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Abstract. We prove that on the space of paths without second
kind discontinuities the topology M; of Skorokhod is Polish in nature,

0. Imtroduectiom. In his fundamental paper Skorokhod introduced
four different (pseudo-) topologies for the space of paths without
second kind of discontinuities. These are the Ji, i, M;, M, topologies,
in his notation. By far the most important is Ji-topology, the strongest.
It was proved by Kolmogorov and Prokhorov that the Ji-topology is
Polish in nature, and the limit theorems fall within the realm of
Prokhorov theory. (For one of the salient applications to Markov
processes, see Yang [2]) We will study the Mi-topology. The
topology, not just the sequential convergence, is introduced through
an intermediate “space of pawns”. The Polish nature is proved, and
some remarks very relevant to applications are added.

Notation. 1. (E, p) is a Polish metric space (i.e. a2 complete
separable metric space). In case (E, || ||) is a separable Banach
‘space, ’

o(x, ¥) =z —yl.

2. Tisa cbmpact interval, which for convenience will usually
be [0, 1]. The set of all order-automorphisms is denoted by Ao (I) =o.

3. §= i([, E) is the set of all functions X:7I— E, free from
discontinuities of the second kind, and normalized to be right-

~ continuous in the interior (0, 1) of I'=1[0, 1. The subset defined
by X(0+) = X(0) is denoted by é’— , and the usual Skorokhod space
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is 4 of all X in E continuous at the two ends of I (We write
g in case [ is replaced by [0, L]. Similarly for E J

4 d(X; 60; Y) =sup {6t —¢| + o (X(t); Y(68)) :2el} for
bede; X, Yeg. d(X; ¥)=inf {d(X; 6) : 6 €h}.

5. II-: Ef—»g and I+ : geE are defined by:

I_X(@t) =Xt) (0<t<1) or X(1—} ¢=1).
]I+X =X(1) .

In general, 7 will be used for projections.

6. I'.(X) (respectively I'. (X)) is the image (the trace) of
Xed upto cel:

I(X) = {X() : 05t <¢},
I'.(X) = the closure of I'.(X),
I'X=ry(X).

7. A vegularity modulus is a function w on [0, 1], nondecreasing
with w(0+) =0. For XeC(I; E), the continuity-modulus of X is
w(e; X):0(d; X) =sup {o(X(f); X(t)) : |8 — 2] <0},

For Xe E(I; E), the Skorokhod modulus of X is w(+; X) 10(0:; X)
= the maximum of the following three quantities.

sup min[ sup o(X(); X(#); sup o(X({); XU"))], ‘
3<t<1-5 -1/t PRI _

sup o(X(2), X(0+)); 1_%‘i?<lp(X(t); X(1-)).

0=1=8

8. Jo(t: X)=p(X(i—); X(i+)) is the jumbing distance of X€ [
at time 1. The discontinuity set of X is then D(X) = {£: J¢(¢; X) >0}
while the e-discontinuity set is D.(X) = {¢: J(¢; X) > e}.

1. The space (@(J; E)/~; d). Theset @(J; E) of all continuous
functions from the compact interval J to the Polish metric space
(E, p) is equipped with the metric ‘

aif; g) =§g}30(f(t); 9(2)) .

We. consider the equivalence relation = defined by: f=g¢ iff there
is an automorphism 6 of the ordered set J such that f=god.

 We define also
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- df; g) =inf {d(f; go6) : 6e AN},
where Ao(J) is the set of all automorphisms of J.

LeEMMA 1. d is a pseudo-metric on Q@(J: E) compatible with ~ :
i.e,if f=gq, then d(f; g) =0.

Proof. We need only check the triangle inequali’c.y. For f, g &
in @(J; E), and ¢>0, we can find 6y, 6, such that

dif; 9) =d(f; goby) —e,
and

~

aif; ) = d(g; Bobs) —e.

