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REAL ANALYTIC REGULARITY
OF THE BERGMAN KERNEL FUNCTION
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SO CHIN CHEN (f2<758)

Abstract. In this note we prove the real analytic regu—‘
larity of the Bergman kernel function in Jjoint variables on pseu-
doconvex circular domains.

1. Introduction. In several complex variables the Bergman kernel
function Kq(z,w) associated with a smooth bounded domain € has been
shown to be closely related to the extension problem of a biholomorphic
mapping between two such domains which in turn has an iinporta,nt conse-
quence concerning the classification of domains in higher dimensional space.
Thus, understanding the boundary behavior of the Bergman kernel function
has become an extremely important issue.

Now let Q2 be a smooth bounded pseudoconvex domain in C™ with
n > 2. It was first proved by Kerzman [10] that the Bergman kernel function
Ka(z,w) associated with a smooth bounded strictly pseudoconvex domain
can be extended smoothly to QxQ—A(bQ), where A(bQ) = {(z, 2)|z € bQ}.
Later it was generalized independently by Bell [2] and Boas [4] to the follows.

Theorem A. Let 2 be a smooth bounded pseudoconvez domam mn C™.
Let T'1 and T3 be two deomt open subsets of b consisting of points of
finite type in the sense of D’Angelo [7]. Then the Bergman kernel function

associated with Q extends smoothly to T'; x T'y.
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Theorem B. Let €2 be a smooth bounded pseudoconver domain in C™.
Suppose that condition R holds on Q. Let Iy and Ty be two disjoint open
subsets of b€ such that I'y consists of points of finite type. Then the Bergman

kernel function associated with Q extends smoothly to 'y x T's.

Condition R here means that the orthogonal projection P from L2(Q)
onto the subspace of sqaure-integrable holomorphic functions maps C*°(Q)

continuously into itself.

But, in general, the smooth extension phenomenum of the Bergman ker-
nel function in joint variables is false. A counterexample has been recently
discovered by the author [6].

In fact, we showed in Chen [6] that if there is a complex variety V
sitting in the boundary b2 of 2, then

Ko(z,w) ¢ C®(Qx Q — A(bQ)).

The purpose of this article is to investigate the real analytic extension
problem of the Bergman kernel function in joint variables. So far very little

was known in this direction. The following result was obtained by Bell [3].

Theorem C. Let Q be defined as above, and let a and b be two distinct
boundary points. Suppose that b is a point of finite type in the sense of
D’Angelo and that the boundary of Q s real analytic near a and that the
8-Neumann problem on Q satisfies local condition Q ata, then there ezists
disjoint balls B, and By, centered at a and b respectively such that K(z,w)
extends to be in C°(B, x (2N By)) as a function which is holomorphic in

z and antiholomorphic in w on B, x (2N By).

Here we follow the definition given in Bell [3]. By saying that the &-
Neumann problem on  satisfies local condition Q at p we mean that the
boundary 5 is real analytic and of finite type near p and that N, extends
to be real analytic at p whenever « is a form in L%’I(Q) which- is supported
away from p, where N is the Neumann operator. :Ba,sed on the works by

Tartakoff [12] and Treves [13] we know that the domain Q satisfies local
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condition @ at every real analytic strictly pseudoconvex point, and at some
weakly pseudoconvex points on certain model hypersurface. For instance,
see Derridj and Tartakoff [8] [9].

In this note we shall first prove an analytic version of Theorem B.

Theorem 1. Let Q be a smooth bounded pseudoconver domain in C™
with n > 2. Let p and q be two distinct boundary points. Suppose that
condition R holds on Q, and that Q satisfies localvcondition Q at p, then
the same conclusion for the kernel function K(z,w) as stated in Theorem C

holds near (p,q).

