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Abstract. We study a two point boundary value problem
M =R = 55" =B, 1(0) = £(0) = f'(1) = F(1) ~1 =0,

which arises from the study of fluid injection and suction through
a porous wall in a vertical channel. Various types of solutions
and multiple solutions are found numerically. All possible so-
lutions are classified by studying an equivalent problem. More-
over, we verify that for every real R the problem possesses at
least one solution and the solution is unique if R > 0.

1. Introduction. We study the following two-point boundary-value

problem
(1) " =R -F"=8 (=d/dy)
@) f0)=f(0)= f(1)=f(1)-1=0.

The given problem arises from a similarity reduction for the Navier-Stokes
system which was applied to describe a fluid injection or suction through

one porous wall of a long vertical channel. The fluid is injected or sucked
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with a constant velocity V in the y-direction through the porous wall at
y = d (or 7 = y/d = 1.0), where d is the thickness of the flow channel,
and, strikes another vertical impermeable plate at y = 0 (or 7 = 0.0). It
flows, due to the action of gravity along the z-axis, out through the opening
of the plates. Assume that the dimensions of the plates are large so that
the edge effects can be ignored. Let (u,v) be the velocity components in
the direction (z,y), respectively. Utilizing the equation of continuity, the
velocity components may be written in terms of a potential function f(7) by
u = Vzf'(n)/d and v = -V f(). Then equation (1) is obtained. Here § is
an integration constant and R = Vd/v is the crossflow Reynolds numbers.
Positive (negative) R denotes the fluid injection (suction).

Preliminary studies, Wang and Skalak [1] and C. L. Huang [2], reported
only a few data of R’s at which (1), (2) possesses a solution. In this paper,
we apply the continuation scheme to give a delicate numerical study in
Section 2. A family of solutions is obtained and multiple solutions are found
at some negative R’s. In Section 3, we first classify all possible solutions for

‘the problem (1), (2) and then obtain a connected set in the R — 3 space on
which the solutions exist. Our results show that (1), (2) has at least one

solution for every real R. Moreover, the uniqueness is also verified if R > 0.

2. Numerical results. It is clear that the problem (1), (2) is over-
defined since it is a third order system but consisting of four conditions.
Then, an additional equation either R’ = 0 or 8/ = 0 is added that the
numerical solvability of (1), (2) becomes reasonable. In fact, (1), (2) has |
a unique solution fo(n) = 3n* — 2n® when R = 0, which yields § = —12.
Therefore, (R,3) = (0,—12) is a proper choice of starting point for the
continuation scheme.

For numerical computations, the code BVPSOL[3]-[5], with local ac-
curacy EP5=1.0E-8, is chosen and implemented with the adaptive stepsize
control scheme on CYBER 170/720 at NCTU. By adding 8’ = 0, a family
of solutions is found for R vafying in (—14.6169,291). Moreover, replacing

B' = 0 by R' = 0, we have successfully obtained a family of solutions for 8
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varying in an interval (—765.747,2310.56). The termination of the continu-
ation scheme by varying 8 is due to the stiffness. Selected data are shown
in Table 1 and the corresponding bifurcation diagrams are plotted in Fig.
1(a)-1(c). It is interesting to point out that the curve in Fig. 1(b) exhibits
two turning points which indicates the occurrence of multiple solutions. It
is also found numerically that (1), (2) possesses two types of solutions with
either f > 0-or f changes signs once on (0,1], as shown in Fig. 2(a), 2(c)
respectively, when R crosses —13.119. Furthermore, by observing Fig. 1(a),

1(b), we may give the following conjectures:

C-1. For all real R, there exists at least one (3, such that the problem (1),
(2) has a solution.

C-2. The problem (1), (2) possesses at least two types of solutions.

C-3. There erist constants R, and R* with R, < R* < 0 such that there
ezist at least three different 3's such that the problem (1), (2) has
a solution for R € (R.,R*). Moreover, (8 is unique for all R ¢
(R4, R).

Note that the values R. and R* are expected to be close to —14.6169
and —14.1, as shown in Table 1, respectively. We shall verify a portion of

the conjectures in the next section.

3. Mathematical Result. In fact, the existence of solutions may
be verified by applying the Leray-Schauder fixed point theorem at some R.
Instead, we classify all possible solutions by studying an equivalent problem
to (1), (2). Then, the existence of solutions is a direct consequence of this

classification.

