BULLETIN OF THE ’
INSTITUTE OF MATHEMATICS
ACADEMIA SINICA

Volume 23, Number 4, December 1995

A DISCRETE BOUNDARY VALUE PROBLEM
WITH DELAY

BY
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Abstract. By means of the Banach contraction principle,
we show that a unique solution for a discrete boundary value
problem with delay exists if the spectral radius of an associated
matrix is less than one. Several other sufficient conditions for
the existence of unique solutions are also given. '

1. Introduction. Boundary value problems for difference equations
arise in numerical computations of boundary value problems for differential
equations. They are also studied in various branches of mathematics such as

the theory of stoéhastic processes. One particular boundary value problem
Az +g(k,z) =0, k=1,2,....n
zop=A, Tpy1 =B
where ¢ satisfies a Lipschifz condition has been studied by many authors

(for background materials, see [4], see also [1,3]). Here we are concerned

with a discrete boundary value problem of the form

(1) A('f‘k_lA.’Ek_l) -+ f(k‘,xk,:ck_m2 =0, k=12,...,n
(2) z;=a;, -m+1<i<0
(3) Az, =b
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where a_p+1,--.,00 and b are given numbers; g, ...,7, are positive con-
stants, and the delay m is a positive integer. To avoid trivial cases, we shall
also assume that n > m + 1.

Under the assumption that the function f satisfies a Lipschitz condition

of the form
lf(k7$;y) - f(kvu)v)l Spklx _ul +qkly —vla 1< k <mn,

we shall show that if the “least positive eigenvalue” of a related linear eigen-
value problem are greater than one, then the above stated nonlinear bound-
ary value problem has a unique solution. This will be proved by means
of the Banach contraction principle, so that numerical computation of the
unique solution is possible.

General conditions for the least positive eigenvalue of the above men-
tioned eigenvalue problem to be greater than one are given. As we shall see,
these conditions can be easily verified numerically. However, the eigenvalue
problem approach is better posed-émd can be handled by fnany commercially

available packages.

2. Auxiliary boundary problems. Let us first consider two auxil-

iary linear boundary value problems of the form

(4) —A(r;1Az;—1)=0,1=1,2,...,n

(5) Zo=a, Az, =b

and

(6) —A(ri—1Az; 1) =g;, 1=1,2,...,n

(7 z9=0, Az, =0

where rg,...,7, are positive numbers, while a,b,g1,...,9, are arbitrary.

The linear problem (4)-(5) has the unique solution {z;} defined by
(8) . zr=a+br,I'y, 0<k<n

where
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k-1

1
9 =Y = 0<k<n+1
(9) k ET' <k<n+

i=0
(here and in the sequel, we assume that an empty sum equals zero).

The linear problem (6)-(7) can be viewed as a matrix problem of the

form

(10) Hzx =g
where H = (h;;) is defined by

(11) hpn = Tn—1,
Pnn-1= —Tn-1,
hij=rii+r if 1<i=j<n-1,
hij=-ri_; if i—j5=1,
hij=—r; if i—j=-1,
hi; = 0 otherwise.

The vector z is the column vector col(zy,...,z,) and g is the column vector
col(g1,---,9n). The matrix H is invertible and we can verify easily that its
inverse is given by the matrix G = (g;;) where

(i 1<i<j<n
g”'_{Fj 1<j<i<n

(12)

Next, consider the linear eigenvalue problem

(13) —A(ri1Az;1) = Mpi%i + ¢iTiom), 1 <3< n

(14) Tomil =T—me2=...=2g=0

(15) Az, =0,

where p1,...,Pn, 41, - - -  §n are nonnegative numbers which are not all zero.

