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Abstract. Let R be a semiprime ring, U its maximal
right quotient ring and Ir be a dense R-submodule of Ug. It is
shown that I and U satisfy the same differential identities. As
a conseqirence of this résult it is proved that if f(:r:'.Aj) =0isa

- differential identity on an ideal J of R, then f(x?i )y = 0 for all
r; €U and all y € J.

In [4] Chuang proved a theorem to generalize the two main theorems on
generalized polynomial identities in [11]. The result [4; Theorem 2] states:
Let R be aprime ring, U its maximal right quotient ring and Ng a dense R-
submodule of Ur. Then N arrd_ U satisfy the same generalized polynomial
identities with coefficients in U. In fact, in a procede paper [2] Beidar
proved that the result above remains true for semiprime rings. In this paper
we shall generalize these results by considering differential identities instead
of generalized polynomial identities. E\(plieitly, our main result states: Let
R be a semiprime 1111g and U its maximal right quotient rmg and Ir a dense
R- submodule of Ugr. Then I and U satisfy the same differential 1dent1t1es
Wlth coefficients in U. To prove this, our main tool is Kharchenko’s 1esult
[9 Theorem 2]. For our need Theorem 1 provrdes a convenient version of

Kharchenl\o s 1esu1t In Theorem 4 we provide a umﬁed approach to handle
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differential identities satisfied on ideals. Theorem 5, a generalization of [12],
is then a standard application of our main theorem.

Throughout this paper, R always denotes an associative, left faithful
ring (that is, for a € R, aR = 0 implies a = 0) but not necessarily with 1.
A right ideal p of R is said. to be dense (or rational) if pg is a dense (or
rational) submodule of R (see p.58 [6]). In terms of dense right ideals the
maximal right quotient ring of R (see p.57 [6] or [7]) can be characterized
as a ring U satisfying the following axioms:

(1) R is a subring of U.

(2) For each a € U there exists a dense right ideal p of R such that ap C R.
(3) If a € U and ap = 0 for some dense right ideal p of R, then a = 0.

(4) For any dense right ideal p of R and for any right R-module map ¢ :

pr — Rp there exists a € U such that ¢(z) = az for all z € p.

The center of U, denoted by C, is called the extended centroid of R.
Note that a € U is central (i.e., a € C) if and only if there exist an ideal I of
R, which is a dense right ideal of R, and an (R, R)-bimodule map ¢: [ — R
such that ¢(2) = aa for all z € I.

The following are well-known:
F1. If Ais a subring of U which is a dense right R-submodule of U R, then A
itself is a left faithful ring and its maximal right quotient ring coincides

with U.
F2. Let R be a prime ring; then U is also a prime ring with C a field.

Our first step is to give a convenient version of Kharchenko’s theorem
[9; Theorem 2] for the prime case. Our version is in three respects: (a)
The coeflicients of the generalized differential identities are allowed to lie
in the maximal right quotient rings instead of in the Martindale two—sided
quotient rings. (b) The derivation words are always formed from Derl/ , the
set of all derivations on U. (c) The indeterminates occurring in differential
identities assume their values in a dense R-submodule of U r instead of in a

nonzero ideal of R.

For the sake of completeness we recall some basis notations and defini-
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tions given in [8] or [5]. First, denote by DerU the set of all derivations on
U. By a derivation word we mean an additive map A in End(U,+,0) of the
form A = dyd, ---d, with each d; € DerU. A differential polynomial is then
a generalized polynomié.l of the form d)(:z:iAj ) involving noncommutative in-
determinates z; which are acted by derivation words A; as unary operations
and with coefficients in U. qb(a:?i ) = 0 is said to be a differential identity
on a subset T of U if it assumes the constant value 0 for any assignrhent of

values from T to its indeterminates z;.

