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Abstract. For some one-parameter families of simple con-
tinuous interval maps f. with c as the parameter, we show that
f. has a point bifurcation of period 6 orbit at some point ¢ = cp.
That is, f., has a periodic point p of least period 6, but there is
a neighborhood V(p) of p such that f. has no periodic point of
least period 6 in V(p) for every c sufficiently close to and distinct
from cop.

1. I_ntroduction. Let f. be a one-parameter family of continuous
maps from the compact interval I into itself. Assume that there exist two
positive numbers § and ¢ such that f. has a periodic point p of some period
n for ¢ = cp, but no periodic point (of same period) in (p—¢,p+¢) for every
cin (ep — 8,c0)U (co,co + 6). Then we say that f. has a point bifurcation of
period n points (or orbits) at ¢ = ¢g. Trivial examples of point bifurcations
of periodic orbits can be easily constructed. However, nontrivial examples
seem lacking. As point bifurcations are very difficult to detect from the
practical point of view, we may not notice them even when we encounter
one such example. Therefore, it would be nice to have an explicit nontrivial
example. In this note, we give some such examples.

For real numbers 1/2 > b > 0 and 1 > ¢ > 0, let F} (z) denote the

continuous map from [0,1] into itself defined by
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o 0<z<b,

_ 3-8b)
Foo(z) =4 o= +E4 —8b)> b<z<g,
14(c-1(2z-1), $<z<1

Also, let S(b) denote the set {0 < ¢ < 1|F; (z) has periodic orbits of least
period 6} and let ¢;(b) = inf $(b) and cy(b) = sup §(b). Then for suitable
choices of b, the set (c1(b),c2(b)) (which may not be contained in the set
5(b)) may not be empty. For example, it follows from [1, Theorem 3] that
co(b) = 1/2 for 3/8 < b < 1/2. On the other hand, if a ~ .228155 is
the unique positive zero of the polynomial 4z — 8z% + 6z — 1, then, for
a < b < 1/2, we can easily show that F{,(1/2) < 1/2 < F?4(1/2). Tt then
follows from [2, Proposition 2.2] and [3] that b € S(b) for all a < b < 1/2.
Consequently, (c1(b),ca(b)) D [b,1/2) for 3/8 < b < 1/2. By numerical
computations, we find that (i) when 0 < b < a, S(b) = ¢ and (ii) as b
with @ < b < 1/2 tends to a, the interval (c1(b),c2(b)) tends to the set
{a} consisting of the unique element a. That is, numerical results seem to
indicate that F, .(z) gives an example of point bifurcation of period ‘6 orbits

at ¢ = a. In this note, we prove this observation and some generalizations.

2. Statement of main results. In this section, we state our main
results. These results show the existence of point bifurcations for some

one-parameter families of simple interval maps.

Theorem 1. Let a denote the unique positive zero of the polynomial
z3 — 82% + 62 — 1 and let s be a fized nonnegative number. For 0 < c <1,
let f.(z) be the continuous map from [0, 1] into itself defined by
max{}, sz — sa + 2}, 0<z<aq,
fe(z) = - 4@"'%7 . a<z <y,
1+(c—1)(2$—1), %gwgl.
Then the following hold:
(A) Assume that 0 < s < (6a® — 8a + 3)/[8(1 — a)’]. Then the following
hold:
(1) If a < ¢ < .25, then f. has no period 6 point in [0, .‘25].
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(2) If ¢ = a, then {1/2,1,a,3/4,(1 + a)/2,a* — a + 1} is a period 6
orbit of f..

(3) There ezist a number o (depending on s) with a > a > 0 and a
number é ( independent of s) > 0 such that, for everya—a < ¢ < a,
fe has no period 6 point in [0,a + §]. :

(B) Assume that (6a*> — 8a + 3)/[8(1 — a)*] < s. Then the following hold:

(1) If a < ¢ < .25, then f, has no period 6 point in [0,.25].

