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Abstract. We study the bifurcation of positive solutions
of generalized nonlinear undamped pendulum problems u' +
f(u) =0, L < =z < L, u(—L) = w(L) = 0 by refining the
“time map” techniques of J. Smoller and A. Wasserman (1981).
We are able to count the exact number of the time maps and
hence are able to count the exact number of positive solutions
for these sublinear nonlinearities f satisfying (i) f(0) = f(1) =0,
(ii) f(z) > 0in (0,1), and (ili) 7" changing sign at most twice
in (0,1). We study the monotonicity as well as the convexity if
possible of the time maps in (0,1).

1. Introduction. In this paper we consider the local bifurcation of
positive solutions of the generalized nonlinear undamped pendulum prob- .

lems

u' + f(u) =0, ~-L<z<L
(1.1)

w(—L)=u(L)=0,

where 2L > 0, the interval length, is a real bifurcation parametef. Through-
out this paper, we assume that f € C?[0,1] or C3[0,1] and satisfies
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(1.2) f(0) = f(1) = 0, f(z) > 0 on (0,1), and there exists a
. number § > 0 such that f/(z) <0 on (1-4,1).

For different f’s with f” changing sign at most twice, we obtain local bifur-

cation diagrams of positive solutions of problem (1.1) satisfying
(1.3) 0 < |juflo < 15

i.e., we count the exact number of positive solutions in the order interval
(0,1). Note that when f(z) = sin(7z), (1.1) becomes the undamped pen-
dulum problem. In pa,rticula,r; the functions f(z) = 2?(1 —z)? withp,g > 1
are some interesting examples in consideration.

Problem (1.1) with f satisfying (1.2) also models steady states of a
predator-prey system with no predator in which f describes the growth of
the prey (whose population density is u) [2]. The differential equation in
(1.1) with f satisfying (1.2) is also related to the classic Kolmogorov equation
Uy = %um+ f(u) which arose in the context of a genetics model for the spread
of an advantageous gene through a population [1]. In addition to (1.2), the
function f in the classic Kolmogorov equation satisfies and f'(0) > f'(u) for
0<u<1[1]. .

Problem (1.1) with f satisfying (1.2) was discussed by Smoller and
Wasserman [6], Conway [3], Schaaf [4], and Wang and Kazarinoff [8] under
different assumptions on f. We are able to improve and generalize some
results in [3, 6, 8] for general nonlinearities f with f” changing sign at
most twice in (0,1) by refining the “time map” techniques introduced by
J. Smoller and A. Wasserman [6] in which they studied the bifurcation of
solutions of (1.1) for restricted cubic polynomials of the form f(z) = —(z —
a)(z —b)(z—c) witha<b<ec.

As in [6], we tewrite the differential equation in (1.1) as a first order

system
(1.4) w=v, v=—-f(u), —-L<z<L.

It is clear that positive solutions of (1.1) correspond to those orbits of (1.4)

which begin on the v-axis (i.e., the line u = 0), pass through the positive
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u-axis, and end on the v-axis, and take “time” (parameter length) 2L to

make the journey [5]. Then, as in [6], we define the time map
(1.5) T(a) = 27172 / (F(a) - F(u))"Y2du,
0

where F(u) = [, f(s)ds. Note the solutions of (1.2) correspond to curves
for which T'(¢) = L. This leads us to investigate the shape of the time map
T ([5, p.186]).

We study the monotonicity as well as the convexity if possible of the
time map T in (0,1). We note that if 7"(a) > 0 in a subinterval (eq, a3) of
(0,1) then T has no critical point in (a1, ) if /(a1 )T"(e2) > 0 and T has
exactly one critical point in (a1, as) if T'(01)T'(a2) < 0. Sometimes, the
proof of convexity of T' might be easier and be more feasible to study the
shape of T’; see e.g. [4, 9]. The study of convexity of T' can sometimes be
useful in study the bifurcation of solutions of u" + f(u) = 0in (—L, L) associ-
ated with homogeneous Neumann boundary conditions u'(—L) = /(L) = 0;
see, e.g. [6, Section 3].