Therefore

d(f; g9) +d(f; k)
=d(f; go61) +d(f; hobs) — 2
=d(f; geo 61) + d(go 6y h°02?91)—26
=d(f; hoby006;) — 2
>d(f; h) — 2. Q.ED.

Unfortunateiy d(f; 9) =0 does not mean S=¢9. We will first
clear up this situation.

LeMMA 2. If 6 is a surjective nondecreasing function fmm J
onto J, then '

df; fo6) =0.

Proof. Indeed we can always find a sequence (6,) cJl, such
that lim,0,(¢) = 6(¢) uniformly.

We proceed to prove the converse (Lemma 6). Let us write
Ai(J) for the set of all nondecreasing >surjections of J onto itself,
and also write J2(J) for the set of all nondecreasing right-continuous
functions from J into J. More generally, we consider functions from

compact intervals J to J and write J:(J, J) with i=0, 1, 2. We
will éiso normalize ¢ € H:(J,J) so that ¢ maps the maxJ to max J,
and also so that symbolically ¢(minJ—) = minJ—.

If ¢eJo(], J), we define the dual of ¢ as the function
sedo(J; J) : 6(v) = inf {uwef: ¢(u) >0}, with the convention that
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empty-infimum will refer to the maximum. This name is justified
because of the following elementary lemma, whose proof we omit.

LEMMA 3. $= o.
In case de (], J), we see that 6 =o¢-edoJ, J). In this

connection it is of interest to observe that in some sense all éedJlz
can be approximated by such invertible functions.

Let e/, 7). The Stieltjes measure d¢ on J is defined by

do(z, 1= ¢(x) —¢(x) for minJ<r<2,
and -
d¢§min]§ = ¢(minJ) — min J .

LeMMA 4. Let (6,) CA(J, J). If dé, converges weakly to dbo,

then dé, comverges weakly to débo. ‘

" Proof. The sequence (d$,) is certainly weakly tight; therefore
we may assume that (d¢,) converges to dyr with veds(], J), and
it suffices to show ¥ = do. ’

Let v be a continuity pomt for v and $. We then have

(o) = hm ebr(v) =u,

say.

For any ¢>0, we have # + ¢ > 0. (), for = sufficiently large;
then ¢.(# + ¢) >v, and therefore

(s + ¢) = 1im ¢l + &) 2 0.
It follows that |
$(u) =v, o(u)>v—c, or u>¢(v—e)
and therefore #>> ¢ (v) by the contmmty of ¢ at v. We have 3b> é.

Conversely, # — ¢ << ¢,(v) for large #; then

dul —e) <v, or ¢u(u—)=<v,
and '
$la—) < lim ¢u(v—) <o,
thus

6(w—0)<v and $(w)=>u—05, or ¢=v. QE.D.
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Let us introduce the diagram I'(¢) of a pair (&, ¢) when
s€a(], J). This is the union of the graph of ¢, with segments

(w, v) @ d(u—) <v<oluwt)}.

It is easy to see that the diagram I'(¢) and the diagram I'(¢) are
“dual” to each other by the permutation of two coordinates.

LevMA 5. There is a homeomorphism from I 10 r{¢).

Proof. This will be proved in a more general context. See
Lemma 7. - ' :

Now let d(f: g) =0 in @(J; E). We have a sequence 8. ol])
such that lim,d(f; go0,) =0. We may 2as well assume the weak
convergence of df,—d0 in My (J) and therefore also that dfz'— dé
0 B, where J=J We have the validity of f(x) =g o ¢(u),
and ¢(v) = fo ¢(v) for almost all # and almost all v, and hence
for all # and 2all v because of right-continuity. It is also clear that
for ¢(u—) <v<¢(z), we have flu)=g(v), and similarly f(u) =¢(®)
for d(v—) <u<¢(v).