(2) If ¢ = a, then {1/2,1,a,3/4,(1 + a)/2,d* - a+ 1} is a period 6
orbit of f..

(3) There ezists a number § (depending on s) with a > § > 0 such

that, for every a — 3 < ¢ < a, f. has at least one period 6 point in

(c,a).

Remarks. (1) Part (A) of Theorem 1 shows that, when 0 < s <
(6a% — 8a + 3)/[8(1 — a)?], f. has a point bifurcation of period 6 orbit at
c=a.

(2) Part (B) of Theorem 1 shows that, when (6a® — 8a + 3)/[8(1 — a)?]

< s, f. has a bifurcation of period 6 orbit at ¢ = a.

Theorem 2. Let a denote the unique positive zero of the polynomial
423 — 822 + 6z — 1 and let z be a fized number with 0 < z < a. Let g(x)
be any fized continuous map from [0,a] into [0,1] such that g(a) = 3/4 and
g(z) > 3/4 on [z,a]. For 0 < ¢ <1, let g.(z) be the continuous map from
[0,1] into itself defined by

9(z), 0<z<a,

T !3—8&}
9.(z) = § =40 T (3=8a)> a<z<y,
1+(c—-1)(22-1), £ <z<1

Then the following hold:
(1) For a < ¢ < .25, g, has no period 6 point in [0, .25].
(2) Forc= a,{1/2,1,a,3/4,'(1 + a)/2,a® — a + 1} is a period 6 orbit
of ge-
(3) There exists a number & (depending on g) with a —z > 6 > 0 such
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that, for every .2 < ¢ < a, g. has no period 6 point in [a— 6,a+ 6].

Consequently, g. has a point bifurcation of period 6 orbit at c = a.

Let m > 6 be a fixed even integer. Let b, ¢, Fy c(z) be defined as in
Section 1. When b = 3/8, it is known [1] that there exists a number 0 < d <
1/2 such that F3s () has a periodic orbit of least period 6 for every c in
(d,1/2). By Sharkovskii’s theorem on the coexistence of periodic orbits [3],
F3/3,.(z) has periodic orbits of least period m for every ¢ in (d,1/2). When
b =0, it is clear that Fp.(z) can only have periodic orbits of periods < 4
for every 0 < ¢ < 1/2. Since F . is continuous in both parameters b and
¢, it is possible that there is a number 0 < a, < 3/8 such that F,  .(z)
has a point bifurcation of least period m. Based on Theorem 1 above, a
good candidate for such numbers will be numbers a,, such that the point
(z) with least period m. So, we make

¢ = 1/2 is a periodic point of Fy

mqm

the following

Conjecture. Let m > 6 be a fixed even integer. If a,, is a number such
that the point z = 1/2 is a periodic point of F,  , . () with least period m,

then F,_ .(z) has a point bifurcation of least period m at ¢ = ap,.

3. Preliminary results. For the proofs of the main results, we need 3
lemmas. Note that the polynomial 4z°—8z% 46z —1 = 2(223—4z%+3z-1/2)
is a strictly increasing map. Throughout this section, let a ~ .228155 denote
the unique positive zero of the polynomial 4z —8z? + 6z — 1. Consequently,
2¢3 —4¢2 + 3¢ < 1/2 for ¢ < a, 2¢® — 4c* + 3¢ = 1/2 for ¢ = a, and
2¢® —4¢% 4+ 3¢ > 1/2 for ¢ > a. These facts will be used implicitly throughout

this section.

