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Abstract. The authors consider the nonlinear difference
equation

(*) A(Pr—1f(¥n-1)AYn-1) = ng(yn)

and obtain results on the asymptotic behavior of solutions of
(*) including sufficient conditions for all solutions to bounded.
Some results comparing the behavior of solutions of (*) to solu-
tions of the linear equation

A(Prn-18Yn—1) = gnyn

are also obtained. The nonlinear limit-point/limit-circle prob-
lem is introduced, and a sufficient condition for all solutions of
(*) to be of the nonlinear limit-point type is proved.

1. Introduction. In this paper we study the asymptotic behavior of

solutions of nonlinear difference equations of the type

(1) APn—-1f(Un-1)AYn—1) = ¢,9(yn)

where A denotes the forward difference operator defined by Ay, = ynt1=Yn,

{p.} and {g.} are real sequences, and the functions f,g : R — R are
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continuous. By a solution of (1) we mean a real sequence {y,} satisfying
(1) for n > ng for some ng > 0. We consider only such solutlons which are
nontrivial for all large n.

The following conditions are assumed to hold throughout the remainder
of this paper . There is an Ny € N'={1,2,...} such that:

(i) pn > 0 and g, > 0 for n > Ny and ¢, # 0 for n > N; for any Ny > No;
(ii) f(r) > 0 and rg(r) > 0 for all r # 0.
A solution {y,} of (1) is bounded if there exists M > 0 such that |y,| < M
for all n > Ny, and {y.} is nonoscillatory if the terms y, are eventually all
of the same sign.

The qualitative behavior of solutions of special cases of equation (1),
especially when ¢, < 0, have been examined by a number of authors, for
example, see [2, 3, 6-15] and the references contained therein. For additional
references, the reader is referred to the recent monograph by Agarwal [1].
In this paper we study the asymptotic behavior of the solutions of equatidn
(1), and in Section 2, we give some sufficient conditions for all solutions
to be bounded. This extends a results for linear equations obtained in [3].
Section 3 contains some results on the asymptoti_c relationships between
the solutions of (1) and the solutions of the second order linear difference

equation

; (2) A(pn—lAun—l) = QnUn-

In Section 4, we introduce the study of nonlinear limit-point/limit-circle

problems for difference equations.

2. Monotonicity. We begin with two pr0p051t10ns giving some basic

information about the behavmr of solutions of (1).
Proposition 1. Every solution of equatz’_on (1) ‘is nonoscillatory.

Proof Let {yn} be an osc1llat0ry solution of (1) Choose an integer
N > Ny such that yn—1 < 0 and yn > 0. Now from (1)

Ayn- 1[A(p1v L Flun-1)Byn—1)] = (Ayn_1)ang(yn) > 0,
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S0

Ayn-1[pnf(yn)Ayn — pn—1f(yn—1)Ayn_1] > 0.
Hence,
pnFyn)AynAyn_1 > pv_1f(yv—1)(Ayn—1)? > 0,

from which it follows that Ayy > 0. Thus, yy4; > yN > 0. Repeating the
above argument by taking equation (1) at n = N + 1 and multiplying by
Ayn, we obtain Ayyi1 > 050 yyyo > 0. Continuing this procéss, we have

Yn > 0 for n > N, which is a contradiction.

Proposition 2. Let {yn} be any solution of (1). Then {yn} is either

eventually increasing or eventually decreasing.

Proof. Since equation (1) is nonoscillatory, we may assume ¥, is of one
sign, say y, > 0 for all n > N for some N > Ny. Consider the sequence
{F,} defined by

(3) P = ynpnf(yn)Ayny n > N.

Then

AF, = Ynt1A0n f Wn) An) + Puf (¥a) (Ay,)?

= Yn+18n+19(Yn+1) + Do f (¥n)(Ayn)?
(4). > 0.

Suppose there exists an integer V; > N such that Ayy, > 0. Since y,, pn,
and f(yn) are positive, (3) and (4) imply that Ay, > 0 for n > N;, which
in turn implies {y,} is increasing for n. > Njy.

If there does not exist an integer Ny > N such that Ale > d, then
it must be the case that Ay, < 0 for n > N;. Now for any ni > INj there

exists ng > my such that ¢,, > 0. Hence
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0 2 Pryf(Yns ) AYn,
= Py 1 (Yno=1)AYns -1 + €129 (Un, )
> Pry—1f(Yna—1)AYny -1
= Pro—2f Uny=2)AYny—2 + Gny ~19(Yny—1)
> Pry—2f (Yny—2) AU, —2

= pnz—Sf(yn2—3)Ayn2—3 + qnz'—zg(y'ﬂz—?)
> ...

> pnf(yn)Ayn.

Therefore, Ay, < 0 for every n with N < n < ny —1. Since such arbitrarily

large n, always exist, we have Ay, < O foralln > N, ie., {yn} is decreasing.

