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Abstract. Let 7 be a finite distribution with Fourier transform
F (which is then an entire function of finite exponential type), let T
satisfy the two conditions stated below and let N(F) denote the set of
all £eR" such that F(£) = 0. Then the convolution equation T %u = &
in R* has at most one distributional solution # such that at infinity
u(@) = o([x|~9) for any d=n—1—1/2 for some positive integer [
depending solely on the geometric structure of N(F). Moreover, if
for each feR” there exists neR* such that [¢ — 4] <glog 1+ &)
and [F(n}| > (a + |1])-*, the only solution of the convolution equation
fulfilling the above uniqueness condition is a Ce-function for each Ci-
function 4. Denote by f; all distinct irreducible factors of F, by (&)
the set of all indices 7 of f; such that £eN(fi), and by |I(&)| the
number -of elements in I(¢). The above finite distribution T must
satisfy the two conditions: '

(i) the gradient of f; does not vanish on N(f;) for each irreducible
factor such that N(f) = ®;

(ii) the matrix [Vfi(§)], jel(£), is of rank 12(g)] for each
te N(P).

Introduction. For a distribution 7T° with compact support (i.e.
a finite distribution) satisfying the two conditions (i) and (ii) listed
in the abstract, let f be the product of all irreducible factors Ji of
F such that N(f;) # ®. Then N(f) = N(F) is an analytic manifold ;
that is, for each point & of N(f) there exist analytic local coordinates
in some neighborhood of &. Furthermore, the set J, of & such that
[Z(¢)| is a constant, where « is an analytic submanifold of N(f) and
the union of the disjoint submanifolds J,, £ =1,---, # — 1, related to
different individual values of I(¢) is N(F). Let k(£) denote “the
number of nonzero principal curvatures at ¢ of the submanifold J,”
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(defined in the next paragraph) prov1ded the manifold J, is of
positive dimension, and denote zero provided the manifold J. is of
dimension zero. Then the positive integer I in the main resuit
asserted in the abstract is the minimum of k(&) for all ¢ e N (f).
The assertion means actually that the decay rate in the direction
o =x/|x|, 0, of the solution #(|x| ®) depends solely on the
dimension of the given Euclidean space R*, on the number of “nonzero
. principal curvatures of (NN (f;) when it is embedded in N(f;), and
on the number [T (¢)| of distinct manifolds N(f,) intersecting at
ge N(f). at which the normal of one of the mamfolds N (f;) is in
the direction .

After translation, we can assume that the origin O is contained
in J. and that N(fi), -+, N(f;) contain O, say. Then near O the
manifoid can be described by (&, £7) with small & = (£crs, "5 &4
and £'(6"7) = (E1(€"), -, E(¢")) =0 (which is guaranteed by the
implicit function theorem). The manifold M; defined by the equation
EE) =0 With such £ is (#—r)-dimensional, i=1,--+, &. Denote by
& (g7) the. partial derivative of the vector (¢:(£""), &'") with respect
to the varlable £, j=r +1,--, m; by »(¢) the unit normal of M;
when it is embedded in R***'; and by L;¥P(¢”") the inner product
of &M (¢'") with v(&"). The #— « principal curvatures of M; at
£=0 are defined to be the #— r eigenvalues of the matrix [L;9%(0) 1.
“The number of nonzero principal curvatures at £ =0 of J is
defined to be the minimum of the nonzero principal curvatures of
M; at &=0 for all iel(¢). -

The method employed here is simply the symmetrlzatwn of
distributions introduced in Chen [1], and again in Chen [2], apphed
to the manifold N(f). Therefore the results derived here refine
those of Chen [1, 2] and Littman [4, 5].

The idea is applied to solve the wave propagation problem WhICh
is to appear in another paper.

_ The organization of the paper is as follows The assumptions
and main results are given in the first section; the determina,tioh of
the decay at infinity forms the second section; the third section
‘contains the idea of symmetrlzatlon, the corresponding representa’uons,
and the behavior at infinity of inverse Fourier transforms of sym-
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metrized distributions; in’ §4, we determine the decay rate which
yields the uniqueness condition and we then construct the finite
smooth solution satisfying the condition; and finally we give some
remarks about the uniqueness condition independent of the geometric
structure of N(F) and the references.