Lemma 1. For any fized a < ¢ < .25, let h.(z) be the continuous map
from [a, 1] into itself defined by '

IN

T

IA

- x 3-8a
he(z) = { @~y T ta=sa)>

a i,
1+(c—1)(2z-1), +<z<1

Then h8(z) > z for alla < z < .25 and all a < ¢ < .25.
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1993]
Proof. The idea of the proof is as follows: For any fixed a < ¢ < .25, we

show that, both h.(a) and h.(.25), both h%(a) and h%(.25), and both h3(a)
and h3(.25) all lie on the same side of the point 1/2. It then follows from
the monotonicity of ¥, 1 < k < 3, on [a,.25] that the graphs of ke, h? and
h3 are all straight lines on [a,.25]. Then we show that there is a unique
point b (depending on ¢) in (a, .25) such that h%(b) = 1/2. Therefore, hS are
straight lines on [a,b] and on [b,.25] with negative slope on [a,b] and slope
> 1 on [b,.25] (see Fig.1 ). This suffices to obtain the desired result. We

now proceed to the proof.
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Figure 1. Typical graph of y = f(z) on [a,.25] for a < ¢ < .25.

 Fix any a < ¢ < .25. Then h.(a) = 3/4, h2(a) = (c+ 1)/2, h3(a) =
(c—1/2)% +3/4 > 1/2, hi(a) = 2¢° - 4¢? 4+ 3¢ > 1/2. On the other hand,
it is easy to check that, on [a,.25], the following hold: (i) k. is increasing
and > 1/2, (i) h2? is decreasing and > 1/2, (iii) h3 is increasing and > 1/2.
Consequently, h? is linear and decreasing on [a,.25]. Let b = b(c) denote
the (unique) point (if it exists) in [a, .25] such that h%(b) = 1/2. Then since
203 — 4a% + 3a = 1/2, we see that h%(a)—1/2 = 2¢® —4c% + 3¢ — (24 — 4a® +
3a) = (c— a)[2(c? + ca+@®) —4(c+a)+3] < (c— a)[6(.25)* — 8(.2) + 3] =
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1.775(c — a). Since the graph of ht(z) on [a,b] is a straight line with slope
—t, where t = 8(1—c)3/(2—4a) > 8(.75)3/(2—4a) > 1.775, we easily obtain
that b—a < ¢ — a. That is, @ < b < ¢.. So, there exists a (unique) point
b = b(c) in [a,.25] such that h%(b) = 1/2. Consequently, hS(z) is linear on
[a,b] and on [b,.25].

Now hS(z) is decreasing on [a,b] and increasing on [b,.25] with hS(b) =
¢ > b. Furthermore, hS(z) is a straight line on [b,.25] with slope 32(1 —
¢)*/(2 — 4a) > 1. Therefore, h8(z) > z on [a,.25].

This completes the proof of Lemma, 1.

Lemma 2. Let h(z) be any fized continuous map from [0, a] into [0, 1]
with h{a) = 3/4. For 2 < ¢ < a, let h.(z) be the continuous map from [0,1]
into itself defined by

h(z), 0<z<a,

x 3—8a
he(z) = (2—_4a—)+%'4:§;§', a<z<y,
1+(c—1)(2z-1), $<z<L

Then there exists a positive number § (independent of h(z)) such that h8(z)
>zt forall2<c<aandalla<z<a+d.

Proof. The idea of the proof is as follows: For any fixed .2 < ¢ < aq,
there is a positive number § (independent of ¢ and h(z)) such that h8(z) is
linear on [a,a + §]. Then we show that h®(a) > a. Since the slope of the
graph of h%(z) on [a,a + 6] is > 1 with hS(a) > a (see Fig. 2), we easily
obtain the desired result. We now proceed to the proof.

It is clear that, for .2 < ¢ < a, we have h.(a) = 3/4, h2(a) = (c+1)/2 >
1/2, 85> h(a)=c® —c+1>1/2,a< .3 < hi(a)=2c®—4c +3c < 1/2,
hS(a) = (2¢% — 4¢® + 3¢)/(2 — 4a) + (3 — 8a)/(4 — 8a) > 1/2, and hS(a) =
(4ct—12¢® +14c¢* —Tc+1)/(2—4a)+c. Note that the values h¥(a), 1 < k < 5,
are all > a. Therefore, there exists a positive number § (independent of ¢
and h(z)) such that, for each .2 < ¢ < @ and on [a,a + §], the following
hold: (i) h. is increasing and > 1/2; (ii) A2 is decreasing and > 1/2; (iii)
R? is increasing and > 1/2; (iv) A% is decreasing and < 1/2; and (v) Ad is
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decreasing and > 1/2. Consequently, for each .2 < ¢ < a, h8(z) is linear on

[a,a + 6].
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Figure 2. Typical graph of y = fé(z) on [a,.25] for 2 < ¢ < a.