Let 6, be a homeomorphism from J to I'(¢), in the increasing
direction, for the two components (6s, 6;). Consider the function 72
defined by R(r) =fobi(r). If 0u(#) <0s(s) for all s>7, then
6o(#) = ¢(6:()) 2nd therefore g° 0,(r) = go d(0:(r)) =fo 8.(7).
Otherwise 62(#) is a continuity point of & and fo ¢(6:(n))=go° (8:2(7))
= n(#), 0:(7) =6 (6:(#)). We have thus proved the “only if” part of
the following lemma. The “if” part is just Lemma 2.

LEMMA 6. d(f; g) =0 in @, E) if there exists
. 01, bse i), and he@U; E),

© such that

h=7fob=¢go0:.

If we define f~g in CJ; E) to be the existence of a couple
6y, 6:€J:(J) such that fofy=gols, We have proved that this is
an equivalence relation. This is just the saturation of the relation

~ with respect to the pseudo-metric d.

TugoreM 1. The space (CU, E) /~, d) is a Polish space.
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Proof. It remains to prove the completeness. With (f» mod ~)
a Cauchy sequence, it suffices to exhibit a convergent subsequence.

We may therefore assume >2d(f,, Jur1) < oo, It follows that we
can choose (0,) edo such that I d(f,: Jat100,) < co. Therefore,
with ’

gnEfno /] Qn-zO ce éﬁlzfn

we have
Z d(g,,; gn+1) = Z d(fﬂ; f;ﬁ-l ° ﬁn) < oo,
2 . 2

Let go—g in (@, B): d). Then
d(fs; ¢9) <dlg,; g) >0. Q.E.D.

2. The Polish space ( E : d). Let ],/ I be two compact intervals
and let (£, | |) be a separable Banach space. If fe @(J; Ix E)
we write f; =1IH,0f, fgr=I °of, f=fi®fe. The set of all
fe@(J; ITx E) such that f, €5 I) is written as @(J; I E).
Since it is obviously closed in (@(J, I x E), d we have a Polish
metric space 4(I; E) = (@(J, I E); d) (the space of “pawns”).
The metric in 7x E will be written as p. Note that J is not
essential in the definition of A. .

For each tel and fe@(J; I E), fU)n(tx E) = Af(t) is
nonempty. There are two possibilities:

L f()n({txE) is a singleton, say {(¢, X(2))} = {f(u)}
= {f(u)}.

2. fU)n (¢ x E) is the set S() for Ji a closed subinterval
[t7 £1 of J. | »

(We then write teDf and call ¢ an action time of f.) We also write

X(tx) = fe ()
and ’

fﬂ%=ﬁﬂ@dﬂm;w—ﬁvw-ﬁm
where we have employed the notation

[, ¥; al=(1—a)z +ay  for a€[0, 1].
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In the foHowirig we also write
[z, y]= {lx, ¥, a]: a €[00, 1]} .

The following observations are then c¢lear:

OBSERVATIONS (1-5) ‘ :

1. Af, Df and X = f depend only on fmod ~; hence DR, AR
and R are meaningful for Re .

2. X=Reg.

3. f=f=f; @fg is homotopic to the identity on (@ (J; I; E); d).

The natural homotopy here is (f,a) — (1—a)f + of. Unfortunately
this is not a homotopy if we take the (weaker) pseudo-metric d
- instead of d. Therefore the homotopy does not pass down to A(]; E).
In any case we still have: ‘

4. (fmod ~) depends only on (fmod ~); hence R are meaning-
ful for ReA, Moreover, R—>R is a_continuous retraction of A.

5. R— Red is LnJec’clve

We now show that {R:Red} = E so that é—: can be identified
as a subset of 4, and A or Vv is a retraction of 4 onto g. For
Xe d we define its diagram to be

I'(X)={( z): tel, re[X(#—), X+l .
(Note: This is consistent with our notation for de:(T, f).)

A pawn-representation for X 6_7 is then a homeomorphism f

from J onto f(X) such that f; is nondecreasing.
LeMMA 7. A pawn-representation exists.