Again, this problem can be viewed as a matrix eigenvalue problem of the

form
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(16) Hz = A(diag(p) + diag(q)D)z

where diag(p) is the diagonal matrix with diagonal entries py, ..., p,, diag(q)
is the diagonal matrix with diagonal entries ¢i,...,¢,, z = col(z1,...,Z4,),
H is defined by (11), and D = (d;;) is the n by n block matrix

(17) (? 8)

where I is the (n — m) by (n — m) identity matrix.
By means of the inverse matrix G of H, we can write (16) in the equiv-

alent form
(18) : z = AG(diag(p) + diag(q)D)z,

or,

n n
r; — )\Zgijpja:j + A Z 95955 —m, 1 g 7 S n + 1.

Jj=1 j=m

Clearly, A = 0 cannot be an eigenvalue of (18). Furthermore, since the
components of G(diag(p) + diag(q)D) are nonnegative, according to the

Perron-Frobenius theory of nonnegative matrices, we know that the matrix
(19) G(diag(p) + diag(q)D)

has a simple nonnegative (and hence positive) eigenvalue which exceeds the
moduli of all other eigenvalues and that there corresponds a nonnegative

eigenvector u with nonnegative components u1,...,u,.

Lemma 1. The eigenvalue problem (13) — (15) has a simple positive
eigenvalue A(p, q) which is smaller in magnitude than all the other eigenval-
ues, and there corresponds an eigensolution {uk}’jfnlﬂ which satisfies ug, > 0
for1<k<mn,and Aur >0 for0<k<n-1.

We have already explained the existence of A(p, ¢) and a corresponding
nonnegative -eigensolution {uz}7+1. We need to show that the nonnega-
tive eigenvector corresponding to )\(p, q) has positive components. This can

be seen from maximum principle for difference equations (see for example
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Cheng [2]), but an elementary argument is just as easy. First note from
(13) — (15) that

A(ri—1Au;_1) <0,1<i<n

ug = 0= Au,.
If u; =0, then
r1Auy — roAug = r1Aug <0,
so that ug = 0. By ihduétion, we see that uz = ug = ... = 'u,n+'1 = 0, which

is impossible. if u,, = 0, then
TnOUp — Tn-1AUp_1 = Tn—1Un-1 < 0,

so that u,_; = 0. By induction, we see that u,_s =u,_3=... =u; =0,

which is impossible. Finally, if u; = 0 where 2 <7 < n —1, then
AU — 11 Aui_y = Tiuip Frisqui— <0

so that u;_; = u;41 = 0. By induction, we see that u; =us = ... =u, =0,
which is impossible.

To complete the proof, we need to show that Au, >0for0 <k <n-1.
It is clear that Aug > 0. If Au; <0, then from (13) and the fact that ux > 0
for 1 <k <n+1, rpAuy —mAu; < 0, so that Aug < 0 and inductively,
Auz < 0,...,Au, < 0, contrary to our assumption that Aw, = 0. Similarly,
Aup >0for2<k<n-1.

3. Comparison theorems. We-y shall need several comparison the-
orems for difference equations with delay. As before, m shall denote an

integer greater than or equal to 1.
Lemma 2. Suppose r; > 0 for a — 1 < i < b and suppose

A('rk—-lek—l) + Sz =0, a<k<b

has a solution {xk}:fll which satisfies o1 = 0, x4 > 0 and Az, > 0 for

a < k < b. Suppose further that sy < Sy for a < k < b and that {y3}°T! is

a
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a solution of
(20) Arg—18yk-1) +skye =0, a <k <b

determined by thé conditions yYo—1 = 0 and y, = z,. Then yr > xx for
a+1<k<b+1and Ayr/yr > Azi/z for a <k <b.

Proof. Let wy = xpm1 Ayr —yrere Az fora—1 <k <b. Thenw,_; =0
and
Awy = rAye ATk + T 41A(reAyx) — TR Az Ayr — Yrr1A(rrAzy)
= Tr+1A(reAYx) — Yr+1A(reAzi)
= (Sk — Sk)Th41¥k+1, 6 <K< D—1.