For d € DerU and a € C, define da by z%* = (2%)a for all z € U. For
d,6 € DerU, define their commutator [d, 8] by z{#¥ = (29)% — (£%)¢ for all
z € U. Then da and [d, §] are also derivations on U. In this manner DerU
forms a right module over C and is a Lie algebra over the subring consisting
of a € C such that o =0 for all o € DerU. DerU is called the differential
Lie C-algebra of derivatioﬁs on U. The following basic differential identities
hold in U:

B1l. (2y)? = 2%y + 2y’, where o € DerU.

B2. (z+y)° = a° +y?, where o € DerU.

B3 2% = ax — za, where o is the inner derivation induced by a € U.

B4. zloH = (27)* ~ (2#)?, where o, € Derl.

B5. (---((29)?)-++)? = 2(°"), where ¢ € DerlU and where R has a charac-
teristic p, which is a prime or 0. If p = 0, then this identity assumes

the form z = z.

B6. z7%t#8 = (27)a + (z*)B, where o, pu C DerlU and a,BeC.

Suppose now that R is a prime ring. In this case, since C is a field,
DerU forms a vector space over C. Let D;,: be the subspace of DerlU
consisting of all inner derivations of U. Choose a fixed basis My for Din:
and augment it to a basis M for DerU. Fix a total order > in the set M
such that po > p for pg € My and p € M — My and then extend this order
to the set of all derivation words in M by assuming that a longer word is
greater than a shorter one and that words of the same length are ordered

lexicographically: By a regular word in A/ we mean a derivation word of the
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form A = 67652 --- &5 such that
(W1) 6, € M ~ My fori=1,2,--- ,m, -
(W2) §; <8 <---<8pand |
(W3) si<pfori=1,2,---,m,if charR =p>0.

Note that by means of the basic identities. (B1)~(B6) any differential

identity can be transformed into a form ¢(q:?j ) where
(R1) ¢(2ij) is a generalized polynomial in distinct noncommutative in-
determinates z;; and with coefficients in U , and where
(R2) the A; are distinct regular words in M.

A differential polynomial is called reduced if it assumes the form ¢($iA’ )
satisfying (R1) and (R2). By a reduced differential identity we mean an
identity ¢(z) = 0 with ¢(257) a reduced differential polynomial. Now
we may state Kharchenko’s theorem {9; Theorem 2] -assuming the following

form.

Theorem 1. Let R be a prime ring, U its mazimal right quotient ring
and Ip a dense R-submodule of Ur. Assume that qﬁ(x?’) =0 is a reduced
differential identity for I. Then #(zi;) = 0-is a generalized polynomial

identity for U, where the z;; are distinct indeterminates.

Proof.  This theorem is essentially the result of Kharchenko, but as-
suming this form we can conveniently apply it to our later problems. For
its proof we only give its sketch as follows. Assume first that / = R. In this
case a careful verification shows that its proof is Jjust the same as that of [9;
Theorem 2] for the prime case (see p. 155-164 [8] and p. 67-74 [9]). For the
general case, if I is a dense R-submodule of Ug, IN R is then a dense right
ideal of R. Since R is a prime ring, I N R itself is also a prime ring and by.
F1 its maximal right quotient ring is just U. Thus,.applying the first case,
#(2ij) = 0 on I N R. Finally, applying [4; Theorem 2,], I N R and U satisfy
the same generalized polynomial identies and hence #(zij) = 0 on U. This
completes the proof.

Since any differential identity can be transformed into some reduced

differential identity via the basic identities (B1)~(B6), we have the following
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Theorem 2. Let R be a prime ring, U its mazximal right quotient
ring and Ig a dense R-submodule of Ug. Then I and U satisfy the same

differential identities.

Our main objective is to generalize Theorem 2 to the case of semiprime
rings. To arrive at this aim we need some results about orthogonal comn-
pletions for semiprime rings given in [3]. For the sake of convenience we
summarize these here.