Remark 1. Proposition 2 generalizes to nonlinear equations some

results in [3] that are for linear equations (see [3; Lemmas 1 and 2]).

We now divide the set of all solutions of equation (1) ( or (2)) into two
classes. A golution is said to belong to Class A if it is eventually either
positive and increasing or negative and decreasing; a solution belongs to
Class B if it is eventually either positive and decreasing or negative and
increasing.

Clearly, all solutions of Class B are bounded; for solutions of (2) of
Class A we recall the following known results.

Proposition 3. ([3, Theorem 4]) Every (Class A) solution of (2) is
bounded if and only if

(5) f:;l—i qr, < 0.

Proposition 4. ([3, Lemma,.6]) For every (Class A) solution {un} of
(2), the sequence {pnAuy,} is bounded if and only if

(6) > tnir Y pik < 0.
n=1 k=1
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Proposition 5. ([3, Theorem 6]) Assume that equation (2) has un-
bounded solutions. Then every solution of Class B tends to zero as n — oo

if and only if

7) S tan Y=o
k=1

n=1

Proposition 6. If condition (6) holds, then for every unbounded solu-
tion {v,} of (2) we have

n—1 1
(8) vn~KZp— (K # 0).
s=1+°%

Proof. It follows from (2) and Proposition 4 that every positive un-

bounded solution {v,} of (2) is of Class A, {p,Auv,} is monotone increasing,

and
nllngopnAvn = K < +o0.
If
S — < 00,
n=1 P”

then {v,} is bounded, and this is a contradiction. Thus, we can apply

L’Hoépital’s rule to obtain

im ———— = lim p,Av, =K,
n—00 Z n—o0
s“l ps

so (8) holds.
Next, we extend some of the above results to the nonlinear equation

(1).
Theorem 1. Suppose condition (5) holds,
(9) f/g is nondecreasing,

and there exists M > 0 such that
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(10) g(r) is nondecreasing for |r| > M.
Then every solution of equation (1) is bounded.

Proof. We can consider without loss of generality only Class A solutions
since every solution in Class B is bounded. Let {y,} be a Class A solution
of (1) and suppose y, > 0 and Ay, > 0 for all n > N; for some N; > Nj.
(The case y, < 0, Ay, < 0 for all large n is similar, and the proof will be
omitted.) If {y,} is unbounded, then there exists an integer N > N; such
that y, > M for all n > N. Let {u,} be a solution of (2) that belongs to
Class A for all n > N — 1 and satisfies

(11) un f(yn-1)Ayn-1— 9(yn)Aun_1 <0.

From equations (1) and (2), we have

Apn-1f(Yn-1)AYn_1) — — A(pn—1Atun_1)

9(Yn) Un

forn > N, so

unA(pn—lf(yn—l)Ayn~—l) = g(yn)A(pn—lAun—l)'

Since
UNAPn—1f (Yn-1)AYn-1) < UnAPr—1f(Yn-1)AYn-1),

a summation from N to n > N yields

uNDnf (Yn)AUn < unpN-1f(YN-1)AYN -1+ D 9(¥s)A(Pem1Ars_y).
s=N :

Using condition (10), we obtain
uanf(yn)Ayn

<unpn-1f(yn-1)Ayn-1+ g(¥yn) Z A(ps-1Aus-1)
s=N

SUNPN—lf(yN—l)AyN—1 + g(yn) [PnAUn - pN—lAuN—l]

<pN-1 [uNf(yN—l)AyN—l — g(yN)AuN—1] + 9(Yn )P AUy,
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and then from (9) and (11), we have

Fm) p, o F) 5 A

aun) 0= glym) uN

Summing the above inequality yields a contradiction to Proposition 3.

Remark 2. Theorem 1 remains valid if we replace the conditions (9)
. and (10) with

f is nondecreasing,
and there exists C > 0 such that
0<|g(r)] < Cforall r #0.

In the proof, g(yn) in (11) is replaced by C.

Remark 3. Theorem 1 generalizes the sufficiency part of [3; Theorem
4] (see Proposition 3 above) to nonlinear equations.
The following example shows that condition (9) cannot be eliminated

from the hypotheses of Theorem 1.

Example. Consider the equation

n(4n? +3n+1) o
(n+1)5 Yn-

A(n(n — 1yy_1)Ayn—1) =

This equation has the unbounded solution {y,} = {n + 1}, while the corre-
sponding linear equation has bounded solutions (see Proposition 3). Here,
f(r)/g(r) = 1/r® and so condition (9) does not hold.

3. Asymptotic Comparison. In this section we prove some asymp-
totic relationships between the solutions of the nonlinear equation (1) and

the linear equation (2).
Theorem 2. Suppose that
(12) rf'(r) >0 forallr € R

and there exists My > 0 such that
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(13) lg(r)| = Irlf(r) <0 for |r| > M.

