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Abstract. It is proved that for any finite a.e. measur-
able function f on the p-dimensional interval [0,1]v" can be rep-
resented by an p-fold Haar series that is convergent to f a.e.
summed by rectangles. This is an analogue for multiple Haar
series corresponding to the representation of measurable func-

" tions by multiple trigonometric series. -

1. Introduction. In answering a question, posed by Lusin, in connec-
tion with the representation of measurable functions, Men’Sov and Bary [2]
proved that for any finite almost everywhere (abbreviated a.e.) measurable
function f on [0,27], there exists a trigonometric series convergent to f a.e..

The analogous result for Haar system proved by Bary [12] is as follows:

Theorem A. If f(z) is measurable and finite a.e. on [0,1], then there

is a series in terms of Haar functions which converges to f(z) a.e. on [0,1].

The representation of measurable functions of two variables by double
trigonometric series was first studied by Dzhavarsheishvili [9]. Subsequently
various representation problems for function of several variables by multiple
series were discussed by Dzagnidze [7; 8] and Topuriya [15]. But their results
are far from pointwise convergent representation. In connection with the
Men'Sov and Bary result for functions of several variables, Chen and Hwang

[4; 5] proved the following theorem:
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Theorem B. For any finite a.e. measurable function f on the p-torus
[0,27]P there ezists an p-fold trigonometric series which converges to f a.e.

summed either by squares or by rectangles.

In view of the above theorems, it is natural to ask whether every finite
a.e. measurable function f on I? can be represented by an p-fold Haar
series convergent to f a.e., summed either by squares or by rectangles. In
the present article we show that any such a function can be represented
by an p-fold Haar series convergent to the given function a.e. summed by
rectangles. |

The result is much deeper in the case of functions of several variables be-
cause of the existence of integrable functions on [0, 1]? such that the rectan-
gular partial sums of their p-tuple Haar-Fourier series divergent everywhere
[6]. Although the basic procedures for proving our theorems are similar to
those given by Bary [12], they need some substantial modifications. For
convenience and for notational simplicity, we give the proof of our theorem

explicity for p = 2.

2. Preliminaries and notations. Haar system can be defined as
follows [1; 12]:

Xf,”(a:) =41 for z €]0,1],

+1 for z€l0,3)
()= -1 for ze(3,1),
0 for = l

N

and generally, for any natural number n, we defined 2™ functions as follows:

/T for z€[2k 2 2k-—1),

2n+1 ’ 2n+1
(%) (z) = 2k—-1 2k
xn'(®) =93 _ /om
n n for $€(2n+1 ’2n+1]
0 otherwise in [0, 1].

Heren=1,2,3,...and £ = 1,2,...,2". The system {Xslk)(a:)} is a complete

orthonormal system on L2([0,1]). We denote the Haar system arranged



- 1992] MULTIPLE HAAR SERIES 293
. lexicographically by {xm(z)}, i.e.,
x1(z) = xp )(a:), xm(z) = xF(z), fm>2and m=2"+k, 1< k< 2™

Therefore, the double Haar system {xm(z)xe(y)} is a complete orthonormal
system on L2([0,1]?).
For f(z,y) € L([0,1]?), denote the double Haar-Fourier series for f by

Sl(=,9)i fl = Z F(m, Oxm(2)xe(y).

m,l=1

Here f(m,l) = / o F(u, v)xm(w)xe(v)dudv.

By a rectangular partial sum for S [(z,y); f we mean a partial sum
Smel(z,y); f] of S[(z,y); f] according to:

Smel(z,v); f1 = Z Z £ Nxi(@)xi()-

Similar to the case of Haar-Fourier series for functions in L([0, 1]), we have

the following identity [10]:

s, f(u, v)dudv
lAmel

where m = 2"+ k, £=2947,1<k<2" 1 <7 <2% (z,y) € Ape and

A e is one of the following open intervals:

(2.1) Smel(z,y); f] =

(k ) 13 r (k,r) k r
a+(nq)’_6()X6() a_(nq)_g()x‘g()
(br)  5_(9) 5 5_(0), (ki) 5 () 5,0,
P (ng) = 8-n" X 0- P(mg) = 8-n" X 8ag
(2.2) T M =60 x 64 (’) 1) = 6 x 6.7,

(kr) _ g (B) o 5(r (kr) _ 5 () o s(r
Sip) = 6()x6() Sapn) = 849 x 6{7,

JED = 5 x50

(n,9)

where 2 1 2 -2 2t
20—-2 2t -1 t — t
t) _ () = = (- (==
6+(s) - ( 92s+1 7 9s+1 )’ § (s - ( 9s+1 ? 23+1)’ 68 ( 9s+1 23+1)
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We also need the following generalization of a theorem of Lusin:

Theorem C (S. Saks [13; 14 (p. 218)]). If f is a measurable a.e. finite
function in [0,1]?, there ezists an additive continuous function of intervals

“F(I) such that the strong derivatives Fi(z) = f(z) a.e. z € [0,1]P.
3. Main theorem. Now we can prove our representation on [0, 1]2.