T'(a) and T"(a) and be computed from (1.5). We write as (1.6) and
(1.8) listed below (see [6, p.273]).

(1.6) T'(a) = 273/ /0 il —0((‘25)3/(2") %“

where AF = F(a) — F(u), and

(1.7) 0(z) = 2F(z) = 2f(2). )
(1.8) T"(a) = 2_;32/2 / ) ”%M((Aﬁ,;ff(w) u,
where A8 = 6(a) — 0(u),

(1.9) Af =af(a) - uf(u),  and

(1.10) Al = af' (o) — ub'(u).

Define

(1.11) ' ¥(z) = 36(z) — z6'(z).
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The numerator of the integrand of the integral in (1.8), N(a), can be written

as

N(a) = ~SA8(Af) + AF(AF)
= ~2AU(Af)+ BABAF - 3A0AF + AF(AF)
= gA0(2AF — Af) - (AF)(3A0 — AF)
3
T2

= %(M)2 — (AF)[(30() — af' () — (36(u) — ud'(u))]

(A9)? — (AF)(36() — 36(u) — ab'(a) + ub'(u))
= 2(80) ~ (AF)(W(0) - $(w)

(see [6, p.285]). That is, formula (1.8) can be written as
2-3/2 r* N(a)

(1.12) T"(a) = o |, BFpP du.

By (1.7), we compute and find that

(1.13) - P(z) =6F(z) — 4z f(z) + z? f'(z),

(1.14) P'(z) = 2f(z) — 2z f'(z) + 2> f"(z), and

(1.15) P"(z) = 2? f"'(z).
From (1.6) and (1.8), by an easy computation, we have

* (3/2)(A8)° + (AF)(AF)

2a2(AF)5/? du,

(1.16) T"(a) + ST'(e) = 0

where A@ is defined as in (1.10) (see [6, p.273]).
Formulas (1.6) and (1.12) and estimate (1.16) are useful in our analysis

of the time map T; cf. [8, 9, 10].

2. Main results. First, through asymptotic expansion of the inte-
grand and direct computation, we have the following well-known proposi-

tion.

Proposition. Suppose f satisfies (1.2) and let T be defined by (1.5).
Then '
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_ 5072 (0) > 0,
e 10 (o droo
and . ‘ v o
(2.2) . T(1) = oo.

Ha.viknygk known the values of the time rﬁép T at the boundary points 0
and 1, we then study the time map T(a) defined by (1.5) for o € (0,1) for
different classes of nonlinearities f’s with f” changing sign at most twice.
We classify and study the problems by the sign of f" in (0,1). We begin

with the simplest case.
CASE 1. f” does not change sign in (0,1).
Theorem 1. Suppose that, in addition to (1.2), f € C? and satisfies
f"(z) < 0 4n (0,1), then, in addition to (2.1) and (2.2),
(2.3) T'(@)>0 for 0<a<l.
Moreover, if f € C® and satisfies either
(24) f"(x)<0in(0,1) or
f"(z) < 0in (0,d), f"(z) > 0 in (d,1) for some d € (0,1) and

P'(1) < 0 (where () is defined in (1. 13))
then T"(a) > 0 for 0 < a < 1.

(2.5)

Examples to Theorem 1. Choose f(z) = fi(z) = —(z + 2)z(z — 1)
satisfying (2.4) and f(z) = fo(z) = z(—102° + 38z* — 452° + 17) satisfying
(2.5).