For .2 < ¢ < a,let p(c) = h(a) = (4c* —12¢®+14¢% —Te+1)/(2—4a)+c.
Then p'(c) = (16¢° - 36¢* +28¢— 7)/(2—4a) + 1 < —36¢%/(2— 4a)+1 < 0
for .2 < ¢ < a. So, p(c) is strictly decreasing on [.2,a]. In particular,

p(c) > p(a) for .2 < ¢ < a. Consequently, h8(a) = p(c) > p(a) = h(a) = a

forall 2<¢< a.
On the other hand, for .2 < ¢ < a, h8(z) is linear on [a,a + 6] with
slope 4(1 —c)*/(1—2a)? > 1. Since h%(a) > a, we obtain that h8(z) > z on

la,a+ 6] for all .2 < ¢ < a.
This completes the proof of Lemma 2.

The following lemma whose proof is rather straightforward will be used

in the proof of Theorem 1. For the sake of easy reference, we consider ¢ as

the variable.
Lemma 3. Let s be a fired nonnegative number. For 0 < ¢ < a, let

h(c) = c+2(c— 1) +2(c—1)* +8s(c — a)(c — 1)*. Then the following hold:
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(1) If0 < s < (6a®—8a+3)/[8(1—a)?], then there is a number (depending
on s) > 0 such that h(c) < 1/2 foralla—a<c<a.

(2) If (6a% — 8a+ 3)/[8(1 — a)®] < s, then there is @ number B (depending
on 8) > 0 such that h(c) >1/2 for alla— B < c < a.

Probf. It is clear that h(a) = 1/2, h'(c) = 6¢* —8c+ 3+ 8s(c —1)*(4c—
sa — 1) and B"(c) = 12¢ — 8 — 16s(c — 1)(1 + 3a — 4¢) + 32s(c — 1)%.

K0 < s < (6a2 —8a+3)/[8(1—a)?], then h'(a) = 6a® —8a+3 —8s(1—
a)? = 8(1 — a)*{(6a® — 8a +3)/[8(1— a)*] — s} > 0. So, there is a number
(depending on s) > 0 such that A'(c) > 0 for all a — & < ¢ < a. Thus, h(c)
is strictly increasing on (a — e, a]. Consequently, h(c) < h(a) = 1/2 for all
a - a < ¢ < a. This proves (1).

If s = (6a® — 8a + 3)/[8(1 — a)?], then h'(a) = 0 and h"(a) = 12a — 8+
48s(1 — a)? > 0. So, there is a number § (depending on s) > 0 such that
h(c) > h(a) =1/2foralla— B <c<a.

On the other hand, if (6a? — 8a + 3)/[8(1 — a)®] < s, then h'(a) =
6a2 — 8a + 3 — 8s(1 — a)® = 8(1 — a){(6a® — 8a + 3)/[8(1 — a)*] — s} < 0.
So, there is a number 8 (depending on s) > 0 such that A'(c) < 0 for all
a— B < ¢ < a. Thus, h(c) is strictly decreasing on (a — 3,a]. Consequently,
h(c) > h(a) = 1/2 for all a — f < ¢ < a. This proves (2).

The proof of Lemma 3 is now complete.
4. Proofs of main results. We can now prove our main results.

Proof of Theorem 1. The idea of the proof is as follows: Depending on
the values of s, we split the proof into two cases.