Let R be a semiprime ring, U its maximal right quotient ring and C
the extended centroid of R. A subset T' C U is called orthogonally complete
if 0 € T and given any set of orthogonal idempotents {ew}b CC,we€Q,any
subset {z,} C T, w € Q, there exists € T such that e,z = e,z for all
w € Q. For any subset K C U, denote by K the orthogonal completion of
K which is defined as the intersection of all orthogonally complete subsets
of U containing K. Note that K itself is an orthogonally complete subset
of U.

F3. Let TC U, r(C;T)={a € Clat =0 for all t € T'}. Then there exists
a unique central idempotent E[T] such that r(C;T) = (1 - E[T])C (see
[3; point 2]).

F4. C is a commutative regular self-injective ring (see [1; Theorem 1]).

F5. U is an orthogonally complete nonsingular C-module (see [3;
Lemma 1))

Suppose that {e,}, w € Q, is a set of orthogonal idempotents of C,
{z,} €U,we Qand P = Y e,C; then, by F3, r(C,P) = eC for some
e? = e € C, and there is a unique element z € U such that e,z = e,z for
all w € Q and ez = 0. We denote the element = by Ziea €wiw-

F6. If 2z = Zi e.t, €U, y= E;L usys and z € U, then z+y = Ziﬁ(ewug)
(2o + ¥s), 2y = Zj’é(ewu(s)(mwy‘g) and zz = Z:; e (zz,) (see [3;
Lemma 1]).

F7. Forany T C U, T consists of all elements ¢ € U of the form ¢ =
Et €., where {e,}, w € Q, is a set of orthogonal diempotents in C

and {z,}, w € ©, is contained in T U {0} (see [3; Lemma 1]).



32 TSIU-KWEN LEE [March

Denote by B the Boolean algebra of all idempotentsin C. For e, f € B
we define e f =e+ f—2ef and e- f = ef. Also, M(C) and M(B) stand
for the set of all maximal ideals of C and for the set of all maximal ideals
of B, respectively.

F8. If P € M(C)and set m = PNB, we have m € M(B) and mC = P;ifU,
is the localization of the C—_a.lgebra U w.r.t. C—P,then U, is canonically
isomorphic to U/mU. For the obvious map ¢, : U — U, = U/mU it
has the following properties:

(i) for any orthogonally complete, dense right ideal p of R, op(p) is a
dense right ideal of ¢,(R);

(ii) #»(R) is a prime ring and U, is a right quotient ring of ¢,(R).

Also, the extended centroid of Up is just Cp;
(iii) PU is a prime ideal of U invariant under any derivation d € DerU.
Furthermore, N{PU|P € M(C)} = 0-(see [3; Lemma 1 and Theo-

rem 1]).

Lemma 1. Let R be a semiprime ring, p a dense right ideal of R and
P € M(C). Then j is a dense right ideal of R such that ¢,(p) is a dense
right ¢,(R)-submodule of U,.

Proof. Applying F8 (i), (ii) the rest is to prove p to be a dense right
ideal of R. Forz € p, y € pand z € R it follows from F7 that there
exist {ey|lw € Q}, {fs|6 € A} and {g,]y € T} three sets of orthogonal
idempotents in C and {z.]w € O} C p, {ys]6 € A} C pand {z,|y €T} CR
such that z = Ei‘ €uly, Y = E;‘ fsys and z = E:I,_ gv2y. By F6 we have-
that 2 + y = Zi’6(ewf5)(xw + ys) and zz = Ei'ﬂ(ewgw)(zwzn,). Since
Ty, +ys € pand 2,2y €Epforallw e Q,8 € A and v € T, it follows that
z +y € p and zz € jp. Therefore j is a right ideal of R. '