Proof. It is convenient to set J=[0, 2], I=][0, 1] and we consider
the jumping times {r1, vz, -} of X We will assume D(X) to be
countably infinite; the case when it is finite (or empty) is quite
similar or simpler.

Put a discrete measure m on I supported by D(X) and me(cz)
=27%%, and let ¢(f) =¢+ m[0, £l Therefore ¢ (I, J). Define
now for any s€],

fe(s) = X(4(s)), When‘ 6(s) =5, all &, or
[X(ci—), X(ret), 2775(s — ¢(cs—))]1, when ¢(s) = rs.
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Then the mapping f= ¢ Dfr isa pax%rn-representation for X. QE.D.
LemMA 8. @(I; E)c g (I; E) is dense in A(I, E).

Proof. If fe@(J; L E), then (fmod~)€@ if IHiof
=fredo(J; I). But we can always approximate f;, which in
general belongs to Ji(J, I), uniformly by a sequence (0,) in
Jo(J, I). Q.E.D. ‘

If Red, the diagram of R is I'R= f(J)cIx E for any f
representing R. “The notion of “between” can be defined by: f(wu)
is between f(#:1) and f(u:) iff #<[2:, #:], and we denocte this by
flus) €R[f(21); flwz)]. Again this does not depend on the repre-
sentation f of R. We define then the error function eR on I by:

eR(1) = max {8(Zo; [Z1; &) 1 B ER[Zr; ZAC AR},
where

(%o, [Z1; Z2]) is the distance from &, to the segment [Z:; Z.l.

The gauge of ervor of R is E(R) = max {eR(f) : ¢}. It is trivial to
see

LeMMA 9. The subset E of A is characterized by ER = (.

We can prove that E is a @&; set in the Polish space 4, once
we have proved the following

THEOREM 2. The function R— ER is upper-semiconiinuous on A
Assuming this, we have proved

CorOLLARY. The space E with the Metric-toﬁology of d is Polish.
We return to the proof of the Theorem 2. First we observe

LEMMA 10. If —ﬁ(jh gi) <9 fW i = 0; 17 27 ihen -ﬁ(go, }:gl’ @2])
< 3(Zo; [Z1; Z1) + 30.

Proof. 7(Fo; [Z1; F2]) < B(&o; [T1; T2)) + 8, and also 7(Zo; [Z1; F2l)
< 5(Zo; [&1; &2]) +0. QE.D.

LEMMA 11. For any ¢ >0 and RE A, theve exists 0 >0, such
that whenever To€R[Z1, Z2] with |1} 2, — II; Tl << 0, then

B(Zo; [Z1, T2]) <ER + ¢
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Proof. Given ¢>0 and Re 4, we can find a2 number 8;>0 such
that

@(61; X)<e with X=1ée,7.
Let D.R=(D.X)Vit:eRt)>e} =<t <w}, and -
let min; {|{r541 — r:]} = . Choose 03>0 such that if z; — Js
<t<rt; then | X(#) — X(r;—)l<e, and if r;‘</i$~ri + 83, then
HX(Z?) -’X(T,"l‘)n<6. Let d =min {51, 52, 53,6}. Consider .Z—i'o;j1, szﬁR
with
ZoER[By; 2] and . — 4 <08, where L =H0;Z;.

‘There are several possibilities for the positions of #, %2 relative to |
the partition D.R.

Case 1. 4, t; are in the same open subinterval of D.R.
We have therefore, | X(#) — X(:)|<<3e, 4, j=0,1, 2. Also if
x; = g %;, then |z: — X(#)| < 2e, because [X(4+) — X(H:—) 1 <e,
and &> plx;, [X(8:—); X(¢:+)71), where p has the same meaning
for E as 7 for I'x E. We have therefore [[xo— 21l = o (&1, ) <Te,
and (&, [Z1, Z2]) < 8e.
Case 2. t;, t, are separated by one €D, R,
(i<t <<t) and p(X(h); X(=—)) <e p(X(f); X(z+))<e.
If (a) te<v, then also o(X(f); X)) <e If (b) o>, then also
o(X(t); X(t:)) <e. In these two circumstances, we will have the
same reasoning as in case 1, so that 7(Zo; [Z1, &2]) <8:. Therefore
we assume (¢) % = . We have now p(%o; [X(r—), X(«+)]) < ER.
Since o{xi; X(£:)) <2 for i=1,2, we have p(x:; X(r—)) <3e
and o(xe; X(v+)) <3¢ and thus
o(xo; [x1, w2]) < ER + 6, or
o(Zo; [Z1, Ze]) <lER + 8.