If0 < s < (6a® — 8a+ 3)/[8(1 — a)?®], the proof is more complicated.
First, we apply part (1) of Lemma 3 to show that there exists a positive
number o (depending on s) such that f3(c) < 1/2 for each a —a < ¢ < a.
Then we éplit the proof into two cases dependjng on whether the graph of f*
on [0, a] intersects with the diagonal line y = z. In any case, we show that
f&(z) > z on [0,a] for every @ — @ < ¢ < a. This, combined with Lemma 2,

implies the desired result for these values of s.
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If (6a® — 8a + 3)/[8(1 — a)3] < s, then we apply part (2) of Lemma 3
to show that there exists a positive number 8 (depending on s) such that,
for all a — 8 < ¢ < a, f3(z) = 1/2 for some z € (c,a). From this, we easily
obtain that f8(y) = y for some y € (z,a) which is the desired result for

these values of s. We now proceed to the proof of the theorem.

If a < ¢ < .25, then f, maps [a,1] into itself. So, in this case, f. is
independent of s. By Lemma 1, fé(z) > z on [a,.25]. On [0,d], f8(z) >
min f.(z) = ¢ > z. So, fé(z) > = on [0,.25] for every a < ¢ < .25. This
proves (1) of part (A) and (1) of part (B).

The proofs of (2) of part (A) and (2) of part (B) are straightforward

and omitted.

For the rest of this proof, we fix any .2 < ¢ < a. Then, by Lemma, 2, we
obtain that fZ(a) > a. Also note that the polynomial 2¢® —4c? + 3¢ = f4(a)
is a strictly increasing map of the variable c. So, fi(a) < fi(a) = 2a® —
40 +3a=1/2for 2<c< a.

IO < s < (6a® — 8a + 3)/[8(1 — a)®] ~ .404256 < .41, then it is easy
. to.check.that, on [0,a], the following hold: (i) f. is lihear, increasing, and
> 1/2; (ii) f? is linear, decreasing, and > 1/2; (iii) f2 is linear, increasing,
and > 1/2; and (iv) fi(z) = c+2(c —1)2 +2(c — 1)® 4+ 8s(z —a)(c —1)% =
263 —4¢? +3c+8s(z—a)(c—1)? is linear and decreasing. Note that, since the
map f2(z) is decreasing on [0, a], there exists at most on point b = b(c, s)
in [0, a] such that f3(b) = 1/2. Since 0 < s < (6a® — 8a + 3)/[8(1 - a)?], it
follows from part (1) of Lemma 3 that there is a number a (depending on
s) > 0 such that f(c) < 1/2 for all a — @ < ¢ < a. We now have two cases
to consider:

Case 1. If the set {0 < z < a|f*(z) = 1/2} is not empty, let b = b(c, s)
denote the unique point in the set {0 < z < a|f?(z) = 1/2}. Then, since
f* is decreasing on [0,a] and both fi(c) and fi(a) are less than 1/2 , we
have b < c¢. Consequently, fé(z) is linear on [b,a] with fS(b) = ¢ > b and
f8(a) > a. Thus, f8(z) > z on [b,a] (see Fig. 3). On the other hand,
f8(z) > min f(z) = ¢ > z on [0,b]. So, fé(z) > z on [0,a] for every
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~ Figure 3. Typical Graph of y = f8(z) on [0, a] for which Case 1 holds.

a—a<c<a.

Case 2. If the set {0 < z < a|f}(z) = 1/2} is empty, then, since
f4(c) < 1/2, we obtain that fi(z) < 1/2 on [0,a]. Since f! is linear and
decreasing on [0, a], we see that fi(z) > fi(a) = 2¢° —4c? 4+ 3¢ > 2(.2)° -
4(.23)? + 3(.2) = .4044 > a. Consequently, f? is linear, decreasing, and
> 1/2 on [0,a]. Therefore, f? is linear and increasing on [0,a] with slope
= 8s%(c — 1)* < .55 < 1. Since f5(a) > a, this implies that f3(z) > = on
[0, a] for every a — a < ¢ < a (see Fig. 4). |

By Lemma 2, there exists a positive number § such that, for every
a—a<c<a, f8(z) > z on [a,a + §]. This, combined with Cases 1 and 2
above, shows that, for every a — o < ¢ < a, f5(z) > z on [0,a + 4]. ‘Thisv

proves (3) of Part (A).