3.1. Classification of solutions. Recall that (1), (2) has a unique
solution when R = 0. We now assume that R # 0 in the following study.
Let y = fn and g(y) = Rf(n)/¢, for given nonzero R, where £ is a positive
constant which is to be determined. Then the problem (1), (2) is equivalent

“to
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(3) | g" +gg" - ¢ = RB/C

@) 9(0) = ¢'(6) = ¢'(0) = 9(O) — R/E = 0.

Let ¢"(0) = B and ¢"(0) = C. Now, by assuming values of B and C,
one can study an initial value problem consisting of equation (3) and the

conditions

(5) 9(0) = ¢'(0) = ¢"(0) - B =0.

For the simplicity, we denote the unique solution g(y; B,C) of (3), (5) by
g(y). Suppose that g'(y) meets the y-axis at some positive a.. Then, by
seting £ = a., (1), (2) has a solution when R = a.g(a,) and 8 = aiC/R.
Meanwhile, the qualitative behavior of f can be obtained directly from g. In
fact, (3), (5) has only the trivial solution if B = C' = 0, hence, B*4+C%*>0
is further assumed. Moreover, let [0, M) be the corresponding maximal
interval of g(y) for some 0 < M = M(B,C) < co. Now, a crucial property

of g™ can be obtained as follows.

Property 1.1. Let B? + C? > 0 and g(y) be a solution of the problem
(3), (5). Then g (y) > 0 on (0, M).

Proof. Differentiating (3) twice, we obtain that
(6) 9 = g'g" — gg",
(7 | g® = (¢")* - gg¥.
If g"(0) = B # 0, then ¢(0) = 0 and g¥) > 0 initially. Suppose d; is the
first positive zero of g). Then ¢(®)(d;) < 0. From (7), ¢" and ¢® vanish
at y = dy. By differentiating (7), we get that
(®) g = 2¢"g" — g'g™ — g¢'¥,
9) g™ = 2(g") + g"g - 24'g®) — g¢©®.

Then, ¢® = 0 and ¢{) > 0 at y = dy. Suppose g"'(d;) = 0. Then
9(y) = g(d1) + ¢'(d1)(y — d1) solves (3), (5) uniquely and this contradicts
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the assumption B2+C? > 0. Therefore, g"'(dy) # 0 and ¢(")(d;) > 0. But it
implies that g() is nonnegative in a neighborhood of dy and this contradicts
to the definition of dy. Hence g(*) is positive for y in (0, M).
- For the case B = 0, we can apply similar arguments and, therefore,
omit the proof.

Note that solutions g(y) can only blow up by tending to +o0 if M <
oo. Also, from Property 1.1, g is increasing and g” is convex on (0, M).
Therefore, the classification can be given by choosing the pair (B, C) from
the sets

D, ={(B,C),B>0,C >0and B,C # 0},
D, = {(B,C),B < 0,C > 0},
D3 = {(B,C),B<0,C <0}

and

D, = {(B,C),B > 0,C < 0}

respectively.
Suppose (B,C) € D;. Then ¢", g™ > 0 at y = 0. This implies that
g" > 0 on (0,M) and g' possesses no positive zero. Hence, we have the

following theorem.
Theorem 1.2. For (B,C) € Dy, ¢'(y) has no positive zero.

Suppose (B,C) € D,. It is clear that g” < 0 initially and, then g” has
exactly one positive zero b;. Also ¢'(y) is convex on (0, M). Thus ¢’ has a

unique positive zero a; with a; > b; and we have the next theorem.
Theorem 1.3. For (B,C) € D,, ¢'(y) has ezactly one positive zero.

By éssuming { = a;, we have that g(¢) < 0-and it leads to a solution
f of (1), (2) with the corresponding R < 0, § < 0. In fact, f satisfies that
f>0, f" < 0on (0,1], as obtained on branch (i) in Fig. 1, and we denote
it be the type I solution. .

Now suppose (B,C) € D3. Then g, ¢' and ¢g” < 0 initially.
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Theorem 1.4. For (B,C) € D3, g'(y) has ezactly one positive zero.

