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ON OCCUPATION TIMES OF
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Abstract. Simulated annealing is a probabilistic opti-
mization algorithm for finding the global minimum (or minima)
of a certain function on a finite set S. It is known that the al-
gorithm converges weakly to a certain distribution (8;):¢s con-
centrated on the global minima set S. In this paper we show
that the fraction of the time spent at each state i converges a.e.
to B;.

1. Introduction. Many combinatorial optimization problems can be
formulated as finding the maximum of a certain cost function U over a finite
state space §, say S = {1,2,...,N}. The popular gradient method con-
verges fast. But the limiting state depends on the initial state and is usualy
only a local minimum. Based on ideas from statistical physics, Kirkpatrick
et al [13] and Cerny [3] proposed a probabilistic optimization algorithm:
simulated annealing. It can be described as a (continuous or discrete) time
inhomogeneous Markov process {X(t) : t € R*or I*} with stat space S and
transition rates g;;(t) (= limago{ P(X(t + At) = j|X(t) = i) — 6;;}/At for
te Rt;= P(X(t+ 1) = j|X(t) = ©) for t € I't) of the following type

p(3,7) exp[—(U(5) = U () /T(t)], forj#i
1{discretetime} - Ek#i qik(t)7 for J=1,

1) 0=

where T'(t) is the “temperature” function converging to 0 as time ¢ goes
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to infinity, and P = (p(¢,7)) is a nonnegative matrix which determines; in
particular, the neighborhood structure on S. For example, p(i,5) = 0 iff
J ¢ N(i), i.e., j is not a neighbor of i.

The difference between the gradient method and simulated annealing
lies in the definition of gi;(t) for j € N(4) and U(j) > U(i). In the for-
mer case, ¢;;(t) = 0 so that the process is in fact time-homogeneous and
all (local or global) minima are essentially absorbing states. In the latter
case, gi;(t) = p(i,7)[exp —1/T()]YU)-Y(E) 5o that “up-hill” movements are
allowed, though not encouraged. If the accumulated effect is sufficiently
strong, one might be able to escape from the local minima and thus, reach
the global minima. The crucial issue is how to choose the cooling schedule
T(t).

Applying simulated annealing to image restoration problems, Geman
and Geman [8] first showed, in the case they considered, that if T'(t) =
¢/log(t + 1) and the constant c is sufficiently large, then lim;_., P(X(t) €
S) =1, where § = {i € §: U(:) = min U} is the global minima set. Since
then, there has been a wide interest in the applications and convergence of
simulated annealing. Some of these works are listed in the reference of this
paper. The reader can find more from the books cited there. ‘

Throughout the paper, {X(%)} is assumed to be irreducible and weakly
reversible. The readers are referred to Chiang and Chow [4,5] for all the

’ terminologies used in the paper. In particular, one can find there the defi-
nitions and physical interpretations as active energy of two depth constants
dgr and dy. Note that by definition dy < dy and equality holds if S| = 1.

Let A(t) = exp(—1/T(t)). Besides tending to 0, A(?) is required to

satisfy some regularity conditions. In the following E is a nonnegative pa-

rameter.

(A.1; E) /OOO(A(t))Edt [or g(,\(t))E} = 0.

(A.2; E) CON(@) [or A(t 4 1) = A(2)] = o((A(2)EFY).
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(A.3; E)

There are constants u < v < 1 such that ™% < (A())F

<t7* for t large.

(A.4) /(;oo()\(t))”dt [or i()\(t))”] < oo for some p > 0.

t=0
Note that (A.3; E) implies (A.1; E) and (A.4). (A.4) is a reasonable
condition in the sense that the rate of convergence (see Theorem 1 below)
will not be too slow. On the other hand, in order to satisfy (A.1; E), A(¢)
cannot converge to 0 too fast.
By analyzing the Kolmogorov’s forward equation for P(X (t) = #| X (%)),
it can be shown that whatever the initial distribution X (0) is, the following

results hold.

Theorem 1. (i) Assume (A.1l;dy) and (A.2;dg). Then for t large
P(X(t) € §|X(0)) = 14+ O(A%(t)), where a = min;¢s U(:) — minU.
(ii) Assume (A.1;dv) and (A.2;dy). Then there are constats B; > 0 such
that for 1 € S and t large

(1.2) P(X (1) = i|X(0)) = [B: + o(1))(A(2))V D™ Y.
(iii) Assume (A.1;dy) and (A.2;dv). Then for i € S and t large
(13)  P(X(2) =4|X(0)) = [B: + O (@) (A(®))V O~ V.

(iv) Assume (A.1;dv), (A.2;dv) and (A.3;dv). Then there are constants
6§ <1, C and ty such that forty > t;, t >ty +t$ andi € §

(14) {P(X(1) = i X(22)/(A@#)) O™ T} = Bi] < CA*(2)..

