 3.10. If a family {¢; : i € I} is a frame in a Hilbert space
H, then H={>,a:;¢; : a € £2(I)}.

Under certain conditions, we can apply Corollary 3.5 to prove that if
the hypotheses of Corollary 3.5 hold and if v, form a pre-wavelet basis for
L%(R), then v also provide a unconditional basis for LP(R), for 1 < p < co.
By Theorem 1.2, we need to show that if

(3.11) F=Y atr € LIP(R),
ik
then
Z €5xak Y5k € LF(R)
7.k

whenever €;; = 1.

Since 1 belongs to LP(R), for all 1 < p < oo, (3.11) implies that a;; =
(f, 'z,zjk) (the inner product of f and 1/;Jk) by the bi-orthogonality of the 1.
Assume that the linear operator U defined by
(3.12) Uf = eulf,din)bin

g,k
is bounded on L?(R). The LP-boundedness will follow by Theorem 1.10 if
we can show that U is an integral operator with kernel satisfying (1.5) and
(1.6). By Corollary 3.5, we can prove that if we choose €;; = %1, and define
H(z,y) = > eptin(@)dn (),

j?k
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then H satisfies (1.5) and (1.6) but the proof is similar to the orthonormal

case (see [4, Lemma 9.1.5]).

Theorem 3.13. Under the hypotheses given above, if U is an integral
operator with integral kernel H, and if U is bounded on L?(R), then U
extends to a bounded operator from LP(R) to LP(R), for all p € (1,00); that
is, {¥;x} is a unconditional basis of LP(R™) for all1 <p < c0.

A sufficient condition is given for the boundedness of the operator U.
This is related to the Riesz bases. If 1 is a pre-wavelet and a stable function,

we can conclude that ;5 forms a Riesz basis.

Theorem 3.14. If ¥ form a pre-wavelet basis and if ¢ has stable
shift, then {1;r} is a Riesz basis ( hence a frame) and {Qij} s the dual
fmme with ('(/)jk,"z)il) = 6ji5kl-

Using Theorem 3.14, {t;x,%;k };, are dual frames and so one can prove
“that U in (3.12) is a bounded operator.

Corollary 3.15. Adopt the assumptions of Theorem 3.14, U is a
bounded operator on L%(R).

proof. For any f in L?(R), we have

2

= > 11D e f, D)wsell3
, 2 Gk
<Y (D) < CPTIE.

j’k

£ =

Z €k (f 1/;)¢jk
7k

whenever € = £1. Thus, U is bounded.
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