Theorem 1. For any finite a.e. measurable function f on [0,1]%, there

is a double Haar series of functions Y., , Gm eXm()xe(y) such that

m, l—»oo

(ZZaszz(a:)x](y)) = f(z,y) forae. (z,y)€[0,1].

i=1 j=1

Proof.. By Sak’s theorem (Theorem C), there exists an additive con-

tinuous function of intervals F(I) on [0, 1] such that the strong derivatives

Fy(z,9) = f(=z,y) ae. (z,y) €[0,1]%.
Let a+§ﬁ’3, a_gﬁ’;)), ,6+§z,rq)), ﬂ__x’;)), be the open intervals defined in
(2.2), and a+§k ;)), i -g: 3, ,34::3, ,B_EZ 3 , be the closure of these intervals.

Form,>2,m=2"+k =247, 1<k<2",1<7<L29,set
ame = VEFI | F(ar ) + F(r(s)) - Fa-) - F (A=),
apl = F([(), 1]2)’

om = VB2 i) - {2t 2] )

on+1 ’ gn+l on+1 ’2n+1

o= VAP (0.0 [ St ]) - r (o [t o))

In this way, we obtain the double Haar series:
(3.1) Y amexm(@)xe(w)-
m,

We shall prove that the series (3.1) converges to f(z,y) a.e. (z,y) €

[0, 1]?, summed by rectangles, i.e., if

m £
Tre(z,9) = D ) aiixi(2)X3(v),

i=1 j=1



1992] * MULTIPLE HAAR SERIES 295

then

lim Tme(z,y) = f(z,9) forae. (z,9) €[0,1)%.

m,l—

Now, write m = 2¥ + k', £ = 29 + 7', where m,£ > 2and 1 < k' < 27,
1 < 7 < 29. We define a simple function. f*(z,y) as follows:

f(z,y) = 2“+q+2F(/~S(k’T)) for (z,y) € AlET)

(n,9) (n,9)

(k) _ (k,r) (k1) (k,r) (k,7)

and A(n,tl) = Ct(ng) F—(nq) ﬂ"‘(n,q)’ ’B"(n,q)‘

Since Iﬁgﬁ’;)) =2ntat? 5o
F A(ktr)
% : (n’q) . k,
(z,9) = ——(‘:(k—r)'2 if (z,9)€ Aﬁn,?)-

(n.9)

By computing the double Haar-Fourier coefficients f*(i, ) as given in [12;
p. 110-111], we have f*G,5) = a;j for 1 <1< m, 1< j <L Therefore we

obtain

Tml(‘”, y) = Sme[(wa y)1 f*]s

where Smel(z,9); f*] = Xt 2= *G, H)xi(=)x;(y), the rectangular par-
tial sum for the double Haar-Fourier series of f*.
As noted in (2.1), we have

ffAm‘ f*(u,v)dudv
lAmll

Smel(z,9); f] = for (z,y) € Ame,

where A, is an interval defined in (2.2). Since f* is constant in each Agﬁ”g

and F(I) is an additive continuous function, we have
F(Ane)
|Am€|
Let (z,y) be a point of [0,1]* which is not in the boundary of any of
- the rectangles AEZ:;)), n,¢=0,12..,1<k<2%1<r <29 and for

which F!(z,y) = f(z,y). Then (z,y) belongs to a double sequence {Ame}

of intervals for which

Smel(z,y); f7] = for (z,y) € Ame.
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F(Ame)
Toe(z,y) = —=
ml( y) lAmlI )
where m, £>2, m=2"+k,0=27+7; 1<K <2%1<r" <29 Ape is
one of the intervals defined in (2.2). Therefore

I (A~ ml) y)
. -~ =F z, = z,Y).
Y, | el‘ s( y) f( y)

So we obtain

. T F(Aml) -
m};}f_[’loo Tme(ma y) - m],ir—r’loo lAmel = f(z7 y).

Hence the double Haar series (3.1) converges to f(z,y) a.e., and the proof
of Theorem 1 is finished.

4. Some remarks. If the function f is integrable, then the additive
continuous function F(I) of intervals in Theorem C can be chosen such that
F(I) is of bounded variation in [0, 1}* ([13]). In this case, we can write as,¢
as the double Haar Lebesgue-Stieltjes Fourier coefficients ([14], p. 64):

me = / /to,m Xou (1) xe(v)dF.

Tre(z,y) = // Ko (z,u)Ko(y, v)dF,
. [0,1]2

where K,(z,u) = Yoo, xi(z)xi(u), Ke(y,v) = Ele xi(y)xi(v). Write
m=2"+k,£=294+7"1<k'<2" 1< <29 then asin [1] or [10] for
the values of K,,(z,u) and K,(y,v), we have
F(Aml)

lAmll .
Therefore it is easy to obtain lim, ¢eo Tme(z,y) = f(z,y) for ae. (z,y) €
[0,1]2.

The basic procedures and the fundamental tools still work for higher

Therefore

Tml(za y) =

dimensions, the only difficulty beiﬁg that the notations becomes slightly

complicated, so we have the following theorem.

Theorem 2. For any finite a.e. measurable function f on [0,1]?, there

is an p-fold Haar series such that its rectangular partial sum converges to f
a.e. in [0,1]7.
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Finally we note that from our previous paper [5], for the case f(z) =
+o0o on a set of positive measure in [0,1], Theorem A can not hold. In
view of the relationship (2.1) and the theory of strong differentiation [14,
p. 147, there exists g € L*([0,1]?) such that Iim, ¢— 00 Sme[(Z,¥); 9] = o
a.e. (z,y) € [0,1]%. Hence it is interesting to see whether our representation

theorem holds for functions assigned infinity on a set of positive measure in
[0,1]7.
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