Proof. Suppose g" never changes signs. Then g, g' and g¢" are all
negative (0,00). Now, from (7), g® > 0 for y > 0. This shows that
g" is convex and increasing. Then, g"' must cross the y-axis and it is
a contradiction. Therefore, " has a unique positive zero, say ¢, and it
implies that ¢g” has a unique zero b with by > ¢1. Also, g' is convex and

increasing for y > b2. Then g’ has a unique zero a; with az > bs.

Note that the corresponding (R, ) satisfies that R < 0, > 0 since
g(az) < 0. Also, the corresponding solution f of (1), (2) satisfies that f > 0
on (0.1] but f" changes signs once as the ones found on branch (ii) in Fig.
1. Moreover, the property of f" is different from the ones of type I and,
therefore, we designate such f to be the type II solution, as shown in Fig
2(b).

Now suppose (B,C) € Dy. Then g" >0, ¢" <0 aty=0and g >0
initially. '

Theorem 1.5. For (B,C) € Dy, ¢'(y) has either no or ezactly two

positive zeros.

Proof. We divide the proof into the following cases.

Case 1. g¢" never changes sings. Let bs be the first zero of g".
Then ¢’ has a unique zero a3 with ag > b3. Again, g has a unique zero yo
with yo > a3. But from (7), ¢ is convex for y > 9. Then g" must have
a zero and this is a contradiction. Hence, g” > 0 for y > 0 and g has no
positive zero.

Case 2. g" changes signs. In fact, "’ can only change signs once,
say at y = cs. Then g” reaches its minimum at y = ¢;. Also, from (6),
g'g" > 0 at y = ¢;. Suppose g”(c;) > 0. Then g, ¢’ > 0 on (0,M).
Suppose g"(c;) < 0. Then g'(c;) < 0 and g" has exactly two zeros at by,
b5 with by < ¢ < bs. Obviously, ¢'(b4) > 0 and this implies that g' has
a unique zero a4 in (by,c). Also ¢’ is convex for y > bs. Then g’ has the

second zero as with as > c;.
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However, Theorem 1.5 gives no direct evidence for existence of solutions
to (1), (2). In fact, there exist regions in D4 on which ¢’ has no and two

zeros respectively.

Theorem 1.6. Under the hypotheses of Theorem 1.5, there ezists a
negative number N such that
() if (B,C) € Df = {(B,C),C < NB*/3}, then g'(y) has ezactly two
zeros;
(i) if (B,C) € Dy = {(B,C),C > NB*/3}, then ¢'(y) has no zero.

Proof. We first show that DZ is not empty. From Theorem 1.4, we
have that g’(y;0,—1) has a unique zero a;. Let ¢ = |g'(a2/2;0,—-1)|/2.
By the continuity on initial data, there is a sufficiently small § > 0 such
that [¢'(y;0,—1) — ¢'(y; B, ~1)| < € on [0,a2/2] provided that 0 < B < §.
Then g¢'(az/2; B,—1) < 0 and ¢'(y; B, —1) has exactly one zero in {0, a3/2)
since g'(y; B, —1) > 0 initially. Then, Theorem 1.5 implies that g’ (y; B,-1)
possesses two zeros.

To prove that D is not empty, we apply the fact that ¢"(y;1,0) > 1
and ¢"'(y;1,0) > 0 for y > 0. By fixing a § > 0, one can choose a § > 0
such that ¢"(y;1,0) > 0 on (0,%) and ¢"'(7;1,¢) > 0 provided that —§ <
¢ < 0. This implies that g"” > 0 at the first zero of ¢'"’. By applying similar
arguments as in the proof of Theorem 1.5, ¢'(y; 1, ¢) has no positive zero.

To obtain the desired result, we must explore some properties of g first.
It is clear that Ag(Ay; B/A3,C/)*) also solves (3), (5) with the pair (B, C).
This yields the “homogeneity” property of g by

(10) 9(y; B,C) = Ag(Ay; B/3*,C[X%),
for all A > 0. Then g(BY3y;1,7) = B-13g(y; B,C) if r = CB~%/3. Let
S = {¢;¢'(y; 1, ¢) has exactly two zeros}.