: 1. Assumptions and Main Results. The notation and terminology
are based on [1]. Denote by € the class of entire functions of finite
-exponential type satisfying the following two conditions:

(8 i) the null set N(f) = {£c R 1 f(€) =0} of fis non-empty:
N(f) # o; ,

(€ ii) .the gradient of f at each point & € N(f) does not vanish:
V(&) #0.

As for the classification of €, let € (%) denote the class of functions
f € § such that

(€ (%)) k = Inf k(&) (e N(f)),

where k() is the number of the nonzero Pprincipal curvatures of
N(f) at ¢ :

For an entire function F(z) of finite exponential type, let f be
the product of its distinct irreducible factors f;. Denote by I(g),
£eN(f), the set of the indices j of all irreducibie factors f; with
£eN(f;) and by |I(£)| the number of the elements in I(&).

DEFINITION 1.1. A distribution T'€ Q)" belongs to & (, ) if and
only if
(C (% Z) i) T has compact support; :
(8(%, 8) ii) if F denotes the Fourier transform of T, then
k= min{%; : fye € (k;) are irreducible factors of F};

(€ (% 2) iii) for each £e N(f) the matrix [Vfi(e)l, jeI(e), is
of rank [I(¢)] (and hence |I(£)| < — 1);
(8D iv) I=inf{E() : e N(A)} where (&) is the number
of the nonzero principal curvatures of N N(f;), jel().

Consider the convolution equation

(1.1) , L T*u=¢‘, Del.
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TuroreM 1.1. For Te G (k 1), the convolution equation has at
most ome solution satisfying the condition at infinity:

(1.2) u(z) =o(lz|"%)  for any d>n—1—1/2.
Let us recall some ideas from L. Ehrenpreis [3].

DEFINITION 1.2. For T'e ()’ with compact support, then T is
said to be inmvertible if and only if its Fourier transform F satisfies
the property: for each point geR" there is an e R* such that
16— g <alog (1 + |€]) and |F(n)| = (e + l71)~% The function F
is called slowly decreasing.

TurorReM 1.2. For an invertible distribution T e (& 1), k>0,
and the inhomogeneous term ©eCy(R"), a continuous solution u of
the equation (1.1) belongs to the class C¥ (R*) if wu satisfies the
uniqueness condition (1.2).

Let Te € (%, I) and let f be the corresponding function as before.
Let #=%0 be a nonnegative function of the class CP(R*) with value 1
at certain points & in N(f), where k(¢) =7 in condition (€ (R, 1) iv).

TuEOREM 1.3. The inverse Fourier iransform u of n has the
following asympiotic behavior at infinity,

(1.3)o u(x) = O(lze|™™) uniformly in direction x/lxl ;
(1.3), u(z) #Zo(lx|™™)  for some unit vector x/lxl,

for some m=>1/2.

9. Fourier Transforms of nonnegative surface-carried measures
and proof of Theorem 1.3. As a key point in this and the next
sections, let us recall the well-known theorem on inverse functions

(e.g. H. Whitney [8, p. 681).

TuroreM 2.1. Let F be an s—smooth mapping (s>1) of the open
sel 2 c R* into R* and suppose the Jacobian Je (Do) 50 at poe L.
Then there are neighborhoods U of po and U’ of f (po) such that
F is a one-to-one mapping of U onto U’ and G = F-', considered in
U’ only, is s—smooth, with Je(f(Ho)) = (.

It suffices to consider the case |I(£)|>1 with & = & in supp .
Because the arguments are similar for the general situation, let
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us restrict the discussion to the case that I(&) = {1, 2}; i e,
&eN(fi),i=1, 2 and &¢N(f;), j#1, 2. Assume further that the
normal of N(f;) at & is w,, say w,= (1, 0,---, 0); i e (&)
= (1, 0,---, 0) and that |7(£)] <1 outside some small neighborhood
U of & and Difi(£) #0 on UnN(f). By condition (€ (% 1) iii),
#:(é0)) > wo and then we can assume D:f:(£) %40 on UnN(f).
Because of the partition of unity related to the compact set supp z,
we assume supp #C U, Theorem 2.1 implies that

n=(f1(&), £2(6), &), 7 =& = (&, &)

is a C*®-diffeomorphism on supp # with the Jacobian J(a, &) 7—0
and the inverse mapping

E= (&, &, 7'), &= E(m, ney 7"), &y = Eo(m1, 72, ')

is C*-diffeomorphic and J(¢, 7) 4 0.