Case 3. At least one of {#, %} is in D.R. The proof is as easy
as in Case 2. Therefore we have proved Lemma 2, with ¢ = 8.

Proof of Theorem 2. If d(S, R) <5/2 then with any triple
Fo, U1, T2 €AS(t) and 7o €S[¥1, ¥}, we have Zo, T, Te el’R with
7(Z:i; ¥:) <98/2. In particular [H; &, — I; %] <9, and therefore
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,—5(.’2'0, [5&'1, .’Z‘g]) < ER + 8¢ , Of
5(%o; [¥1, ¥2]) < ER + 1le.

REMARK. E cannot be lower-semicontinuous because ER =0 for
all Re g, while & is dense in A

3. Further remarks. From now on we will take the d-topology
for §. It is a Polish fopological space though d is not a Polish
metric for .

LEMMA 12. The Borel itribe _of g= ([0, 11; E) is gemerated by
coordinates X+ X(t) for te[0—, 1+1

Proof. The canonical mapping E x & ([0, 11; E) x E— g isa
continuous bijection.

We turn to elementary properties of the d-topology of ? which"
is so essential in Yu.V.Prokhorov’s theory. It is ironical that
A. V. Skorokhod did not regard the Prokhorov . approach as very
natural because of the difficulty of checking the Polish property of
the space. Actually we now see that the d-topology for g: is Polish,
and this topology is nothing but the Mi-topology invented also by

Skorokhod, except that we extend it to the space E instead'of q-
We now introduce the Skorokhod error modulus of X as the
function @(-; X) defined by ‘
a(5; X)
=sup {o(X(f); [X(#1); X)) =t —0<tu<li<b<l + 0f.

It is readily observed that

LEMMA 13. limso @ (0; X) = 0.
LEMMA 14. If &o, %1, 32€1'X and &€ X[31, %], with
i — o<y <IZo< Oy Z:<<HUjp o+ 9,
then
plg Zo; Mg 215 lp T:]) < 0(0; X).
This means precisely that ®(d; X) could be defined by the

supremum of the left side of the last inequality.  This observation
and Lemma 10 lead to
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LEMMA 15. Given 0<<8, <0, and ¢>0, there exists a 0>0
" such that: if d(X; Y) <9, then

(Simply take. & = min (¢/3, (82 — 81)/2).)

LEMMA 16. If t is a comtinuity point of X° or t=0—, 1+ and
X > X° in (), then X*(t) > X°(2).

- THEOREM 3. In (C a sequence X" — X° iff

a. for a demnse set of t, including 0—, 1+, we have X (2) —>X°(t),
and

b. limsosup, @(3; X7) = 0.

CorOLLARY. A set Kc ﬁ is velatively compact iff
a. {X() : XeK, teli is relatively compact, and
- b. limsosupxer @(9, X) =0
. REMARK. This theorem and the corollary are proved by Skoro-
khod in [1] for g. We note that the necessity follows from Lemmas
15 and 16. The sufficiency is easy and can be copied verbatim for
the case Q_— We should say that the compactness criterion in [1] is
more awkward simply because & is #of a closed set in g’ In order
that Kc 4 be relative compact in g‘ with closure KcJ, a condition
of equicontinuity at 0 and 1 has also to be added.
The following theorem follows from the compactness criterion
and the Prokhorov theorem.