The desired result follows immediately if S = (=00, N) for some N < 0.
In fact, there exists a ¢ € S such that ¢'(y; 1,¢) has two zeros at a@,a with

‘@ < @ since § is not empty. Let ¢ = min{|¢'(g;1,¢)|, |¢'((a + @)/2,1,2)|,
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l9'(@ + €1,2)]}/2 where & < @+ € < M. By the continuity on initial
data, there is a sufficiently small § > 0 such that |g(y;1,¢) — ¢'(y;1,¢)] < €
on [0,@ + €] provided that |¢ — ¢ < §. This implies that ¢'(a;1,¢) > 0,
g'((@+ @)/2;1,¢) < 0 and ¢'(@+ ¢;1,¢) > 0. Hence g'(y;1,¢) has exactly
two positive zeros and S is open.

Therefore, there is a ¢ such that g'(y;¢,—1) has two zeros provided
0 < ¢ < & By homogeneity (10), ¢'(y;¢,—1) = ¢2/3¢'(c'/3y;1,—c*/3) for
¢ > 0. Then —c*/3 tends to —oo as ¢ tends to 0F. It is clear that S must
contain an interval (—oo, ¢*) for some ¢* < 0. Suppose S is not connected.
Then there is a component (¢é;,é) C S, é& > —oo. In fact, g(y;1,¢;) and
g(y; 1,é;) must be defined on (0,c0). Suppose either M(1,&;) or M(1,¢;)
is finite. Then, ¢"’ will blow up at M. From the arguments in the proof of
Theorem 1.5 and the continuous dependence on initial data, g’ have no zero
in the neighborhood of & or &. This is a contradiction. Hence, g"(y;1,¢1)
and ¢g"(y;1,¢&;) are positive on (0,00). By the continuity on initial data, we
get that
(11) lim b5(1,¢) = 00 and lim bg(l,c) =00

e—&t c—&5

where b3 is the first zero of ¢"(y; 1, ¢c). We shall show that this never occur.

Consider the variational equation of ¢"(b3(1,¢);1,¢)=0,c€ S,
(12) " (ba(1,¢);1,¢) + " (b3(1,¢);1,¢)b3(1,¢)/dc = 0.

where ()(y;1,¢) = 890 (y; 1,¢)/0c, i = 0,...4. Some qualitative proper-

ties of ¢ can be obtained from the next lemma.

Lemma 1.7. Let a and b be the first zero of g' and ¢" respectively.
Then " > 0 on (0,b) and ¢" > 0 on (0,a).

Proof of Lemma 1.7. Differentiating (3) with respect to ¢, we obtain

the following variational equation

(13) (P”, + (Pg” +(,0”g _ 2gl()ol - 1
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subjects to ¢(0) = ¢’(0) = ¢"(0) = 0. It is clear that ¢(¥ > 0 initially,
i =0,...,3 since ¢"'(0) = 1. Suppose &3 is the first zero of ¢ and &3 < b.
By differentiating (13) with respect to y, we get that

(14) ‘P(4) +99?'I’ + (ngm _ glI(pI _gI(PII = 0.

Then ¢ (£3) > 0 since g™ < 0 and ¢”, ¢' > 0 at y = £&. This contradicts

"

the definition of £3. Hence ¢ > 0 on [0,b]. Suppose &; is the first zero of
¢" and b < & < & < a. Now from (13), we have ¢"'(£;) > 0. This yields a
contradiction again and completes the proof of Lemma 1.7.

Now, from (12), we get that b3(1,c) is increasing on (&;,é;) and this
contradicts assertion (11). Hence S is connected and there must exist a

negative N with § = (—o0, N). This completes the proof of Theorem 1.6.

‘Note that f(7), whicl corresponds to the first zero of g', must satisfy
that R > 0,8 < 0and f > 0, f" < 0 on (0,1]. We denote such f as the
type III solution and it is obtained from branch (iii) in Fig. 1(a). Moveover,
the second zero of ¢’ leads to a type IV solution f, as obtained from branch
(iv) in Fig. 1(a) and shown in Fig. 2(c), which satisfies R < 0 and 8 > 0
and f changes signs once in (0,1]. In fact, the classifications yield the first

main result:

Theorem A.
(i) For every R >0, 8 > 0, the problem (1), (2) possesses no solution.
(ii) The problem (1), (2) can only possess three different types of solutions
which consist of either (a) f > 0, f" < 0, (b) f > 0, f changes signs

once, or (c) f changes signs once in (0, 1].