Then for every Class A solution {y,} of (1), there ezists a Class A solution
{un} of (2) such that L = lim,—,oo(yn/un) exists and is finite.

Proof. Let {y,} be a Class A solution of (1) with y, > 0 and Ay, >0
for all n > Ny > Ny. If {y,} is bounded, then the proof is obvious. Hence,
assume {y,} is unbounded, i.e., lim, o, ¥, = +o0o. Then there exists an
integer N such that y, > M; for n > N > N;. Let {u,} be a solution of
(2) belonging to Class A for all n > N — 1 and satisfying

(14) uN-1AYN-1 —ynN-—1Aun_; Z 0.

For n > N, define

F, = pn—lf(yn-l)[un—lAyn—l - yn—lAun—l]-
Then

AF, = guunlg(yn) — ?/nf(yn)] + Po—1A%—1[f (Yn—1) — S @n)lyn.

Since {yn} and {u,} belong to Class A, conditions (12) and (13) imply that
AF, <0forn>N. By (14), F, < Fy <0forn > N, 50 tip_1Ay,_1 —
Yn_1Au,_1 < 0forn > N. Hence, {Z—:} is a positive nonincreasing sequence
for n > N and thus converges to a finite limit. The proof for an eventually

negative Class A solution is similar.

In the next theorem we add an additional condition to the hypotheses
of Theorem 2 and obtain that the limit L in the conclusion of Theorem 2 is

different from zero.

Theorem 3. Let conditions (6), (12) and (13) hold. If every Class A
solution of (1) and (3) is unbounded, then the limit L in Theorem 2 is zero
of and only iof

lim f(r) = oo.

r—too

Furthermore, in this case we have
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Proof. Let {y,} be an unbounded Class .4 solution of equation (1), and
with no loss in generality, assume y, > M; > 0 for all n > N > Np. Let
{u,} be an unbounded Class A solution of equation (3) satisfying (14). We
will first show that L = L' = 0 if lim,_,, f(r) = +00. From equation (1)
and condition (13), we have

dnYn

n

APn-1fYn-1)AUn-1) = @ng(yn) < T (Yn)tn.

From the proof of Theorem 2, the sequence {Z—Z} is nonincreasing for n > N,

so from (2) we have

A(pn—lf(yn—l)Ayn—l) < Aqnf(yn)'ufn = Af(yn)A(pn—lAun—l)

where A = $%&. Summing from N to n and applying condition (12), we

obtain

pnf(yn)Ayn‘ S pN—-lf(yN—l)AyN—l + Af(yn) Z A(ps—lAus—l)a
s=N
or

- _1)Ayny_1
pnAyn S By 1f(?lzy 1)) YN-1 +A[pnAu'n. _pN—lAuN—1]~

By (2) and Proposition 4, lim,_,c prQAt, exists and is finite. Since N can
be chosen arbitrarily large, {p,Au,} is a Cauchy sequence, and f(r) — oo

as 7 — 00, a simple argument shows that
lim p,Ay, =0.

Hence,

An . nAn
L = lim 2Y = lim 2n2Ye

n—oo AUy -~ N0 pnAun

~ Conversely, if L = 0, then we will show that lim, o f(r) = oo. Suppose -
lim, .o f(r) = F < oo. The function pp_1f(yn—1)Ayn—_1 is positive and

nondecreasing; hence, for large n, we have
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(15  D¥n _Pf@n)Ayn 1 pufn)Aya 1

Aun B pnAun (yn) pnAun F

Since {Z=} is nonincreasing, we have

> 0.
U, Au, Au,

Yn _ Byn _ un+1A(y_n)
From (15), it follows that

Yn Ay,
Uy Uy

>h >0,

and the desired contradiction L > h > 0 is reached. A similar argument
holds when vy, < —M; <0 for all n > N.

From Proposition 6 and Theorem 3 we have the following result.

Theorem 4. Let conditions (6), (12) and (13) hold. For e’uery un-
bounded solution {y,} of equation (1) the limst

_ Yn
lim
n—00 Zs 1 ps

exists and is finite. Moreover, it is different from zero if and only if the

function f is bounded.

4. The nonlinear Limit-Point/Limit-Circle Problem. In this
section we introduce the study of limit-point/limit-circle properties for non-
linear difference equations similar to what the second and third authors did
for differential equations (see, for example, [4,5] and the references contained

therein). We consider equation (1) with f(r) = 1, namely,
(16) A(p'n,—lAy'n.—l) - qng(yn) =0
A solution {y,} of (16) will be said to be of nonlinear limit-circle type if

(17) > Yng(¥n) < oo,
n=1

and will be said to be of nonlinear limit-point type otherwise, i.e., if

(18) > Ung(yn) = o0
n=1
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We begin with the following result.
Theorem 5. Suppose that
(19)  g(z) is bounded away from zero if x is bounded away from zero.