Proof of Theorem 1. Suppose f"(z) < 0 in (0,1) conclusion (2.3), the
monotonicity of the time map T, is well-known. It can also be easily shown
by. observing that (1.7) gives
(2.6) 0'(z)= f(z)—zf'(z) and
@7), . 0"(z) = —=zf"(2)-

So 6(0) = '(0) = 0 and 6"(z) > 0 in (0, 1) Thus 0 is a stnctly increasing
function in (0,1). So 8(a) — 6(x) > 0 for 0 < v < a < 1. Thus T'(a) > 0
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for 0 < a < 1. Moreover, suppose that f satisfies either (2.4) or (2.5). Since
£(0) = 0, by (1.13) and (1.14), $(0) = ¥'(0) = 0. I f satisfies (2.4), by
(1.15), we have %"(z) < 0 in (0,1); and if f satisfies (2.5), by (1.15), we
have ¢"(z) < 0 in (0,d), ¥"(d) = 0, ¥"(z) > 0 in (d,1), and ¢'(1) < 0. In
either cases, ¥(z) is strictly decreasing for z near 0t and is decreasing for.
0 <z < 1. So(a)—(u) < 0for 0 < u < e, anear 0% and P(a)—1(u) <0
for 0 < u < @ < 1. Thus, in (1.12), N(a) > 0for 0 < u < a < 1, and hence
T"(a) > 0 for 0 < & < 1. This completes the proof of Theorem 1.

Remark 1. In Theorem 1, condition (2.4) can be weakened a little bit

as

(2.8) £"(0%) < 0 and f"(z) < 0in (0,1).

Remark 2. If the function f satisfies (12) and f"(z) < 0in (0, 1) but
neither (2.4) nor (2.5), then it is not necessary that T""(a) > 0in (0,1). For
example for f(z) = (z* — 2* + )(1 — z), numerical evaluation shows that

T"(0%) < 0.
CASE II. f" changes sign exactly once in (0,1).

Theorem 2. Suppose that, in addition to (1.2), f € C? and
there exists a number b € (0,1) such that f"(z) < 0 in (0,b) and
Ff"(z) > 0 in (b,1).
Then, in addition to (2.1) and (2.2),

(2.9)

(2.10) T'(a)>0 for0<a<1.

An example to Theorem 2. Choose f(z) = z(1 — z).

Proof of Theorem 2. The proof of Theorem 2 is quite similar to that
of Theorem 1. By (2.6) and (2.7), 6(0) = 6'(0) = 0. By (2.9), 0"(z) > 0 in
(0,5) and 8"(z) < 0in (,1). Since #'(1) = — f(1) > 0,  is strictly increasing
in (0,b) and is increasing in (b,1). So 6(a) — 6(u) > 0for0 < u < a <1,
0 <u<b,and 8(a)—0(u) > 0for 0 < u < a < 1. Thus,in (1.6), T'(e) > 0
for 0 < a < 1. This completes the proof of Theorem 2.
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The next theorem follows from [8] and the second part of Theorem 1

which improves [8].

Théorem 3. Suppose that, in addition to (1.2), f € C? and

there exists a number a € (0,1), which is the first zero of f" in
(0,1) and suppose that f"(z) > 0 in (0,a) and f"(z) < 0 in (a,1).
Then, in addition to (2.1) and (2.2),

(2.11)

(2.12) T has ezactly one critical point, a minimum, in (0,1).
Moreover, if f € C? and satisfies either (2.4) or (2.5), then

(2.13) T"(a) >0 for 0< a < 1.

Examples to Theorem 3. Choose f(z) = fi(2) = —(z + %)z(x -1)
satisfying £1(0) > 0 and f(z) = fa(z) = 22(1 — z) satisfying f3(0) = 0.
Both fi(z) and fo(z) satisfy (2.4).

CASE IIIL. f” changes sign exactly twice in (0, 1).

Theorem 4. Suppose that, in addition to (1.2), f € C? and satisfies
there ezist numbers a,b € (0,1), a < b, such that f"(z) > 0 in
(0,a), f"(z) <0 in (a,b), and f"(z) > 0 in (b,1), and
(2.15) 6(b) > 0.
Then, in addition to (2.1) and (2.2),

(2.14)

(2.16) T has ezactly one critical point, a minimum, in (0,1).