3.2. Existence of solutions. In fact, a(B, C), R(B, C) and 5(B, C) are
C? functions in (B, C) since ¢g” never vanishes at positive zeros of ¢'(y; B, C).
Let #B,C) = (R(B,C), B(B,C)) for (B,C) € Dy, D3 and #*(B,C) =
(R%(B,C), B*(B,C)) where the (R*, 3%)’s are obtained from two positive
zeros at < a” of ¢'(y; B,C) for (B,C) € Df. Then, (1), (2) may possess
-type I, II, IIT or IV solutions by choosing (R, ) from the following sets,
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respectively,
Iy = {f(BaC);(B7C) € D2}7 :
I = {5(-3) C); (B7C) € D3}7
I3 = {#*(B,C);(B,C) € Df}
and

Iy = {7(B,C);(B,C) € Df}.
Furthermore, by the homogeneity (10), it is clear that
(15) Aa(B,C) = a(B/X3,C/\*)
and, consequently,

(16) R(B,C) = R(B/X*,C/\"),

(17 B(B,C) = B(B/X*,C/)*)

for (B,C) € D3, D3 and DZ’ This enables us to obtain existence of solutions

in the following section.

3.2.1. Type I solutions. By the homogeneities (16), (17), I'; can be
written as 'y = {£ = (-1,7) : 0 < r < o0} or equivalently Ty = {#(-1,7):
0<r<1}U{F(w,1): =1 < w < 0}, where r = C/B*/3 and w = B/C3/*
respectively. Then the connectness of T'; is clear. Also, the necessary and
sufficient condition for existence of type I solutions can be obta,inedvby the

next theorem.

Theorem 2.1.1. The problem (1), (2) has a type I solution if and only
if (R,B) € T1.

Proof. The verification of the sufficient condition is easy since, for each
r € [0,00), f(n) = a.(—1,7)g(a.(-1,7)n;—1,7)/R is a solution of (1), (2)
with R < 0.

Conversely, let f be the desired solution, i.e. R < 0, f(n) > 0 and
f"(n) < 0. Let g(&) = Rf(£). Then g(£) solves (3), (5) with B = Rf"(0)
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and C = RB. Therefore (B,C) € D, since § = f*'(0) < 0 and ¢'(1; B,C)
= 0. Hence, R(B,C) and B(B,C) are well-defined. Moreover, we have
a.(B,C) =1, and g(1; B,C) = R. This yields the desired results.

Furthermore, the limiting behavior of I’y can be obtained by the fol-

lowing two corollaries.

Corollary 2.1.2. (i) lim,_o+ a(—1,7) = a(—1,0), for some positive
a(-1,0); (ii) lim,_o- a(w,1) = 0.

Proof. The assertion (i) is trivial. It is clear that ¢’(y;0,1) > 0 for
y > 0 whenever g(y) is defined. By the continuity on initial data, for any
p > 0, there exists a § > 0 with w > —§ such that ¢’(u;w,1) > 0. However,
¢'(y;w,1) < 0 initially. Then a(w,1) < p and the desired result is obtained.

Corollary 2.1.3. (i) lim,_,0+ R(—1,7) = R(-1,0), for some negative
R(-1,0), and lim,_ o+ B(-1,r) = 0; (ii) lim,_o- R(w,1) = 0 and
im0~ B(w,1) = —12.

Proof. The assertion (i) is clear since (R, () is continuous and the
first part of assertion (ii) is a direct consequence of preceding corollary. To
complete the proof, it is required to obtain a priori estimate of 3.

Integrating (3) on (0,a), we get that

(18) Ba + Ca*/2 + /a(a —t)F(t)dt = 0
and ’
(19) g(a) = Ba®/2 + Ca®[6 + / a(a — )2 F(t)dt/2,

where F(t) = ¢'(t)? — g(t)g"(t) and a = a(B,C) is the first positive zero
of ¢'(y; B,C). Multiplying (18) by a/2 and subtracted from (19), it yields
that

(20) 9(a)+ Ca®/12 = / " it — a)F()dt/2.

Since g' is increasing, F(t) is positive and bounded by —g(a)g"'(a). There-
fore, multiplying (20) by 1/g(a) and using B = Ca®/g(a), we obtain that
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(21) 0< |12+ 4] < a*¢"(a).