Letz =Y re.,2, £0in R,y = % fsys € R, where {e,|w € 0} and
{f5|6 € A} are two set of orthogonal idempotents of C and z,, € R, ys € R
forall w € 2, § € A. We may assume further that ), fsC is an essential
ideal of C. Since 2 # 0, there exists wp € Q such that e.,zw, # 0 and

hence fs;€wyZu, # 0 for some 6 € A by F5. By assumption p is a dense
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right ideal of R. Thus pg is a dense R-submodule of Ug. So for each § € A
there exists t5 € R such that (fs,ew,Zw,)ts # 0 in U and ysts € p. Consider
the element ¢ = E(‘SL fsts € R. Then, by F6, yt = Z(sl fs(ysts) € p and
Tt = Et,g(ewfé)(xwté) € R, since ysts € p, xts € Rforall § € A, w € Q.
Finally we must prove that zt # 0. Indeed, (fs,€w,)2t = (f5o€wo)Twols, # 0
and hence, in particular, zt # 0 follows. This completes the proof.

To generalize Theorem 2 to the semiprime casé vwe need a well-known
fact that any derivation on a left faithful ring can be uniquely extended to
a derivation on its maximal right quotient ring [10; p101, Exercise 10]. For
the sake of our later application we will give a slight generalization of this
result. .

Let R be a left faithful ring and U its maximal right quotient ring.
By a derivation from R into U we mean an additive mapping d : R — U
satisfying d(zy) = d(z)y+ 2d(y) for all z, y in R. Denote by Der(R,U) the

set of all derivations from R into U.

Lemma 2. Fvery d € Der(R,U) can be uniquely extended to a deriva-

tion in DerU.

Proof. For q € U, choose a dense right ideal p of R such that ¢p C R.
Note that pU is a dense right ideal of U. Define the map ¢ : pU — U as
follows: for z = " z;y; € pU with z; € p, yi € U then ¢(z) = > (d(qzi) —
gd(z;))yi;. Claim first that ¢ is well-defined. Suppose that ) z;y; = 0.
Choose a dense right ideal p; of R such that y;p1 C R for each i. Fort € p;,
applying d to 3 z;(yit) = 0 and to D (qz;)(yit) = 0, we yield
(1) Y(d(zi)yit + zid(yit)) = 0, and
(2) 2(d(gzi)yit + qzid(yit)) = 0.

It follows from (1) and (2) that (D_(d(gz;) — gd(2:))yi)t = 0 for all t € p;.
So > (d(gzi) — qd{zi))y: = 0, which implies ¢ to be well-defined.

Obviously, ¢ is a right U-module map. Since the maximal right quotient
ring of U is just itself, the map ¢ defines an element of U. Also if ¢ € R we
can easily check that this element is just d(¢). Hence in this manner d can

be extended to a map from U into itself. For brevity we denote this map
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by d also. The fact that d is a derivation on U and that the uniqueness of
d are easily checked. So we omit these.

. We are now ready to prove our main result.

Theorem 3. Let R be a semipfime ring, U its mazimal right quotient
ring and Ir a dense R-submodule of Ug. Then I and U satisfy the same

differential identities.

Proof. Since Ig is a dense R-submodule of Ug, so is (I N R)r. Thus
by considering I N R instead of I from the start we may assume that I is
a dense right ideal of R. Suppose that f (zf’) = 0 is a differential identity
on I. For any P € M(C), consider the map ¢, as given in F8. Denote by
W (P) the maximal right quotient ring of ¢,(R). Since, by F8 (ii), U, is
a right quotient ring of qbp(f?,), there is a cononical inclusion U, C W(P)
and each d € DerlU naturally induces a derivation d on W (P) such that
d = d on U,, where d is the canonical derivation on U, defined by F$ (iii).
In this way every derivation word A = dyd; ---d,, where d; € DerU, has
a corresponding derivation word A = dyds .--d, with d; € DerW(P). Let
ot f)(:vfj ) denote the differential polynomial obtained by applying ¢, to
the coefficients of f(’LzAJ) and by replacing A; by A;. Thus ¢p(f)(3:fj) is
a differential polynomial in noncommutative indeterminates z; which are
acted by derivation words Aj and has coefficients in W(P) (in fact, in U,).