It is clear that Aw,—1 = (So — $4)ZaYa > 0. Thus w, = T,r.Ay, —
YaTaAZa > 0 50 that Aya/ya 2 AZa/Ta and Yat1/Tat1 2 Ya/Ta = 1. As-
sume by induction that Aw; > 0fora—1<7<n—1, and y;y1 > ;41 for
a—1 <1 < n. Then as before, we see that Aw, = (Sn+1—Sn+1)Tn+1Yn+1 =
0, AYn+1/Ynt+1 2 ATni1/Tns1 a0d Yni2/Tntz > Yni1/Tns1 > 1 as re-
quired. The proof is complete.

The following comparison theorem can now be proved.

Lemma 3. Suppose r; > 0 for 1 < ¢ < n wheren > m > 1, and

suppose

(21) A(rg—1Az,-1) + Skxp + TiTpern =0, 1 <k <n

n+1

1—-m

has a solution {z\} which satisfies z; =0 for 1 —m <i <0, g = 0,
1 > 0 and Az > 0 for 1 < k < n. Suppose further that s, < S and
ty < Ty for 1 <k <n and that {ys ntl s a solution of

1-m
(22) A(re-1Ayk-1) + skyk + tiYk-m =0, 1<k <n

determined by the conditions y1_m = 0,...,90 = 0 and y; = z;. Then

yka;; for 1<k <n+1 and Ayr/yr > Azp/zi for 1 <k < n.

Proof. For 1 < k < m, since Zy—m = 0 = yx_,,, we see from Lemma 2
that yp > zp for 1 < k §7m+ 1 and
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(23) Ayr/yr = Azp/zi, 1 <k < m.

Let wy = zprpAyr — yrrr Az for m < k < n. Then from (23), we have
Wy, > 0. Also,
Awk

=Tt 1Tk +1—mYk+1 — L1 Th41Ykt1—m + 5k+1mk+1yk+1 — Sk41Tk+1Yk+1

Tk+l—-m Tk Ye+1-m Yk
N — i S

=-'13k+1yk+1{Tk+1 + Sk41 — 3k+1}
Tk4+2—m k41 Ye+2—m Yk+1

form<k<n-1.

Since (23) implies yx /yx+1 < T /Tr41 for 1 < k < m, and since s, < S,
ty < T for 1 <k < n, we have w41 > 0. As in the proof of Lemma 2,
we see that Ymy2 > Tmio and AYnt1/Ymt+1 = AZmt1/Tmi1- An induction
argument similar to that in the proof of Lemma 2 can now be used to’
complete the proof.

In view of Lemma 3, the following is clear.

Lemma 4. Let A(p, q) be the least positive eigenvalue of the eigenvalue
problem (13) — (15) as defined in Lemma 1, then for any 0 < u < A(p,q),

the difference equation
—A(ri_1Azi 1) = p(pizi + ¢i%Tiem), 1 <i<m

has a solution {ul}"+l | such that uf =0 for 1 —m <4 <0, u¥ > 0 and
Auy >0 for 1 <k < n.

Note that in view of (18), it is easily verified that the solution {u}}71
satisfies

T

Y Z 9iiD;u; + Z GiiQiUs g + oAy, 1 <i<n+ 1.

*

Thus

(24) >

1 n
#—Z 9ipu5 + — Z:g,,qJ Wiy 1<i<n+1

i

]—m
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Furthermore, by means of the solution {u} T{nlﬂ, we may define a

complete metric space
Q={z=col(Z—mt1,---,Tnt+1)|zi = a;,—m +1 <7 <0}

with distance

lo—yll = max ZYl

1<i<n+1 ]

4. Existence theorems. The boundary value problefn (1)-(3) can
be viewed as a fixed point problem in the metric space 2. To this end, let
z € , let T be a mapping from Q into €2 defined by