Now the desired limit of 8 can be obtained as w tends to 0~ if g"(a(w, 1);w, 1)
is bounded as w small in magnitude.. In fact, there is a K > 0 such that
a(w,1) < K for —=1 < w < 0. Then, by the continuity on initial data again,
we get that

lg"(a(w,1);w,1)| <1+ sup |g"(£;0,1)]
¢€l0,K]
for sufficiently small |w|. This completes the proof.

Corollary 2.1.3 implies that T’y is a connected subset of the quadrant
R < 0, 8 < 0 which connects the limit point (0,—12) and the endpoint
(R(-1,0),0)). Note that, integrating (3), (5) when B = -1, C = 0 with
the subroutine code SDRIV2 [6], the zero a(—1,0) = 2.71 is obtained and
the value R(—1,0) = —6.304 is consistent with the one in Table 1.

3.2.2. Type II solutions. From (16), (17), write Ty = {#(~1,7) :
-1<r<0}U{f(w,-1): -1 < w < 0}. By using similar arguments as in

the preceding section, we obtain the following results.

Theorem 2.2.1. The problem (1), (2) has a type II solution if and
only if (R, B) € Tz.

Corollary 2.2.2. (i) lim,¢- a(-1,7) = a(-1,0), where a(-1,0) is
defined in Corollary 2.1.2; (ii) lim,_o- a(w, —1) = a(0, —1) for some posi-
tive a(0,—1).

Corollary 2.2.3. (i) lim,_o- R(-1,7) = R(-1,0) and lim,_,o- B(-1,
r) = 0 where R(—1,0) is defined in Corollary 2.1.3; (ii) lim,_o- R(w,—1)
= R(0,—1) and lim,_,o- B(w,—1) = p(0,—1) for some R(0,-1) < 0,
(0, -1) > 0.

Hence, I’y is connected subset of the quadrant B < 0, 8 > 0 which
connects the endpoint (R(0,-1),5(0,—-1)) and the limit point (R(—1,0),0).
In fact, by applying SDRIV2[6], it is found that R(0,-1) =~ —13.119 and
£(0,-1) =~ 9.389 as reported in Table 1.
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3.2.3. Type III solutions. For convenience, we rewrite I's = {Z*(w,
—1): 0 < w < P} where P = (—=1/N)3/* and N is defined in Theorem 1.6.

We also have the following theorem and corollaries

Theorem 2.3.1. The problem (1), (2) has a type III solution if and
only if (R, ) € Ts.

Furthermore, the following corollaries are required for obtaining the

asymptotic behaviors of I's.

Corollary 2.3.2. (i) lim,_o+ a+(w,——1)_v= 0; (ii) lim,,_, p- at(w,-1)

= 0.

Proof. 1t is clear that ¢'(y; 0, —1) < 0.0on (0, a(0,—1)). By the continuity
on initial data, we have that for all § in (0,a(0,—1)), there exists a § > 0,
g'(7;8,—1) < 0if 0 < s < §. This implies at < § since ¢'(y;s,—1) > 0
initially and then assertion (i) is obtained.

From the proof of Theorem 1.6, ¢"(y; P,—1) > 0 on (0, 00). Then, given
any § > 0 and let m = min{g"(y; P,—1),y € [0,7]}. By the continuity on
initial data again, there exists a § > 0, such that ¢"”(y; P,—1) > m/2 > 0 for
all y € (0,7) provided 0 < P —w < §. It implies ¢'(y;w,—1) > 0 on (0,7)
and a*(w,~1) > 7. This completes the proof.

Now the coreesponding limits of (R, 8) can be obtained from the next

corollary.

Corollary 2.3.3. (i) lim,_+ R*(w,—1) = 0 and lim,_,o+ f*(w,-1)
= —12; (ii) lim,_,p- Rt (w,—1) = 40 and lim,_ p- f*(w,—1) = —cc.

Proof. The first part of assertion (i) is easy since Rt = at - g(a¥).
Also, by applying similar arguments as in Corollary 2.1.3, the second part
is clear.

To verify the first part of assertion (ii), it is required to show that
g(y; P, —1) tends to oo since g"(y; P —1) > 0 for y > 0. By the continuity
on initial data, there exists 6 > 0 and § such that ¢"(y;¢,—1) > 0 on (0,%)
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and g(g;¢,—1) > 1 provided that |P — ¢| < é§. Then, by Corollary 2.3.2, the
desired limit of Rt is obtained.