If {y,} is a nonlinear limit-circle solution of (16), then y, — 0 as n —

and Y, Ay, < 0 for all large n.

Proof. Let {y,} be a nonlinear limit-circle solution of equation (16).
By Propositions 1 and 2, {y,} is nonoscillatory and eventually monotonic.
Now (17) implies ¥,9(y») — 0 as n — oo, and it follows from (19) that
yn — 0 as n — oo. Clearly, y, Ay, < 0 for all large n. A similar proof holds

if {y,} is eventually negative.

The next result is a necessary condition for a solution of equation (16)

to be of the nonlinear limit-circle type.

Theorem 6. Suppose there exist constants A > 0,B >0, and K > 0
such that

(20) r?2 < Arg(r) + B,
) 1 Ag,
(21) (o)} —E8) | < i
(Qn) 2qn+1
and
- (Aqn
22

If {yn} is a limit-circle solution of equation (16), then

(23) S p B0 o

n=1 n

Proof. Let {yn} be a nonlinear limit-circle solution of equation (16).

Then {y,} is nonoscilatory and eventually monotonic, say y, > 0 and Ay, <
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0 forn > N > Ny. Multiplying equation (16) by g—: and summing from N+1
to n by parts yields

YnPnlAYn  PNYNAYN z": Ps—1(Aya—1)*

(24) dn N s=N+1 ds—1
= Y4 —lysAys—lAQS—l =
+ > = \ ~ D Ysg(ys) =0
s=N+1 9s9s—1 s=N+1
By the Schwarz inequality, we have
2": Ps—1YsAYs_1Aqs_1
s=N+1 gsqs—1
1 1
<[ z”: ps_l(Ays_1)2]2[ 2”: Ps—192(Ags_1)?] 2
= 2
s=N+1 9s—1 s=N+1 9s9s—1

Now (20)-(22) and the fact that {y,} is a nonlinear limit-circle solution of
(16) imply that the second sum on the right hand side of the last inequality
is bounded. Also, the first term on the left hand side of ‘(24) is nonpositive.

Hence, we have
1
H'n, S KlHrf + KZ

for some constants K; > 0, Ky > 0 where

n

Avy._ 2

an Z ps—I( Ye 1) .
s=N-+1 ds—1

Clearly, this implies (23).

Our final result given sufficient conditions for equation (16) to be of the

nonlinear limit-point type.
Theorem 7. Suppose that (20)-(22) hold and
GnApp + PnlAg, <0

for alln > N > Ny. Then equation (16) is of nonlinear limit-point type.

- Proof. Define
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n— A n— 2
v, =F(yn)—p 12( Yn—1)
In—1
where AF(y,) = g(yn)Ayn—1. Then

n Ayn_1)? |\ Pn-
AVa = 9(y) Ayacs — L2 A((Agyp_)?) — BYn1) p (Bamty
2qn 2 qn—1
n A n— 2 7~
= g(yn)Ayn—l - %’Azyn-—l [Ayn + Ayn—l:l - ( y2 1) A(p 1)

n-1
/ L nd\Yn Ayn_1Ap,_
= g(yn)AYn_1 — %[Ayn +Ayn—1] [q 9(Yn) _ BYn18p 1]

Dn Dn
_ (Ayn_1)? A (pn—l )
2 dn-1

9(Un) 2 Ayn_1Apy_1
=A%y, g+ —— T Ay, + Ay,
(25) 9 Yn—1 20, [ Yn + AY 1]

— (Ayn“l)Z A <p'n,—1 >
2 dn—1

Ay,
= =52 [Pt + Ay Ap,i
n .

Ay 1 Ap,, | Ayn_1)? —
+ Y 1D 1[A2yn—-1+2Ayn—1] _( Y 1) A(p 1)
29n

2 dn—1
Ay 2
= (A2yn ) (—2"1—)' [qn—lApn—l + pn—lAQn-—l]
ZQn 2¢nGn—1

for n > N. Now choose a solution {y,} of (16) such that

—1(Ayn—_1)?
dN-1

<-L<0

and suppose that {y,} is a nonlinear limit-circle type solution Summing
(25) for n > N, we obtain V,, < Vy < —L and summing again, we have

Z Po-1(Ays-1)® <Y Vi<~L{n-N) - ~o0
s=N 2(]3- s=N

as n — oo which contradicts Theorem 6.

Remark 4. From Theorem 7, we see that a necessary condition for

the solution {y,} to be a nonlinear limit-circle type solution of (16) is that
it satisfies
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Pn—l(Ayn—l)2
Fly,) > ————
(y ) 2Qn—l

for all large n.
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