Observe first that f(.tiAj) may be assumed to be blended in each inde-
terminate z;, that is, each 2; occurs in every monomial occurring in f. Since
I satisfies f(a:fj ) = 0 and since central idempotents in C are constants of
each derivation word A;, applying F7 and F6 and using the fact that f(:rf’)
is blended in each z; we get that f(.?;f" )=0on I. Applying ¢, to this iden-
tity we have that qb,,(f)(:c?‘ﬂ = 0 on ¢,(I) . By Lemma 1, ¢,(I) is a
dense ¢p( R)-submodule of U, and hence is also a dense ¢p( R)-submod ule
of W(P). Since, by F8 (ii), qb,,(fl) is a prime ring, Theorem 2 implies that
¢p(f)(zfj) = 0 on W(P) and, in particular, on U,. So f(a:?j) € PU for
all z; € U. Since N{PU|P € M(C)} = 0, we have that f(z57) = 0 on U,

which completes the proof.
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As a consequence of Theorem 3, we have

Theorem 4. Let R be a semiprime ring, U its mazimal right quotient
ring and I a nonzero ideal of R. Suppose that f(:c?j) = 0 is a differential
identity on I. Then f(xiA")y =0 forallz; €U, yel.

Before giving the proof of Theorem 4, we recall some basic properties
about "annihilators in semiprime rings. For a semiprime ring A, L C Ais
called a left annihilator if L = 4(S)={z € Ales =0 for all € S} for
some S C A. Similarly, define 74(5) = {z € A|sz = 0forall s € 5} and call
such a set a right annihilator of A. By an annihilator ideal of A we mean an
ideal L of A which is a left annihilator of A. In fact, for any ideal K of A
we have that [4(K) = r4(K). In this case, denote by Ann4(I) the left or
right annihilator of K in A. Thus every annihilator ideal of A assumes the
form Ann,(K) for some ideal K of A. Also, A/Ann4(K) always remains a
semiprime ring and d(Ann4(K)) C Ann4(K) for all d € DerA.

- Lemma 3. Given R, U and I as in Theorem 4, then the following
hold:
(1) forx € U, I = 0 if and only if Iz = 0, and
(2) set J = Anny(I), an ideal of U, U = UJ/J, R = (R + J)/Jvand
I = (I+J)/J; then Tx is a dense R-submodule of Ug and U is a

semiprime ring.

Proof. (1) Sﬁppose that #I = 0, where z € U. Choose a den>se right
ideal p of R such that zp C R. Thus 2pl = 0 and so Izp = 0. Hence Iz =0
as desired. Similarly, Iz = 0 implies 21 = 0. (2) By (1), ly(I) = ry(I) and
hence J is an ideal of U such that U is a semiprime ring. The rest is to
prove that YE is a dense R-submodule of Fﬁ. LetZ=2+4+J #0in U and
g=y+Jin U, where 2,5 € U. Then 21 # 0. Choose a dense right ideal p
of R such that zp C R and yp C R. Since 2l # 0, it follows that zpl # 0.
Thus there exists t € pI C I such that 2t # 0. Then T # 0 in U, otherwise
zt € J, which implies zt € J N I = 0, a contradiction. Also, yt € ypI C I

and hence 3t € I. So Tﬁ- is a dense R-submodule of ﬁﬁ.
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Proof of Theorem 4. Remain these notations given in Lemma 3. Since
J is an annihilator ideal of U, d(J) C J for all d € DerlU. Therefore,
every d € DerU canonica.ﬂy induces a derivation d € DerU and so does
every derivation word Aj. Denote by ZX—]-, the derivation word induced by
A;. Consider the canonical map ¢ : U — U and let ¢(f )(IL;A—’ ) denote the
differential polynomial obtained by applying ¢ to the coefficients of f and
by replacing A; by Zj. Since f(a:iA’) = 0 is a differential identity on I, we
have that ¢( f)(xz-Z’ ) = 0 is a differential identity on I. By Lemma 3, T’E
is a dense R-submodule of ﬁﬁ. Thus U is contained in the maximal right
quotient ring of R. Now considering the derivation words of U as those of
the maximal right quotient ring of R by Lemma 2 and applying Theorem 3
we yield that qﬁ(f)(:tizj) = 0 on U, that is, f(zzA’) € J for all z; € U. Thus
f(a:f\‘j)y =0 for all z; € U and all y € I. This completes the proof.