Let 9;eCy(U) be such that 1>0;>0, let ®,=1 on {fesupp s :
[I(£)| =2} and ©@;= 0 outside a small neighborhood of the set, and
let 1+0,=1 on U. Then |I(¢)| =1 on supp @,NN(f). Then with
r = po,

u(z) = fe’;"""”ﬂ(ﬂ) don
= 2fe‘””'” (20:) (n) don = uy(2) + ws () .

Since the estimate at infinity in o for #i(pw) follows dlrectly from
the argument for #:.(p®), we can assume that u(x) = us(2) or
#=p0;, say O,=1. | ‘

From (@ (%, J) iii) it follows that Np=N(fi)nN(f:) is (n—2)-
dimensional at & and its local coordinates are

(2.1) €= (&(0, 0, 1), &(0, 0, 7), 7).

Then &= (a+&1(0,0, 2), £&(0, 0, 7), 7°) and &= (&0, 0, 7'),
a + &(0, 0, 7°), 2”) describe some neighborhoods Uz, U; of Ny on
N(f:) and N(f.), respectively. Let z: be C3(U;) functions, 1>2:>0,
1+ 2=1 on supps and let suppz; and supp z, be described by
€=(£1(0,0,7'),a+&:(0,0,7'),7) and &= (a+£(0,0,7), £(0,0, 1), 7'),
respectively. Then

u(z) = Zfe”’”’”(lzﬂ)(n)dm, i=1, 2.



6 KUANG-HO CHEN [June

Since the arguments are the same for both cases, we consider only
one of them, say the one with %;, and dencte the corresponding
function by #:(x) and use x for 1.

By Taylor’s formula, with p = &,

6(7") = &.(0, 0, 7)
= 0(p) + V' O(P) + 0" + D aijnin; +OU%),

where V' is the gradient with respect to 7. On Niu, fi(6(7),
52(0, 01 77,)9 77’) = 0, i=17 2, and therefore -D]ﬁ(ﬂ’) = —D]fl(E)/lel(E)
and ’
(22)  0(x) = fi(§) — V' fi() « #'/Dy fi(D) + 2 a@ijmin; + O(nl®).
Let us set ,
(2.3) g(n’) = 6(9") — fo(®) + V' f1(P) = 2'/Di /1(P) .

Let 's; be in the direction of the jth nonzero principal curvature of

Ny at p, j=1,---, #, where £ is the number of nonzero principal
curvatures 1; of Njz at p. By a Morse lemma [6, p. 172],

(2.4) gl ) = Dal)s] A<j<n)

with s= (si,-++, S,) and with some suitable choice of ¢= (fov1, " ) Enm2)

such that the Jacobian J(7, (s, )) of the transformation 7" — (s, #)
is 1 at p. On a sufficiently small neighborhood U of p, J(¢, 7) >1/2;
say U cC supps. Without loss of generality, we can assume
supp 2xC {(s,8) e U : |t]| <e} for some ¢>0. Since principal curvatures
are continuous, we can assume that on supp (r#) the nonzero prin-
cipal curvatures of Ny do not change sign. Let d* and d- be the
number of positive and negative principal curvatures of Ni. nsupp(ry),
respectively, and let K. (s, ) be the product of the # nonzero prin-
cipal curvatures. Then we have the following estimate.

PROPbSITION 2.1. For x = pw approaching infinity,
a(60) = (#(200n) ) (1 + )4 (1 — i)~ exp {ipos /i(D)}
(25) . ffﬂz(t) exp {ipw:(o + f2(2(0, £))) + dpw’ + 77 (0, 2)
+ dpoy 3 D; fo(5) 2;(0,8)/Dufi(p)}dodt + O(p~+D1)

where the summation runs on j=3,--+, n and
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(26)  me(t) = (e (70, 1)) J(x', (0, 8))/1K.(0, £)]2.
~ Proof. From (2.2), (2.3) and (24),

u1(00) = exp {ipfl(p)}ff!ﬂ(p, t, 0)dodt, |t|<e,

where | |

V(o 1, 0) = [exp {ivos(o + falnls, 1))

| +ipo « 7' (s, t) + dowr 252;(2) s}y (s, 1) ds
with
Vs, 8) = (xe) (7' (s, 8)) J(7', (s, 1))
»exp {—io 2D; f(p) 2;(s, 1)/Di £($)} .