Note that if ¢ is of finite type, then Theorem 1 is reduced to Theorem
C. Here we allow ¢ to be of infinite type. -

Theorem 1 will be applied to prove the real analytic extension of the
Bergman kernel function in joint variables. Let Q be a smoothly bounded
domain in C™. € is said to be invariant under S'-action if z = (215, 2n) €
Q implies that e -2 € Q for § € R. Here €'° - 2 means that we multiply some
or all of the components z{s by e*. Hence for each z near the boundary 9,

if the mapping

A:S1 -0

¥ 1 ¢if . 5
generates a curve through z in £, then the differential mapping A, of A will

induce a tangential vector T} at z by

0
Tz = A* (%|0:0> .

In particular, if z € bQ, then T, will be tangent to the boundary Q. So now
if we let z vary in the boundary bQ, we obtain a globally defined tangential
vector field T. Here we recall briefly the definition of symmetry. We shall
say that the domain § has rotational symmetry near a boundary point z if

the domain  is invariant under the S*-action, and if the tangential vector
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field T generated by the S'-action points in the missing direction, namely,
T, ¢ THO(bQ2) & T21(bS2). Then we prove

Theorem 2. Let Q be a smooth bounded pseudoconvex domain in C™
with n > 2. Let the boundary bS) be real analytic near two distinct boundary
points p and q. Suppose that condition R holds on 2, and that Q satisfies
local condition Q at p, and that 2 has rotational symmetry at q, then there
exists two disjoint balls B, and B, centered at p and q respectively such
that the Bergman kernel function K(z,w) extends real analytically to be in

C¥(B, x By) which is holomorphic in z and antiholomorphic in w.

In Theorem 2, instead of assuming local condition Q) at ¢, we impose an
easier and more geometric condition near ¢. One should compare the above

theorem with the Theorem 2 in Bell [3].

Then an immediate consequence of Theorem 2 is the following

Theorem 3. Let 2 be a smooth bounded pseudoconvex domain with
real analytic boundary in C™ with n > 2. Suppose that Q is either Rein-
hardt or circular with 375_, zjg—;(z) # 0 near the boundary, where r(z) is
a real analytic defining function for Q. Then the Bergman kernel function
K(z,w) associated with Q0 extends real analytically across the boundary in
joint variables near any pair of boundary points (p,q) with p # q, provided

that §2 is strictly pseudoconvezr at one of these two points.

To conclude the introduction we give an example below.

Example 4. One can easily construct a smooth bounded convex com-
plete Reinhardt domain Q in C? such that Q has real analytic boundary
and is Levi flat on ¢ = (z,w) € bQ with |w| < § for some § > 0, and
that the boundary 02 is real analytic and of strict pseudoconvexity near
p = (0,wp) € b for some wy. Then Theorem 2 implies that the kernel
function K(z,w) extends real analytically across the boundary in joint vari-

ables near (p,q). Note that in this example the point ¢ is of infinite type.

2. Proofs of Theorems 1 and 2. Let Q be a smooth bounded
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pseudoconvex domain in C™ with n > 2. Suppose that condition R holds
on 2. Let p and ¢ be two distinct boundary points such that the boundary
b€ is real analytic and of finite type near p. Let us assume that Q satisfies
local condition @ at p.

We shall now prove Theorem 1 first by following the line developed
in Bell [2]. Let ¢ > 0 be a small positive number such that B(p;2¢) and
B(gq; 2¢) are disjoint. Construct s smooth bounded finite type pseudoconvex
subdomain D C QN B(p;e) whose boundary coincides with bQ near p,
namely, for some small 7 with € > 5 > 0, we have DN B(p; ) = QN B(p; ).
We may also assume that 7 is so small that the boundary bD is real analytic
“near bD N B(p; 7). Thus, the Bergman kernel function Kp(z,w) associated
with D extends smoothly to D x D — {(z,2)|z € bD}.

Let x be the cut-off function which is equal to zero on B(p;%) and
equal to one on C™ — B(p; 7). Let s be a positive integer, and let @3, be the
operator constructed in Bell [1] that satisfies the following properties:

(i) @ is a bounded operator in W*(D) norm from H*(D) into W§(D).

Here W3 (D) denotes the closure of C$°(D) in W*(D),

(ii) ®% is a linear differential operator with coefficients in C>°(D),

(iii) Pp®% = Pp on L%(D).

Let ¢ be a point in Y = B(p; 2)NQ, and let hY = %Kp(z,g’). Notice
that both |[xh¢|lws(p) and [|®%(xA¢)llws(n) are uniformly bounded as ¢
varies in Y. The latter norm is taken by extending the function @5 (xhE)
by zero on 2 — D. .

The function (1 — x)hg is in C°°(f2) when it is extended to Q via
extension by zero, and J[(1 — x)hg] is a (1,0)-form on © whose coefficients
are uniformly bounded in W*(Q2) norm as ¢ varies in Y. Thus, by Kohn’s

theorem [11}, there is a function v§ in W*(Q) such that
5’02" =9[(1 — X)hg‘]
“and that

[v¢ llw= @y < ClIBI(1 = X)) ]llw (0,
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where the constant C is independent of o and . Then it was shown in Bell

(2] that the Bergman kernel function Kq(z,w) for Q satisfies

Q1) FKa(i0) = Pa®5(h) + Paof + (1 =) —of.