Examples to Theorem 4. Choose f(z) = fi(z) = z*(1 — ) satis-
fying £/(0) = 0 and f(z) = fo(z) = 22(1 — z)® + 0.001z(1 - z)? satisfying
f3(0) > 0.

Note that the method used in the proof of Theorem 3 in [8] does not
apply to Theorem 4; see [8] for details. \ '

Proof of Theorem 4. We prove (2.16) as follows. In (1.6), we have
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*6(c) — 0(u) du

(217) T'v(a) = 2—3/2-/0 W Py .

Now, by (1.7) and (2.6), we get

(2.18) 6(0) = 0,
(2-19) 6'(0)=0, ¢'(1)=—f'(1) >0, and
(2.20) 6(1) = 2F(1) — f(1) = 2F(1) > 0.

In addition, by (2.7) and (2.14), we have
6"(z) < 0in (0,a), 6"(a) =0, 6'(a) <0,
(2.21) 8"(z) > 0in (a,b), 8"(b) =0, 6'(b) > 0, and
6"(z) < 0in (b,1).

So, by (2.15), there exist numbers p and g, the first positive zero of ¢’ and
6 in (0,1) respectively, such that

(2.22) a<p<qg<hb,

and
6(z) < 0 and #'(z) < 0.in (0, p),

(2.23) 6(p) <0, 8'(p) =0,

8(g) =0, and 6'(z) > 0 in (p,1).
Thus, for 0 < a < p, by (2.23),
(2.24) 6(a)—0(uv) <0if0<u<a<lp.
Hence, for (2..17),
(2.25) T'(@)<0if0<a<lp.

Similarly, for ¢ < a < 1, by (2.23),
6(c)—0(u)>0if0<u<p, g<La<l, and

(2.26) |
0(a)—0(u) > 0if0<u<a, g<a<l.

Hence, for (2.17),
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(2.27) T'(@)>0ifg<a< .

By above, T is strictly decreasing in (0, p) and is strictly increasing in (g, 1).
Thus, to show T has exactly one critical point in (0,1), it suffices to show
T has exactly one critical point in (p,¢). In (1.16), we have

* (3/2)(A9)* + (AF)(AF)
202(AF)S/?

(2.28) T"(a) + ST'(c) = 0 du,

where A@' = af'(a)—ub' (1) = ¢(a)—¢(v) in which we define $(z) = 26'(z).
By (2.15) and (2.23), we have ¢(0) = 0, ¢'(0) = 0, and
$(z) < 0in (0,p),
(2-29) - #(p)=p¥'(p) =0, and
¢(z) 2 0 in (p,q)-

In addition, diﬁ'erehtia.ting ¢ and by (2.21), (2.22) and (2.23), we get
(2.30) #'(z) = 0'(z) + 26" (z) > 0 in (p, g).

By above, we have

Ha)—¢(u)>0if p<a<gand 0<u<p, and
. (2.31).
( ) Ha)—p(u) >0if p<a<qgand 0<u<a.

Hence, for (1.16), the integrand is always positiveif p < a < gand 0 < u <p
and is always nonnegative if 0 < @ < p and 0 < u < a. Thus, for (2.28),
T"(a) + 3T'(a) > 0if p < @ < g. I T'(@) = 0 for some &, p < & < ¢, then
T"(&) > 0. Hence T has exactly one critical point, a minimum in (p,q).

This completes the proof of Theorem 4.

In the proof of Theorem 4, we require that 6(b) > 0 to imply that ¢ < b
and thus to imply

(2.32)  §(z) = 0'(z) + 28"(2) = f(z) — of'(z) — 2*["(2) 2 0 in (,q)-

For f satisfying (1.2), (2.14), (2.32) except (2.15), we can assume that
(2.33) holds and we have the next theorem. We omit the proof.
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Theorem 5. Suppose that f € C? and satisfies (1.2), (2.14), (2.32),
and 8(b) < 0. Then, in addition to (2.1) and (2.2), T has ezactly one critical

point, a minimum, in (0,1).