THEOREM 4. In order that a set F of probability measures on 2’;
be weakly relatively compact, it is necessarvy and sufficient thai, for
any ¢>0, there is a 8 >0 and compact set K of E, such that

sup P {XEE : X(¢) ¢ K for some t} <e,
pe
and

sﬂ)ligT{Xeg’::é(a,X)>e§<e.

We mentioned that ? is well-behaved under the restriction map
Xe 7 (e, bl, E) & Xigemas1€ g (e, d1), (e, dlcla, &)

with = obvious interpretation of notations. (Note that for
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Xe g (e, bl, E), the restriction Xl|i.,e7 is not necessarily in & ([c, 41).
By the compactness criterion we see that:

LevmmMa 17. If K is relatively compact in (:7;’ [, bl, then Klge—, a+3
= {Xlre—a+> : X€K} is relatively compact in £ (lc, d, E)  for
[e, dlcla, Bl ;

REMARK. But the restriction ‘map is not continuous. See the
following example: ’

_.}

]
]

On the other direction of “juxtaposing”, we have the following.
Again it is an easy consequence of the compactness criterion.

LemMa 18. Let Kc g (e, b)) and ce(a, b). If Klieery is
rvelatively compact in g,. {[a, c]), and K| Lo+, 03 is velatively compact and

equicontinmous at c+, then K is velatively compact in ;57’ ([a, B]).

We turn to another aspect with the well-behavior of E versus

g- | ~
Lemna 19. Let [c, dic (e, b) and let Xe g ((a, b)). Then
ii*&l_X(a + ¢} lge-,e+1 = X| fo+,d+15
and.

%P} X(a + ) - a+1= Xlee-,a1.

:4. The space of paths of memory. We now introduce a com-
plicated object, named in the title of this section. For definiteness
we choose Iy=[—1,0], I=[0,1], T=[—1, 1], and use the nor-
malization that functions in E’ (I) are right-continuous in (—1, 1).

For cel, Xe ?(f) consider X, :telt> X{c + £).

Now cb>X. is of J type by the above lemma, i.e. this is a
function in gz (Z E (Io, E)). This is written as HX and called the
memory displaying of X. ‘

 LemMa 20. Xt HX is measurable.

Proof. Because for every ¢, X HX({) = X; is measurable.
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LeMMA 21. If K is wrelatively compact in g’ (7; E), then HKI
SHX(t) : Xe K, te€l} is a velatively compact set in g (l; E).

(Trivial by the compactness criterion.)

Let us estimate the Skorokhod medulus of HX Let 0<a<b<l1
and consider d(Xez; Xb).

Let b —a<94d, sublicizars 1X(@) —X(@+0)|<e, and
SUPg-1=t<a—1+5 1 X(2) — X(g — DI < e

Tt is easy to see the d(Xa; Xb) <6 + & V e5. But this is not
a satisfactory estimate! :

We could not assert the compactness of HK from the com-
pactness of K

If 0<<c—056=<36, with (es, ) the analogue for (b, ¢) of (e1, ¢2)
above, then d(Xb; Xc) <& + es V ee. The majorization '

min {d(Xa; Xb); d(Xb; Xc)} <o + min {max {ef, e2}, max fes, e}}

is not useful, because we usually have only the majorization of e1/\eg
and e; A e This is the tricky property of the Skorokhod modulus:
it is the infimum of right-side and left-side deviation, and thus
almost always it defies our control in any kind of composing.

But we could conceive of a situation when we have the majoriza-
tion of e A ez and e V es; then it is 2ll right.

This has obviously its stochastic analogue:

THEOREM 5. Let M be an equitight family of distributions on
(g@); 4. If

lim sup Pi(es Nea) V (e3V &) >¢} =0, Ve>0,
8i0 PeM

then by memory displaying we have an eqmtzght family in
g, F(ra)).

Proof. By the zabove calculation and Lemma 14, the Skorokhod
. criterion is fulfilled.
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