We conclude this paper with a generalization of [14]. In [14] Lee and
Lee proved that if d is a derivation on a prime ring R such that d*(R) C Z,
the center of R, where 7 is a fixed integer, then either d*(R)=0or Ris a
commutative integral domain. In any ring S we denote by [a,b] = ab — ba
the commutator of @ and b in S and by [A4, B] the additive subgroup of §
generated by elements of the form [a,b] with a € A, b € B. First we deal

with the prime case.

Theorem 5. Let R be a prime ring, U its mazimal right quotient ring,
p a right ideal of R and d € DerD. Suppose that d"(p) C C, the extended
centroid of R, where n is a fized positive integer. Then either d"(p) = 0 or

R is a commutative domain.

Proof. We claim first that d"l((pU) C C. For any ai,--- ,a; € p, since
PR Cp, d (X aizi) = iy Toro (z)dk(a,—)d“"k(wi) € C for all z; € R.
Note that Rg is a dense R-submodule of Ur. Applying Theorem 3, E§=1
S (5)d¥(ai)d™*(x;) € C for all z; € U. Thus dY(Y\_, aizi) € C for
all z; € U. That is, d*(pU) C C. By considering pU instead of p we may
assume from the start that p is a right ideal of U. Set I = p + d(p) +
d*(p) + +--. Then I is a right ideal of U which is invariant under d. Let
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I = I/(INnI)), where I(I) = { € Ul|zl = 0}. Then I is also a prime
ring. Also, d induces a derivation, denoted by d, on T such that d(Z) = @
for all T € T. Then d"(I) C Z(I), the center of 1. By [12; Theorem 1]
either [I,7] = 0 or d*(I) = 0. Suppose that d*(p) # 0. If d"(I) = 0,
then d™(I)I = 0. In particular, d"(p)p = 0. Since d"*(p) C C, we have
pd™(p) = 0. So p = 0, a contradiction. If [I,1] = 0; then [[,I]] = 0. In
particular, [p,p]d™(p) = 0. Since 0 # d™(p) C C, this implies [p, p] = 0 and
hence [U,U] = 0 by the primeness of U. This completes the proof.

Next, we handle the semiprime case.

Theorem 6. Let R be a semiprime ring, U its mazimal right quotient
ring, p a right ideal of R and d € DerU. Suppose that d*(p) C C, the
extended centroid of R, where n is a fized positive integer. Then there is a

ring décomposition U=U; ® U, such that d*(p) C U, C C.

Proof. As the argument given in Theorem 5 we may assume that p is a
right ideal of U. Let P € M(C) and ¢, be the map given in F8. By F8 (iii),
d induces a derivation d € DerU, satisfying d"(¢p(p)) C C,. Since pis a
right ideal of U and since ¢, is a surjective map, ¢,(p) is a right ideal of U,.
From the primeness of U, applying Theorem 5 either En(¢p(p)) =0orVU,is
a commutative integral domain. That is, either d*(p) C PU or [U,U] C PU.
It follows from F8 (iii) that d"(p)[U,U] = 0. Set e = E[[U,U]]and f = 1—e
(see F3). Then we have [fU,U] = f[U,U] = 0 and hence fU C C. Note
that d"(p) C fU. Set Uy = eU and Uy = fU; then d"(p) C Uy € C. This

completes the proof.

Remark. Theorem 5 and Theorem 6 remain true if d € DerU is
replaced by the condition d € Der(R,U), since by Lemma, 2 every derivation

from R into U can be uniquely extended to a derivation on U.
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