An examples to Theorem 5. Choose f(z) = z?°(1 — z)?°. So

b= (39 +/39)/78 ~ 0.588.

o= 1,

e e e e e e ————

i e o ——————
c
B
(=4
-

]

I

Tl = Ly T(ao) = Lo |-os . i
«@ : : l 1 o,

ag @ ay op

case (a). f'(0)=0 case (b). f'(0)>0
Figure 1. Time maps T'.

Remark. It follows that the time maps 7' in Theorems 3, 4, and 5
have the form given in Figure 1. This means in case (a) (f'(0) = 0): for
0 < L < Lo, there is no positive solution; when L = Lo, a local bifurcation
occurs and we obtain a (“double”) nonconstant positive solution; while for
every I > Ly, there are precisely two nonconstant positive solutions. In
case (b) (f'(0) > 0): for 0 < L < Lo, there is no positive solution; when

= Ly, a local bifurcation occurs and we obtain a nonconstant positive
solution; while for Ly > L > Ly, there are precisely two nonconstant positive
solutions; when L = L;, a local bifurcation occurs again and we obtain
only one nonconstant positive solution; when L > L, there is exactly one

nonconstant positive solution.

Theorem 6. Suppose that, in addition to (1.2), f € C?,

there exist numbers a,b € (0,1), a < b, such that f"(z) < 0 in
(0,a), f"(2) > 0 in (a,b), f"(z) <0 in (b,1), and

(2.34) #'(b)>0. : SR

Then, in addition to (2.1) and (2.2), T'(a) >0 for0 < a < 1.

(2.33)
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Condition (2.34) says that the tangent line to the curve y = f(z) at the

point (b, f(b)) on the curve intersects positive y-axis or the origin.

An example to Theorem 6. Choose f(z) = z(1 — z)(3 — 8z + 8z?)
satisfying f'(a) < 0 and f'(b) > 0 in which @ = (6 — /3)/12 ~ 0.356 and
b = (6 4+ /3)/12 ~ 0.644. Numerical evaluation shows that, for f(z) =
z(1 — z)(3 — 8z + 82?), T"(a) changes sign in (0,1).

The proof of Theorem 6 is quite similar to that of Theorem 2. We omit
it.

In Theorem 6, condition (2.34) is used to implies that 6'(z) > 0in (0,1)
and hence 6(z) > 0in (0,1). If condition (2.34) does not hold, the time map

T may not be strictly increasing in (0,1). We then in the following consider
the time map T of problem (1.1) with f satisfying (1.2), (2.33) and

(2.35) there exists a number zo € (0,1) such that 6(zo) < 0.

Considering T"() in (0,1), by (1.7), (2.6), (2.7), and (2.33), we have
6(0) =0,

6'(0) = £(0) =0,
(2.36) -
6" (z) > 0in (0,a), 6"(z) < 0in (a,b), §"(z) > 0in (b,1), and
’ 6(1) = 2F(1) > 2F(z) — zf(z) = 6(z) in (0,1).
In addition, by (2.35), 8(zo) < 0 for some zo € (0,1). So @ has exactly
two positive zeros, says at B, D with 0 < B < D < 1, and has exactly
one relative maximum at A, and one relative minimum, say at C, in (0,1).
The graph of function 6 takes the form depicted in Figure 2, where F is
the number in (D, 1) such that 6(E) = 6(A). Thus, by (1.6), immediately,
we have (i) T is strictly increasing in (0, A4), (i) T has at least one critical
point in (A, B), (iii) T is strictly decreasing in (B,C), (iv) T' has at least
one critical point in (C, E), and (v) T is strictly increasing in (E,1).

Under additional suitable assumptions, we are able to show that T has

at least one critical point, a local maximum, in (A, B), and has at least one
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19

o e —

Figure 2. The graph of 6.
critical point, a local minimum, in (C, E); cf. [10].