For each fixed ¢, by the arguments in W. Littman [4, p. 768] and [5,
p. 454] for the case of nonzero Gaussian curvature,

(o, 8, 0) = (z(2pw,) )= (exp {iows(s + f2(7(0, 2)))
+ 200" 77(0, )}) (1 + 2)4 (1 — )2~ v (0, £)/1K. (0, ¢} |2
+ 0(0—(x-'r1)/2) , .

when p— co. This is the assertion of the proposition.
COROLLARY 2.1. As o = w,,
27)  ulow) = c(p) 07" exp {ipw « p} + O(p~*+b'2)
when p— c© with c(p) 0.
Proof. w=(1,0,---,0) yields @1=1, @,=0, and " =0. Hence
from (2.5)
(28)  ¢B) = (/2 1L+ )" (1= [wmyadt, (111 <e).

Since K. (0, £) -0, we choose U so small that [ K. (0, )| > & for
some &. Since J(7°(0, 2)) >1/2 and z is strictly positive on U,
(2.6) implies that c(p) #0 if U is sufficiently small. This completes
the proof of the corollary.

COROLLARY 2.2. If o is far away from o, then when 0 — O
(2.9) #{owy) = O(p=49) for any d>0.

Indeed, the assertion follows from the estimate (25) and integra-
tion by parts. '
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Proof of Theorem 1.3. Since supp ¢ is compact, the partition of
unity and the assertions in Corollaries 2.1 and 2.2 yield the assertion
(1.3) 0. Let %= owe with o, in the direction of normal of NN,
jeI(¢) at & where the number of the nonzero principal curvatures
of NN(f;) is I Since suppx is compact, the set of such points ¢
is bounded. The partition of unity related to the closure of the set
implies that there is a finite number of constants ¢(p;) 0 in (2.8)
corresponding to the points p=p; in the proof of Proposition 2.1.
Because c(p;) exp {ivw » p;} is almost periodic, we have the assertion
(1.3),. This completes the proof of the theorem. '

ReMARK. If |I(&)] =1 on N(f), the problem is considered by
K. Chen [1] and [2]. In this case, /=% Due to the assertion in
(1.3),, the assertions in [2] are true if we replace the number # —1
by %k In particular, Theorems 3.2 and 44 hold. On the other hand,
each term in the summation of the second estimate of Lemma 2.3
in [1, p. 461] should be in the form (2.8).

3. Symmetrization of distributions corresponding to a manifold.
For a function fe €& we proved in [2] that N(f—e¢) forms an (#—1)-
dimensional C®-manifold embedded in R* for each ¢, lgl <e¢, for
some ¢> 0. By the same arguments, applying the preceding theorem,
we see that the same assertion holds for an entire function f of
finite exponential type such that each irreducible factor fie€ is of
multiplicity one and satisfies condition (€& (%, £) iii) with f—e replaced
by f,=T1(f;—q), lgl <e with small ¢>0. In particular, it is true
for fe §(k I) with multiplicity one for each factor; denote such a
class by €i(% 4). i

For b= {by,- -", b,), 0<b; < oo, with respect to the rectangular

set
Rb: {EER”: lElI Sbiy i: 1:""7 n}a

let Wo.., Vs,. and Us,. be open sets such that N, (f,) = N{f,) nClL(V5s,.}
is 2 C*-manifold for each ge{—s, ¢l

