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Sufficient conditions as well as necessary conditions for the existence
of asymptotically monotone solutions are important since such results are
useful in deriving oscillation theorems of difference equations (see e.g. [2, 4,

5, 8]). One class of nonlinear difference equations which motivates this note
is of the following form

(1) A(Pp-1AZn1)+ qn f(zn) =0, n=1,2,3,...

where p, > 0forn = 0,1,2,...and f is a real nondecreasing function defined
on R such that signf(z) = signz. By imposing various conditions on {p,},
{g»} and f, existence theorems for the a.sympt()ticé,lly monotone solutions
of (1) were derived [8]. The search for existence theorems of a different
nature, however, motivates our concern in this note. More specifically, we
shall consider a class of difference equa,tiohs of the form

(2) APr-1(AZp1) ) + 22571 =0, n=1,2,3,...

where p, > 0 for n > 0 and o is a real number different from 0 or 1. When
o = 2, equation (2) reduces to the standard second order linear equation
which has been studied to some extent (see e.g. [1-8]). Our main result is a
comparison theorem for existence of asymptoticaﬂy monotone solutions of
(2). As an application, we derive a necessary condition for the existence of
asymptotically monotone solutions of (1).

A solution of equations (1) or (2) is a real sequence {z,}§° satisfying
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(1) or (2) respectively. A solution is said to be asymptotically or eventually
positive if there is an mteger N such that Tn > 0 for n > N. It is said to
be eventna,]ly mcreasmg if there is some integer M such that Az, > 0 for
n>M. Other concepts related to montomcxty of solutlons ca,n be s1mlla.r1y
defined. ‘ ' ' ‘

Theorem 1. Suppose the following equation
(3) A;(p,.;..‘l,(Ayn_lv)"’__'l) +snynt=0, n=123,..., 0#0,0#1
where p, > 0 for n > 0, has an eventually positive nondecreasing solution

{yn}. Suppose further that g, < sn for n = 1,2,3,.... Then (2) has an

eventually positive nondecreasing solution also.

Proof Suppose for convenience that y, > 0 and Ay, > 0 for n 2> 0.
Dividing equation (3) by y; 7!, we obtain.

(4) Pa(¥nt1/9n —1)" " = Paa(l = Yn-1/yn) "+ 8, =0, n=1,2,3,...
Deﬁping Ck = yk.{.»l_‘/‘yk»for k 2 0’, (4) can oe rev.v.rittellles' |

(5 ) | pn(cn - 1)" -1 —pn..l(l— 1/cn_1)" e =0,n=1,23,

Next we let up.= (ck —-1)°"lfork>0 and write (5) as_ |

© T wn (‘pn_} /bn)F(un-lv)-Sn/pna n>1

t
(tll(a—l) + 1)0—1 .
that by straightforward calculations, we may show that F'(t) = (¢1/(°~1) +

1)77 so that F'(t).> 0 for ¢ > 0. .
:We now assert that
@y U = (ﬁn’-l/ph)F(”n—l) ~qn[Pny, m21 "

has a solution {vn} such that v, 2 u, forn > 0. Indeed choose v > uo,

where F(t) = Note that u; > 0 for & > 0. Note further

then defining v by (7), we see that

L

o1 — u1 = (po/p1)(F(w) — F("O)) + p1 2 > (Po/Pl)F'(T)(”o - “0) 20



1993] SOLUTIONS OF NONLINEAR DIFFERENCE EQUATIONS 301

where 7 > ug > 0. An easy induction then shows that v, —u, > 0forn > 1,
which proves our assertion.

Finally, let d = 1492/ for k > 0; and zg = 1, 24 = dodydy .. .dj_,

for k > 1, we may then verify that {zn} is a positive increasing solution of

().

We remark that when ¢ = 2, the above Theorem can be proved by
means of discrete Wirtinger type inequalities (see for example Cheng [1]).
Also, when o > 1 and p, = 1, an argument similar to that given above has
been described recently [5].

We say that a solution {z,} of (1) or (2) is nonoscillatory if it is eventu-
ally positive or eventually negative, and oscillatory otherwise. The following

is an application of Theorem 1.

Theorem 2. For each A > 0, suppose every solution of
(8) APn-1(A2-1)°") 4222271 =0, ¢.>0, n=123,...

is oscillatory. Suppose further that f(z)/z°~! is nondecreasing for z > 0.

Then (2) cannot have an eventually positive nondecreasing solution.

Proof. Suppose (1) has an eventually positive nondecreasing solution
{2} such that z, > 0 and Az, > 0 for n > N. Let e, = f(z,)/z5~! for
each n > N. Then {e,} is positive nondecreasing for » > N. Thus equation

A@n-1(Awn1)" )+ engnwl™ =0, n=1,23,...
has an eventually positive nondecreasing solution, namely, {z,}. By
Theorem 1,

A(pn-l (A”n-—l)a—l) + chnvgz—l =0, n=123,...
would also have a positive solution which contradicts the assumption of our

Theorem.

When ¢ = 2, the corresponding linear equation is said to strongly
oscillatory if for each A > 0, every solution is oscillatory. A result in [3]

states when o = 2, p,, = 1 and {g,} is a nonnegative sequence with infinitely
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many positive terms, (8) is strongly oscillatory if and only if

9) lim supn E gk =

n—o00
k=n+1

As a consequenée, under the above stated conditions on o, p, and ¢y, if
f(z)/= is nondecreasing for z > 0 and if (9) holds, then equation (1) cannot
have an eventually positive nondecreasing solution. Such a result, together
with sufficient conditions for the existence of positive increasing solutions,
will then yield oscillation theorems for equation (1) (see for example Li and
Cheng [8]).
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