(Tx); = { D ie1 95 (Pt + @jj—m) + a0 +ralib, 1<i<n +1
' : as, : -m+1<:<0
Then it is easy to verify that a fixed point of T in Q is a solution of (1)-(3).
We assert further that T is a contraction mapping on Q if A(p,q) > 1. To

see this, let z,y € Q, then |(Txz); — (Ty):| =0 for —-m +1 <47 <0 and
(Tz)i — (Ty)il <> 951 G2, Tjmm) = FG 97, y—m)], 1 ST <4 1.
et ‘ ) v

Thus for 1 <¢ < n-+1, we have

N(T=z); = (Ty)sl

*

Uu-

 j=1 J i

lz — vl < e 2=l .
< o E :gijpjuj + T E 9i9i%j—m <
: j=1 z j=m

”x - y“7

=

where the last inequality holds in view of (24). If we choose p so close to

A(p,q) that u > 1, then ||Tz — Ty|| < ||z — y||/p implies T is a contraction

mapping. The proof is complete. We summarize these as follows.

Theorem 1. If the least positive eigenvalue A(p,q) of the boundary
value problem (13) — (15) satisfies M(p,q) > 1, then the boundary value

problem (1) — (3) has a unique solution.
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Since A~1(p, q) is the spectral radius of the matrix (19), in practical
situations, we need only to calculate the largest positive eigenvalue of the
matrix (19) and check if it is less than one. If this is the case, a standard
iteration scheme will then yield a solution of the boundary value problem
(1) - (3). | |

Theorem 1 is of theoretical interest also. As an example, consider the

boundary value problem
Az.’I:k_l + f(@k—m) =0, 1<k < T,

Tlem =T2-m =... =29 =0, Az, =0,
where f satisfies a Lipschitz condition of the form

|[f(w) = ()] < Blu —v].
The corresponding matrix equation (18) becomes
x = ASGDz.

As a consequence of Theorem 1, if 7 is the least positive eigenvalue of the
matrix GD (which can easily be calculated using standard numerical eigen-
value solvers), then the condition 8 < 1 /7 is sufficient for the above bound-

ary value problem to have a unique solution.

Theorem 2. Suppose pq,... ,pn’,' and qi,...,qn are nonnegative num-

bers which are not all zero. Suppose further that difference equation

(25) A(rg—1AZk_1) + PeTh + QrThom = 0, 1<k<n

has a solution {x Tj',';llﬂ which satisfies z; = 0 for —m +1 < ¢ < 0 and

Az; > 0 for 0 < i < n. Then the least positive eigenvalue A(p,q) of the

boundary value problem (13) — (15) 1s greater than one.

Proof. Assume to the contrary that A(p,q) < 1. Then by Lemma 3,

the solution of the equation
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A(re—1AYk—1) + XD, ) (PeTr + GhZr—m) =0, L <k <n

determined by the conditions y; = 0 for 1 —m < ¢ < 0 and y; > 0 will
satisfy Ay, > Az, > 0. Since the eigenvalue A(p,q) is simple, {yx} is
also an eigensolution (with Ay, = 0) corresponding to A(p,q), which is a
contradiction. The proof is complete.

The above Theorem is of theoretical interest. It may also be used as
a straight-forward test for the existence of solution to the boundary value
problem (1)-(3), since we can calculate inductively the solution of (25) and
its differences. This procedure, however, is well known to be unstable in
various circumstances and is not recommended when n is large.

As a final example, suppose pr, = qx = a for 1 < k < n and 2anl’, <1,
we assert that the least positive eigenvalue A(p,q) > 1. Indeed, note that

the eigenvalue problem

A(rp_1Azk—1) + Mozg + 0xp—m) =0, 1 <k <n

Tiem = T2_m = ... =X =0, A.’En =0
is equivalent to
(26) z = AG(al + aD)z.
Let x = col(zy,...,Zn) be the positive eigenvector of (26) corresponding to

A(p,q). Let z; = maxi<j<n{z;}. Then

z; < z;A(p, ¢)namax G(I + D)
so that

1 < 2X(p,¢)namax G.

Since max G = Iy, if 2nal’, < 1, then A(p,q) > 1.
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