CI(Wb,e) CVb,e; CI(Vb,e) C Ub‘,ea Ci(Ub,E) CRIJ -

Let Zs; #; be two C?(R*) functions such that 0<r, <1, z.=1 on
Ws,., supp ZsC Vs, and such that 0<7z, <1, ;=1 on Cl{Vs,.) and
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supp 2: CUs,.. For each ®eL.(R*), let O%(q) denote the function
in ¢ equal to the integral of x;® along the C®-manifold Ni(f,) if
lgl<e and equal to 0 if lg|>¢ and let #49(¢) be equal to X (E)D*(f,(£))
if £eUs,. and equal to 0 otherwise. Under suitable choice of W, .,
Vs,. and U,,., if follows from the theorems on inverse functions
and the Heine-Borel theorem, that 0%*c CP(R') and 0%eCP(R*) if
®eCyP(R"), with sufficiently large & (see [2]). We say that (0*)@h
is the (1-dimensional) symmetvization of @ corresponding to the Dair
(f, b). For any distribution ze )’ with supp 2 € Cl(V3,.), we define
the symmetrization of 1 as follows

(45, @) = (n, OF)

The corresponding 1-dimensional symmetrization is dencted by u#.

For the purpose of application to convolution equations, we shall
consider the representations of u%. and of the inverse Fourier trans-
form #* of x% from which we can determine the decay at infinity
of #% and compare it with that of #, the inverse Fourier transform
of #. All these representations have been considered in [1] or [2]
for the restricted case that Vf(£) =20 on N (f). Therefore we outline
the results and the corresponding proofs, and in particular point out
the related changes. :

LEMMA 3.2. Let u be a distribution with support contained in the
closure CL(Ny(f)) of Ny(f). Then its symmetrization ©% s a linear
combination of Dirac-delia measures on Ny (f), :

w= T GD4 ) () with C=-=D"(, 4 .

0<h<n h!
where Dirac-delta measures are de fined by
((D"8)s (f), @) = (D*5, %), deCP(R").

The proof is the same as for Theorem 1.2 in [1] or [2].

For convenience, denote by F € .(% I) the class of the Fourier
transforms of all elements in € (%, 7).

With the same arguments as in [2, Theorem 2.3], the representa-
tion in the previous theorem vields the following crucial property of
the decay at infinity of the inverse Fourier transform of a sym-
metrized distribution.
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LeEMMA 3.3. If the Fourier transform v of a distvibution u satisfies
the condition in Lemma 3.2, then the inveyse Fourier transform u® of
the symmetrization v® of u has the following behavior at infinity

wi(z) =0(lxl™™) uniformly in directions x/[xl;
ut(x) #=o(lzl ™) for some direction o = x/\xl,
with seme m > 1/2, provided u® 0.

For fe GG.(k 1) and for &eN(f), condition (C(k 7) iii)
implies that for each small ¢ there isa £eN(f,) in a neighbofhood
of &, |I(&)1=I|I(&)I. Combmmg this Wlth the arguments in [1,
Lemma 2.2], we have : -

LEMMA 3.4. For a function [ € FC.(k ), there is a posilive
number ¢ >0 such that f,e FC (%, 1) for each g, lgl <e.

Let us set Ei(xz, &) = x5(&) eine, Then for each z e R*,
E,(z, -)eCs(R") and Ef(z, +), Ef(x, ) are defined. With Wiz, v)
as the inverse Fourier transform of Ei(zx, ¢), due to the change in
the definition of the symmetrization and the corresponding modi‘-
fication in the proof of Lemma 2.1 [1], we have

Wiz, v) = [ Ef(w, ) EF(v, ¢) dg = Wy, 2).

Applying the results of Theorem 1.2 to E¥ (-, g) through the repre-
sentation in Lemma 3.2, the arguments in the proof of Theorem 2.1
[1] with the condition (G (&, 1) iii), in particular Lemmas 2.3 and
2.4, prove the property at infinity. of W, function as follows:

LEMMA 35. With feFC€.(%k 1), k>0, for any mteger p>0
Wz, y) = O(lz| 27" lylf’ ”2[1.31 + 1y117Y,
when (x, y) approaches infinity.

Using this result with the argument in [1, Theorems 3.1 and 4.1],
although we can prove another representation theorem for a wider
class of the symmetrized distributions, we state the restricted result
which is sultable for our purpose here.