To prove the remaining part of (ii), the following fact is required. Let
at < a~ be two zeros of ¢’, bt < b~ be two zeros of ¢g" and ¢ be the zero of
g" for (B,C) € Df. Then we get that bt < a* < c< b~ <a~ and

+

g(a+;w7 _1) = Aa g'(C)dC S g,(b+(w’ "1);“” _1)a+(w7 _1)

bt (w,-1)
—a@-D) [ 604 S wlat (-1
0
Hence % (w,-1) < —w(a*)? and then lim,_, p- % (w,—1) = —o0.

Note that I'; is a connected subset of the quadrant R > 0, 8 < 0 which
connects the limit points (0, —12) and (400, —0).

3.2.4. Type IV Solutions. Write I'y = {f~(w,-1):0 < w < P}.

By applying preceding arguments, existence of type IV solutions is clear.

Theorem 2.4.1. The problem (1), (2) has a type IV solution if and
only if (R,pB) € Ty4.

Furthermore, the following corollaries yield the asymptotic behavior of

the connected set T'y4.

Corollary 2.4.2. (i) limy_,+ a™(w,—1) = a(0,—1) for some positive
a(0,-1); (ii) lim,,_,p- ¢™(w, 1) = oo.

Proof. We omit the verification of assertion (ii) since it is trivial. Recall
that a(0, —1) is the zcro of ¢'(y;0,—1). Let 0 < € < a(0,—1)/2 and y* =
a(0,~1) £ € where y* < M. Again by the continuity on initial data, there
exists a 6 > 0 such that -

lg'(v*;5,-1) — ¢'(y*;0,-1)]
< min{[g*(a(0,-1);0,-1)|,|g7(a(0,~1);0,-1)|}/2

for 0 < s < 6. Hence ¢'(y*;s,-1) > 0 > ¢'(y™;s,—1) and |a=(s,—1) -
a(0,~1)| < € since a*(s,—1) < y~. Therefore, the assertion (b) follows.
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Also the asymptotic behavior of (R, §) can be obtained as follows.

Corollary 2.4.3. (i) lim,_ o+ R~ (w,—1) = R(0,-1) and
lim,_o+ B(w,—1) = B(0,—1) where R(0,-1) and $(0,—1) are defined in
Corollary 2.2.3; (ii) lim,_,p- R~ (w,—1) = —o0 and lim,_,p- B~ (w,—1)

= 0Q.

Proof. By the continuity, assertion (i) is clear. To prove assertion (i),
it is required to estimate g(a~) properly. Since ¢"'(b~) > 0 and ¢'(b7) <
0, (3) yields that g’(b~) < —1 and hence there is a 7, € (b~,a™) such
that ¢’(n.) = —1 and ¢""(ns) = —g(7+)9"(1+). Now from (6), we get that
I® () = ¢"(n)(g(m)? —1) > 0. Then, g(n«) < —1 and, then, g(a~) < 1. -

Hence the desired limit of R~ is obtained. Again, we have
g(a(w,—1) >¢'(b~(w,—1))a " (w, —1)

b~ (w,—1)
=0~ (w,~1) / g"(¢)d¢
>(a~(w, ~1))g" (c(w, ~1))

([T o +w)

>(a")w - a”).
Hence f~(w, —1) > —a~(w, —1)?/(w—a~(w, —1)). This completes the proof.

Again, Ty is a connected subset of the quadrant R < 0, 8 > 0 with the
limit points (R(0,-1),8(0,—1)) and (—o0,00). Also, by SDRIV2[6], the
- values R(0,-1) =~ —13.119, (0, —1) = 9.389 are consistent with the ones
reported in Table 1.

3.2.5. Uniqueness of type III solution. As shown in Fig. 1, branch
(iii) indicates the uniqueness of type III solution for each given R > 0. This
can be verified by the followings. For convenience, we rewrite I's = {Z(1,7) :

—00 < 1 < N} where & denotes Z+.

Lemma 2.5.1. dR(1,7)/dr > 0 forr € (—oo,N).
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Proof. By differentiating R(l,r)‘: a(1,7)g(a(1,r); 1, r) with respect to
r, we get that

OR(1,7)/dr = da(1,7)/0r - g(a(1,7);1,7) + a(1,7) - p(a;1,7)
since g’'(a(1,7);1,r) = 0. Similarly, we get that
¢"(a(1,7);1,7)0a(1,7)/0r + ¢'(a(1,r); 1,7) = 0.