Next, if n > 0 is sufficiently small, notice that for each multiindex 3,
by Theorem C there exists a constant Cg > 0 such that

as+t a |Of|
for any (z,{) € D x Y and that
s+t o
(2.3) l ——==0l(1 —0hg]| < CpCllall,

for any (z,() € 2 X Y, where s and ¢ are two multiindices with s +¢ = 3.
Now, given any k € NN, let the integer s > k be so chosen that P maps
W#(Q) continuously into W*(Q) N H(Q). We shall estimate the L2-norm of

622:;2 Kq(z,{) on U x Y for |B| < k, where U = B(g;¢) N Q.

Notice that (1—x)h = 0 for any (z,() € U XY, and that the L?-norm
on U xY is clearly dominated by the L2-norm on Q x Y. Thus the estimates
for the remaining three terms in (2.1) can be obtained as follows. By (2.2)
we get ‘

2 2

5ﬁ o o
| 25 Pal@5 0k O Po(@p k)| dvede

L2(QxY) 8 p
/ 105 (k&) ey e
- /Y 195 (kI oy e

< C.Cat

for some Cy > 0. Cj depends on k. The notation A X B means that
A < CB for some constant C independent of A and B. The second and

fourth terms in (2.1) can be estimated similarly, and by (2.3) we have
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<
Paut s / 102 12+ 0y e
Lr@axyy Jy

S /Y 1811 = x)Be] Iy oy o

< e,
a# _|I? < /
S5V ~ g sy die
8zP ¢ L2(QXY) y o ¢ @
< CClal.

The above estimates show that the kernel function Kq(z,() extends to
be in C*°(B(p; 6) x (B(g; €)NN)) as a function which is holomorphic in z and
antiholomorphic in ¢ for some small § > 0 with > § > 0. This completes
the proof of Theorem 1.

Next we prove Theorem 2. By assumption the domain Q is invariant
under Sl-action. Therefore, for each z € Q, there is a mapping A from S?
to Q defined by

A:S' -0

e? s e . 2.

Here €% - z means that we multiply some of the coordinates of z by et?.

Then the differential mapping A, of A induces a tangential vector field T at

8
Tz = A, (-a-e-|9=0> .

By our hypothesis we see that the vector field T is real, real analytic and

z as follows,

T, ¢ T,°(b2) © T2 (b92).
It is also clear that for any smooth function f on Q we have

Tf(2) = 2o 1 Dlamo
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Now, since {2 satisfies local condition @ at p and Condition R holds on
, hence by Theorem 1 there exists. disjoint balls B, and B, centered at
p and g respectively such that for any multiindex « the following estimate
holds

8—KQ(Zaw)| < cC¥al,

(2.4) s

for any (z,w) € B, x (2N B,), where C > 0 is an universal constant.

We may assume that the radius of B, is so small that the vector field
T is transversal to T10(bQ2) @ T%1(b2) on b2 N By, and that the boundary
bS2 is real analytic near b2 N Eq. Since Q is invariant under S'-action, it is

not hard to see that we have

d .
TwKQ(z:w) = @Kﬂ(zaew : w)10=0

d 0 _—i i

= EKQ(CZG'C e-z,ee-w)]9=0
d —i0 '

= @Kg(e zZ,w)|e=0

= -T,Kq(z,w).

Hence it follows from the above observation that for any multiindex o
and any k£ € N U {0} we obtain

o 804
@(TﬁKﬂ(zaw)) = (—1)k_z‘;(TfKQ(z,w))~
Then by estimate (2.4) we get
25) ——(TEKa(zw))| < CCRI+ (o] + ),

for all (z,w) € B, x (2N B,).

From estimate (2.5) it is then standard to see that the Bergman kernel
function extends real analytically across the boundary in joint variables near
(p,q). For instance, see Chen [5]. The proof of Theorem 2 is now complete.

To prove Theorem 3 we simply observe that under the hypotheses of

the theorem the domain ) enjoys rotational éymmetry at every boundary
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point, and that local condition @ holds at every strictly pseudoconvex point.

Hence Theorem 2 applies.
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