THEOREM 3.6. For a function f e FC (k1) with >0, if the
support of the Fourier transform u of a distribution u is coniained
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i Ny(f), the inverse Fourier transform u® of the symmetrization pb
of nr with respect to N;(f) has the representation

u(x) = fRﬂu(y) Wiz, y) dy ;
Surther, when x—> co,
| u(2) = o(|x|-1-1-m) |

provided u(x) =o(lx|-") for some m > 0.

4. The Liouville type problem in comvolution equations—proofs
of Theorems 1.1 and 1.2. To derive the uniqueness condition (1.2) it
suffices to consider the case that the solutions to equation (1.1) are
entire functions of finite exponential type and 7T'e §.(%, [). Indeed,
we are considering the homogeneous equation

(4.1)’ T+xu=0,

with # fulfilling the condition (1.2). For a large finite positive vector
b, let function r;e Cy(R") satisfy the conditions: 0<r, <1 and
supp «3 € W;,. as constructed in §3. With 1; and w#; as the inverse
Fourier transforms of x; and of the product of «; with the Fouriér
transform x of #, respectively, there are relations:

Txupy=20
with #; satisfying condition (1.2) and -
Uy = U*Xp.

Denote by F the Fourier transform of 7T, by f the product of all
distinct irreducible factors of F, and by Ty and S the inverse Fourier
transforms of f and ¢ = F/f, respectively. Set v = S+, Then
we have

T1*1)———‘0

with Tye Q4(%, 1), since the Fourier transform of v is =x; gui with
an entire function ¢ of finite exponential type implying x;¢ge Cy{R?),
where v is an entire function of finite exponential type satisfying
the condition (1.2). Repeatedly using the uniqueness condition on
the general equation (4.1), we have the desired assertion.
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Assume now that Te §1(k, I) and that # is an entire function
of finite exponential type < b satisfying condition (1.2). ‘

Let #" be the inverse Fourier transiorm of the symmetrization
z8 of u, the Fourier transform of #, correspending to the pair (f, 8).
Then the assertions in Lemma 3.3 and Theorem 3.6 with property
(1.2) of # imply #® =0, and so in particular #5(0) = 0, because
d>n—1—1/2 implies #—1—Il—d<—1}/2<—m. As in the
proof in [1, Lemma 6.1], we have #%(0) = #(0); and therefore
#(0) = 0.

Due to the translation property of the convolution of distri-
butions, the translation #, of # by 7€ R" is a solution of - (4.1)
fulfilling the property (1.2) for each 7. Hence the preceding result
for # implies that #,(0) =0; ie u(y)=0. We have #=0. This is
the end of the proof of Theorem 1.1.

The proved result reduces the problem to derlvmg a solution
ue CP(R*) of the equation (1.1) if ®eCP(R"). But the construction
of the solution # is already given in [1; Theorem 6.1], if we replace
Lemma 5.1 there by its extension in Lemma 4.1 here, with the help
of the equivalent condition of invertibility stated at the end of the
section from Leon Ehrenpreis {3] '

With the same proof as in [7, p. 107], we have

LeMMA 41. Let g be an irreducible entire function in the class
G and let V be the set of zeros of ¢(z) in C". Let f be an entire
SJunction on C".

Assume that the function f/g defined in C"—V can be extended,
as an holomorphic function, to an open sei mtersectzng V' then f/g
can be exiended to C* as an entire function.

THEOREM 4.2 (EERENPREIS). A mecessary and sufficient condition
for a distribution T with compact support to be invertible is that, for
" any entive function ¢, the inverse Fourier transform of fg belonging

to C*(R") implies that the inverse Fourier transform of ¢ is in
Cy(R"), where f is the Fourier transform of T. ‘

5. Nonmgeometric condition. The facts we wish to mention here
are a consequence of our main results or of results in [1] and [2]



1974] = DETERMINATION FOR DECAY AT INFINITY 13

which we did not mention; but they are important in applications,
due to the simple conditions for the equation.

By & we mean the class of all distributions: T'e (7' with compact
support such that each irreducible factor belongs to the class €
constructed in the first section.

THEOREM 5.1. For Te§, the convolution egquation
(5.1) T+u=0, 0ecC(R"),
has only the CF(R*) solution satisfying the condition at infinity
(5.2) u(x) = o(|x|-*-br) ;
Jurther w =0 provided © = (.
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