If (6a2—8a+3)/[8(1—a)’] < s, then by part (2) of Lemma 3, there exists
a number § (depending on s)> 0 such that f3(¢) > 1/2foralla—f < ¢ < a.
Since f4(a) < 1/2, there exists ¢ < z < a such that f;(z) = 1/2 and hence
f8(z) = ¢ < 2. Since fi(a) > a, we obtain that there is a point y in
(2,a) C (c,a) such that f&(y) = y: This proves (3) of part (B).
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Figure 4. Typical Graph of y = ff(z) on [0, a] for which Case 2 holds.

The Proof of Theorem 1 is now complete.

Proof of Theorem 2. The proof of Theorem 2 is rather straightforward.
Part (1) follows from Lemma 1. Part (2) is trivial. We now prove part (3).
By Lemma 2, there exists a positive number ¢ such that g8(z) > z for all
2<ec¢<aandall a <z <a+e. On the other hand, fix any number § with
a—2z>6>0and ¢ > d such that g.([a — §,a]) C g.([a,a + €]). Then it is
clear that g¢([a—4,a]) = g(gc(la—4,al)) C 92(gc([a, a+e])) = g¥([a, a+€]).
So, for all a — § < z < a, ¢8(z) = ¢5(y) for some y in [a,a + €]. But then,
it follows from the above that g$(z) = ¢8(y) > y > @ > 2. This, together
with the above, shows that g8(z) > z forall a —§ < z < a+¢. Since § < ¢,
it follows that ¢8(z) > z forall 2<c<aandalla—6 <z < a+ 4. This
completes the proof of part (3) and hence the proof of Theorem 2.

5. Concluding remarks. In this section, we let ¢ and s be two fixed
numbers with 0 < ¢ < a and 0 < s < (6a — 8a + 3)/[8(1 — a)3] and let
fe(z) be defined as in Theorem 1. Then the following hold: (i) f.([0,a]) is
contained in [.65, .75] and f is linear and increasing on [0, al; (ii) f2([0, a])
is contained in (¢ + 1)/2,.3¢ + .7] C [1/2,1] and hence f? is linear and
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decreasing on [0,a]; and (iii) f2([0,a]) is contained in [.6c2 — 2¢+ .6, — ¢
+1] C [1/2,1] and hence f} is linear and increasing on [0, a]. Consequently,
fA(z) = 26 — 4c? + 3¢+ 8s(z —a)(c - 1) is linear and decreasing on [0, a].
So, the equation fi(z) = 1/2 has at most one solution in [0,a]. Note that
fia) = 9¢3 — 4¢? + 3¢ is a strictly increasing map of the parameter c. Since
f4(a) < fi(a) = 2a® — 4a® + 3a = 1/2, we see that if Ffi(c) > 1/2 then
thére must exist a point y € (c,a) such that fi(y) = 1/2. Consequently,
f8(y) = ¢ < y. Since 0 < ¢ < a, we have fA(a) = 2¢® — 4c? 4+ 3¢ <
fia) = 1/2. T a < fi(a) < 1/2, then as in Lemma 2, @) > a. If
0 < f(a) < a, then fi(a) = 8(2¢® — 4c® + 3c) — sa + 3/4 > 1/2, and so,
f8(a) = 1+ (c - 1)[2s(2¢° - 4¢? +3¢c) —2sa +1/2] = (c+1)/2+ 25(2¢3 —
4¢® + 3¢ — a) > 1/2 > a. Therefore, for 0 < ¢ < a, we have f8(a) > a.
Consequently, there exists a point z € (y,a) such that f8(z) = z. This
point z must be a periodic point of f. with least period 6. Therefore, the
condition that f2(¢) > 1/2 is a sufficient condition for f. to have a periodic
point of least period 6 in (c,a). In the following, we exploré further the
equation f4(c) = 263 — 4¢? + 3¢ + 8s(c — a)(c — 1)°.