From Lemma 1.7 and Theorem 1.5, we obtain that ¢” < 0 and ¢',g,¢ > 0
at y = a(1,7). Hence R+ (1,7)/dr > 0.

Theorem 2.5.2. For each given R > 0, there exists a unique 3 such
that the problem (1), (2) has a type III solution.

Proof. Suppose that (1), (2) possesses two solutions f; and f,, with
corresponding f; and B2. In fact, f/'(0) > 0 and B; < 0 for 2 = 1,2. Let
u; = f1(0), 8 = (Ru;)'/* and gi(¢) = (R/8:)f(C/8:). Then g; solves (3), (4)
with B; =1, C; = (Bi/u:) - (Ru;)~1/3 and the corresponding y.(1,C;) = é;.
Hence C; = C, since dR(1,7)/dr > 0. Consequently, 6; = & and u; = us.
Thus, f; = f3 and f; = f5.

Note that the uniqueness of § implies that T'3 is the graph of a continu-
ous function B(R) for R > 0 such that (1), (2) possesses a type III solution

at (R, B(R)).

3.6. Concluding Remark. Let T = J;_, T; U {(0,-12)}. Then T
connects two limit points (400, —0), (—00,+00). Hence we have the second

part of main result.

Theorem B. For every real R, there ezists at least one 3 such that

the problem (1), (2) has a solution of either type I, 11, III or IV. Moreover,

ezistence of B is unique when R > 0.

Moreover, it is also valid that there is a R such that (1), (2) has a
solution for every real 3. Unfortunately, the mathematical evidence for the

occurrence of multiple solutions is yet clear and it requires further delicate
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study. However, Hwang and Wang [7] verified the existence of multiple
solutions for a similar problem, Berman’s problem, arising from the study

of fluid in a channel with two-sided porous wall.
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291.2306 —765.747
59.3593 —170.0
32.6156 —99.3122
11.0935 —41.8079

5.6978- —26.4432
3.0815 —19.5652
2.0273 —16.8917
0. —12.0
—1.1 —9.5235
—3.1 —5.4174
—6.3038 0.0
—10.1 4.9738
—13.1 9.3481
—-14.5 15.9326
—14.6169* 20.8329
—14.3279 50.
—14.1* 73.0091
—14.1015 73.880
—14.4 122.827
—20.8479 441.013
—30.3588 788.318
—40.2645 1136.41
—50.6316 152.08
—60.9619 2310.56

Turning point
Turning point

Table 1. Selected data of (Q, 8) for the problem (1), (2)

(Thousands)

i)

M

-0.2 T

Figure 1(a).

T
-50

T
-30

I
-10

Bifurcation diagram of the problem (1), (2): R < 0.
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-100

-200
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-400
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-800

Figure 1(b).

150
140
130
120
110
100
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R—B

T 1 T r—r°r 1 1T 1 T T T 71
40 80 120 160 200 240 280

Bifurcation diagram of the problem (1), (2): R > 0.

(iv)

-15

Figure 1(c).

317

Detail diagram which exhibits multiple solutions of the problem (1), (2).
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Type I Solution, f

09

08 —

0.7 -

06 -

0.5

0.4 -

03 -

02 -

0.1 -

Type I Solution, 5"’

~10 -~

~11 -

-12 -

-13 -

-14 -

—15 -

-16

-17

0 02 0.4 06 08 i

Figure 2(a). The graph of solution f with f > 0 and f"’ < 0 on (0,1].
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Type IV Solution, f

0.8
0.8
0.7
0.6 —
0.5 -

0.4
0.3 4

0.2 4

0.1 4

-0.1 4
-02 -

-0.3 ~
-0.4

Type IV Solution, f'"
100

0\

~100 -

~200 —

—300

—400 -

500 =

~600

~700

-800 T T T T T

Figure 2(b). The graph of solution f with f > 0 and f'” changes signs on (0,1].
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Tyiwe 1I Solution, f

0.8
0.7
0.6
: 0‘.5-
0.4~
0.3
0.2

0.1+

Type II Solution, f'*

Figure 2(c). The graph of solution f with f changes signs once on (0, 1].