Theorem 7. Suppose that, in addition to (1.2), (2.33) and (2.35),
f € C? and satisfies ‘

(2.37) ¢(C) 2 p(a), where p(z) = z8'(z) - 0(z),

(2.38) (z(In f(z))") > 0 for = € (A, B), and
2fi(z) S -1 .

(2.39) 25 m.B)

Then, in addition to (2.1) and (2.2), the time map T has ezactly two crit-
ical points in (0,1). More precisely, T is strictly increasing in (0,A), has
ezactly one critical point, a local mazimum, in (A, B), is strictly decreasing
in (B,C), has ezactly one critical point, a local minimum, in (C,E), and is

strictly increasing in (E,1).

An example to Theorem 7. Choose _
fz) = {:1:(10037:2 — 58z + 11), 0<z<1/2,
(3242? - 2542 4+ 53)(1 —z), 1/2<z <1
So a = 29/150 ~ 0.193 and b = 289/486 ~ 0.594. Note that f'(a) > 0 and
f(b) <0.
Remark. In Theorem 7 let L; = T(0) = Zf'(0)~%/2, and L, and
L3 be the local minimum and maximum values of T in (0,1). . Then it

follows from Theorem 7 that for 0 < L < min(L1,L;), there is no positive
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solution; when max(Lq, Ly) < L < L3, there are precisely three nonconstant
positive solutions; while for L = L3, a local bifurcation occurs and we obtain
precisely two nonconstant positive solutions; when L > L3, there is exactly

one nonconstant positive solution.

Proof of Theorem 7. By above, it suffices to show that the time map
T(a) has exactly one critical point, a local maximum, in (B,C) and has
exactly one critical point, a local minimum, in (C, E).

First, we consider the time map T in (C, E). By estimate (2.6) in [6],

taking ¢ = —1/a, we have

(2.40) T"(c) + 2T"(a) > 2 I "°(("‘A) FT);P/(Zu)du,
where

(241) (@) = 20'(2) - 6(z).

By (2.7) we have |

(2.42)  J(z) = 28"(z) = —2 f"(2).

Hence, by (2.33), (2.37), (2.41) and (2.42), we have

@(0) =0, ¢'(0)=0,
(2.43) ¢'(z) > 0in (0,a), ¢'(z) < 0in (a,b), ¢'(z) > 0 in (b,1), and

©(C) > ¢(a) > 0. |
Since b < C, (2.43) implies that p(a)—p(u) > 0for0 <u < A, C <a< E,
and o(a) — p(u) > 0for 0 < u < @, C < a < E. Hence, in (2.40),
T"(a) + 2T'(a) > 0 for C < o < E. Thus T has exactly one critical point,
a local minimum, in (C, E).

Secondly, we consider the time map T in (4, B). We show the following

Lemma 1 which will be needed subsequently.

Lemma 1. If (2.38) and (2.39) hold, then

Af _Af
_ ot A | B
R AN AT for a € (A, B),
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where Af = af(a) — uf(u) aﬁd'A;’ =a’f'(a) - uzf'(u)
Lemma 1 follows easily from the following Lemmas 2 and 3.

Lemma 2. If (2.38) and (2.39) hold, then the mazimum of —f in

[O a] occurs at u = a for a € (A B)’ and Omfgca ii' f(a).)jioo‘l)f,(a)
[ = (A B)

Proof of Lemma 2. For fixed a € (A4, B), 6(a) = 2F(a) - af(a) >0,
and ¢'(a) = f(a) — af'(a) < 0. So o

_af(a) —uf(u) _af(a)
BF| oy ™ F @)= F(0) |y~ Fle) <7
EF_ f(a) _;aa)f’(a) f(a.)fz'a)f(a) =9 (by L’HOSPlta,l,S rule)

A
So, for a € (A, B), the maximum of ﬁ occurs at o or at some internal

point in (0, @).