Since 203 —4a? +3a = 1/2, we obtain that fi(c) —1/2 = (¢ —a)[2(c* +
ca +a?) — 4(c+a) +3 — 8s(1 — ¢)®]. Write c =a —¢ witha > ¢ > 0. Then

fa(e)-1/2
(+) = —el6a’ ——8a+3+(4—6a+28)£—83(1—a+a)3]
6a®—8a+3 , 4-6a+2 6_3]
8(l1—a+e)®  8(1-a+te)

6a2—_8a+3( 1-a \°
8(1—a)® \l-a+e

=-8(1-a +e)3a[

=-8(1-a+ 5)35[

L 4-6e ( 1—a )3+ 1 .
8(1—a)y\l1-a+e¢ 4(1—a+$):"g s

6a? —8a+3 3 6
= —8(1 - 3.1 — 77 Y~ 2
8(1—a+e¢) s{ S a) [1 1—a8+ (1—a)2e'
_ 10 €3+__.]+ 4-6a [1_ 3 ., 6
(1—-a) 81—a@l 1-¢  (1—a)?
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_L€a+..]+__1____z
1-ap l-atep. °
6a® —8a + 3 18a2 — 42a + 21
= —8(1 - Sed | ——— 5l —
& ‘“’5)5{[ 81— ay ] [ 81 —a)! ]

[19(12 —44a+22] , [33a> —76a+38] ,
41— a) i1—ap |°

(x%) = —8(1—a+e)e{[Ao —s] — A1 + Aze? — Aze® + .-}

where A;, 0 < i < 3, are defined in obvious way.
(% % %) ~ —8(1 — a + €)3¢[(.404256 — s) — 4.3512¢+
11.8186¢2 — 26.4595¢° + - - 1.

Now since we have assumed that 0 < s < (6a® — 8a + 3)/[8(1 — a)3], we
easily see from above that f¥(c) —1/2 < 0 for all ¢ < a and c sufficiently
close to a. This is exactly what we have shown in the proof of Theorem 1.
We now split the discussions into cases depending on the values of s.
When the fixed number s is strictly less than but sufficiently close to
the value Ag = (6a% — 8a + 3)/[8(1 — a)?], we have already known that
Fi(c) < 1/2 for all ¢ < a and c sufficiently close to a. But when ¢ is not so
close to a, that is, when ¢ = a — ¢ and ¢ is not small enough, then the second
term 4.3512¢ in (* * %) above dominates. So, fi(¢) > 1/2. Consequently,
it follows from our discussions above that f. has a periodic point of least
period 6 in (c,a). However, this periodic point does not bifurcate from the
point a at ¢ = a because fi(c) < 1/2 for all ¢ < a and ¢ sufficiently close to
a. Therefore, when we vary the values of ¢ from larger number to smaller
number, we shall see the following bifurcation phenomenon: f. has a point
bifurcation at ¢ = ¢ and a bifurcation of period 6 points at ¢ = ¢ for some
cp < a. How the bifurcation value cg is close to a depends on how s is
close to Ap = (6a? — 8a + 3)/[8(1 — @)®]. Indeed, if the fixed number s
is sufficiently close to Ag, then the map G(e) = (4o — s) — A1€ + Aze?,
“where A;, i = 0,1,2 are defined as in (**) above, has exactly two positive
zeros, say £1, €2 with £y < £3. It is clear that Gs(¢) < 0 on (£1,€2). That is,
f4(c) > 1/2 and so f, has a period 6 point in (¢, a) for each ¢ € (a—¢2,a—¢1).



200 BAU-SEN DU [September

When s is sufficiently close to Ag, we see that the smaller zero £1 of Gs(e)
is very close to zero. Consequently, the bifurcation value ¢p of period 6
points of f.(z) which belongs to (a — ¢,a) will be very close to a. See,
for example, Figures 5 and 6 which show the graph of y = f&(z) with
s = .4035(6a® — 8a + 3)/[8(1 - a)®] and ¢ = .2255a. So, for this family
f. with s = .403 and parameter ¢ changing from larger number to smaller
nuinber, we shall see a point bifurcation of period 6 points at ¢ = a and a

bifurcation of period 6 points somewhere in (.225,a).

When .the fixed number s satisfies 1/(16a) ~ .273936 < s < (6a® —8a+
3)/[8(10a)? =~ .404256, we see in () above that f4(0)—1/2 = —¢[2a® —4a+
3—8s] = —¢[1/(2a) —8s] > 0. So, for all sufficiently small number § > 0, we
have f#(6) > 1/2. On the other hand, it is easy to see that fd(a)=0<1/2.
So, for all sufficiently small number § > 0, we have f3(a) < 1/2. Thus, for
all sufficiently small number § > 0, we have f3(6) > 1/2 and fi(a) < 1/2.
This shows that fi(y) = 1/2 for some y € (4, a). Consequently, fS(y) =
§ < y for all sufficiently small number § > 0. Since it is easy to check that
f8(a) > 1/2 > a (note that we have actually shown that, for 0 < ¢ < a,
f8(a) > a in the beginning of this section), we obtain that E(a) > afor all
sufficiently small number 6 > 0. This implies that, for all sufficiently small
number § > 0, f8(2) = z for some z € (,a). Therefore, for such numbers s,
we shall see that the family f.(z) has a point bifurcation of period 6 points
at ¢ = a and a bifurcation of period 6 points somewhere in (0, a).

When the fixed number s equals the number 1/(16a) ~ .273936, it is
easy to check that the family f.(z) has a point bifurcation of period 6 points

at c=a and at ¢ = 0.

When the fixed number s satisfies 0 < s < 1/(16a), we see that, for
0<c<a,fic)-1/2= 2¢3 —4¢2 +3c+8s(c—a)(c—1)° —(2a® —4a® +3a) =
(c—a)[2(c®+cata®)—4(c+a)+3-8s(1-c)’] < (c—a)[-8a+3—8(1/16a)(1-
a)’] < .167(c — a). So, for all 0 < ¢ < a, f#(c) < 1/2. Since the map f;(z)
is strictly decreasing on [0, a], we see that the graph of y = fi(z) can have

at most one intersection point with the diagonal line. Consequently, using
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Figure 5. The graph of y = f8(z) with s = .403 and
¢ = .225 on aneighborhood of a.
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Figure 6. Enlargement of Figure 5 on the interval [.2246,.2254].

similar arguments as in the proof of Theorem 1, we can obtain that f2(z) > z
on [0,a] for all 0 < ¢ < a. This shows that when the fixed number s satisfies
0 < s < 1/(16a), the family f.(z) has a point bifurcation of period 6 points
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at ¢ = a and no period 6 points bifurcation for ¢ € [0,a).

When the fixed number s equals zero, we also note by computer ex-
periments that the first period doubling bifurcation sequence of f. has the
property of supergeometric convergence as described in [4, p.4] and that the
family f. does not have flat top.

Our families are not families of smooth maps. To give a family of
smooth maps with nontrivial point bifurcations, we can consider the family
G o(z) = a—c(1+42*) with ¢ as the parameter. The computer experiments
seem to imply that, for every positive integer n > 3, there is a number
an € (1,3) such that Gq, c(z) has a point bifurcation of least period n in

(0,a,). However, we are unable to prove it.
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