Set G(u) = M@ =1+ yf,(u).. Then, by (2.38) and
_ i (ul)1 f(u)
L’Hospital’s rule again, we have »

G(0) = 2,

(2.44) G(u) <2if 0 < u< A (since 8'(u) = f(u) —uf'(u) > 0in (0, A)),
G(A) =2, and G'(u) = (u(ln f(q))')' > 0 for u € (A, B).

Thus

(245)  G(e)- G(u) 2 0for 0< u < aand a € (4,B).

A
For o € (A, B), suppose the maximum of A_;’ does not occur at u = «a,

then the maximum of Z—IJ;— occurs at an internal point g in (0, ), for some

ug. Hence (2;,) l = 0 which 1mphes that f(ug)[a f(a) — g f(uo)]

[F(@) — F(uo)][uof(uo) + f(u0)] = 0. So

af(a) — uof(uo) _ f(uo) + wof'(uo)
F(a) — F(uo) flwo)

(2.46)
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That is, —AA_i’ = G(up). For a € (A, B), by (2.45),
A <=1 (b v
AF wug = G(u) < G(a) = AF u=a( by L’Hospital’s rule).

. . . . A
This contradicts our assumption that the maximum of —f- does not occur

AF
at u = a for o € (A, B). Hence, for a € (4, B), the maximum of Af occurs

- AF
- Af _ f(@)+af(a) .
at u = a, and oRaX A = ) for a € (A, B). This completes

the proof of Lemma 2.

. :I
Lemma 3. If(2.38) and (2.39) hold, then the minimum of ij} in |0, 0]

:, ’
occurs at u = 0 for a € (A, B), and Oxsnuiga i‘; = _‘}}_f(_f%) for a € (A, B).

Proof of Lemma 3. By (2.39), (zf(z)) = f(z)+zf'(z) > (1/3)(f(z) +
3zf'(2)) > 0in (0,B). So af(a) —uf(u) >0 for 0 < u < @ < B; that is

(2.47) Af>0for0<u<a<B.

For a € (A, B) and 0 < u < a, by (2.45) and (2.47),

af'(e) _uf '(u)]‘

Af (Aﬁ )" l @)~ (w)
(2.48) AF \Aflu=o/ af(e) —uf(u)
_ WG -Gw) | ,
af(a) —uf(u) ~
Af_af'(e) .
Hence oz AF Fla) for a € (A, B). This completes the proof of
Lemma 3.
Lemma 1 implies' that suppose M = olgnjéca —AA—;, and m ='01Sn§2a iff:

then M —m = 1. By [6, p.282, 1.10], we have



226 ‘ SHIN-HWA WANG o [September

T"(a) + %T'(a) —

/a(%i)[z(AF)z — (APYAR)]+ AT - 2A8DAF) - (AF)AF) |
0 ,  2a%(AF)5/?

Let the numerator of the integrand of the above integral be @ and A = —=.
By (2.47), Af >"0. 'In addition, define I'(z) = zf(z) — (2/3)F(z). By
(2.39), T(0) = 0, I'(z) = (1/3)(f(=) + 3zf'(z)) > 0 in (0,B). So, for
0<u<a<B, (ozf(a) — (2/3)F()) - (u F(u) — (2/3)F(w)) > 0. Hence
M ; that is A = Af > ~. Now by (2.47) and Lemma 3,

F(a)- F(u) — AF = 3
for a € (A, B),0<u<a,wehave

Q< g(Af)2 ~(2+m+ %)(A AF)+ M(AF)? .
= @R @+ m+ B+ ).

Denoting the quadratic in A by p()\j, and noting that m = M —1 by Lemma 1,
we have p(A) = A2 ABM+1)+ M = 3(A-M)(A-3). Since § <A< M,
p(A) < 0. It follows that Q < 0. By more careful analysis, it can be shown
that @ is not identically zero for fixed @ € (4,B), 0 < u < o Hence
T"(a) + M—T’(a) < 0 for @ € (A, B). So T has exactly one critical point, a
local ma)umum, in (4, B).

So T has exactly two cntlca.l points in (0, 1) This completes the proof
of Theorem 7.
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