Theorem 1 (i) and (ii) can be found in Chiang and Chow [4, 5]. Theo-
rem 1 (iii) and (iv) are new. Both give the exact error estimates of {X(t)}
to its limit distribution. However, Theorem 1 (iv) offers an estimate of the
waiting—time to reach the limit distribution, which is needed later.

Theorem 1 (ii) implies that there is an ergodic distribution concentrated
on S. In the theory of time—homogeneous Markov processes, there are also

almost sure covergence results. This motivates us to study the sample path
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properties of simulated annealing, which, if they hold, would be helpful for
running computer simulations in its applications.
Let vi(t) = fot 1{x(s)=i}ds (or Ei:o 1{x(s)=i} in the discrete time case)

be the occupation time up to ¢ at state z.

Theorem 2. (i) Assume (A.1;dy), (A.2;dy) and (A.4). Then w.p.1,

im0 {D g5 7i(t)}/t = 0. Hence limy—oo{Xics 7i(t)}i=1 ae..
(ii) Assume (A.1;dv), (A.2;dv) and (A.3;dv). Then w.p.1,

(1.5) tlim vi(t)/t =B for t € S.

In particular, it is easy to check that Theorem 2 holds for the commonly
used cooling schedule T'(t) = ¢/ log(t + 1) with ¢ > dy. Note that in this
case A(t) = (¢t + 1)~1/e,

Theorems 1, 2 will be proved in Sections 2, 3 respectively. In the

following we give some remarks.

Remark 1. In the theorey of time-homogeneous Markov processes
Theorem 2(ii) is proved through the use of interarrival times, which form
an i.i.d. sequence. When the time—hofuogenebus process undergoes a small
perturbation, the same method should also work. But it seerﬁs difficult to
be applied to simulated annealing. Because simulated annealing is sort of-
a singular perturbation.in the sense that the limit of (¢;;(¢)) in (1.1) is not

the generator of an ergodic Markov process.

Remark 2. Theorem 2 has a similar result when the exponent (U(j)—
U(1))* in (1.1) is replaced by a general cost function U(3,j) which is defined
from S X S to [0,00]. This is because (1.2) holds in this case. See Chiang
and Chow [5]. .. | |

Remark 3. When the state space S is a continuum, say [0,1] or R?,
a stochastic differential equation dX(t) = — v U(X(t))dt + \/Wth is
proposed to find the global minima. See Geman and Hwang [9], Hwang and
Sheu [12] for details.
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2. Proof of Theorem 1. Parts (i) and (ii) can be found in Chiang
and Chow [4, 5]. The estimate (1.2) for each state cannot be obtained in one
step, but through successive improvements of order O(A(t)), O(A%(2)),...,
interwoven with the merging procedures. In each step the following lemma is

used one or several times with f(#) as alinear combination of some P(X(t) =
1| X(0))-

Lemma 2.1 Let f(t) be a complez—valued function and a a complex

number with Re a > 0. Suppose

(2.1) Fi(®lor f(t+1) = fF(O)] = —aAP (@) f(2) + AN (2),

where A =-0(1) or O(A(t)). Then f(t) = AN~E(t) as t — 00, if

(2.2) { (i) (A.1; E) and (A.2; E) hold, or
(i1) A=o(1), F =FE and (A.1; E) holds.

Note that only in the last step (2.2)(ii) is applied with ' = dg to obtain
the final constant §; + o(1) in (1 2). The proof of part (iii) is the same as
that in part (ii), except that in the last step we apply instead the stronger
assumptions (A.1l; dy) and (A.2; dv) to Lemma 2.1 to obtain the desired
better estimate in (1.3). We remark that under (A.1; dv) and (A 2; dv)
Lemma. 2.1 is used for E < 'dy and through (2.2) (ii) only.

To prove part (iv) we first observe that starting from a different time
to does not affect the sequence of order improvements nor the merging pro-
cedures. In other words, Lemma 2.1 is used in the same order as starting
from t = 0. Therefore, we need: to examine more ca.refully its proof.

For brevity we consider only t € R*. The discrete time case ¢an be
treated similarly. Since (2.2)(i) will never be applied under the pl'esent
assumptions, A ‘= O()) always. Denote the error term AXNF(t) in (2.1) by

b(t). Suppose we know"
(2.3) B(1)] < CATHI(2).

Here and after, C will be a generic constant depending only on (p(7,7)) and
U(-). Clearly, " ' '
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(2.4) () = [exP—/t;AE(s)dsJ{f(t2)+/tlj(s)[exp/t;AE_(w)dw}ds}
| :h+b.2 2 )

Let & = Re a and I(t) = exp fttz OXE(s)ds. First taking the absolute
value and then integrating by parts, I(¢) - I, is bounded by

/t t CAFH(s) . I(s)

t.

=Co~! {AF“—E (s)I(s)

- / t(F +1- E)/\F”‘E(/\'/)\)I(s)ds}.

ta

Since Lemma 2.1 is used only for E < dy and ¢, can be assumed large,
we have by (A.2; dv) that §7'(F + 1 — E)|A'/A] < AF/2 on [ty,00). The
second term on the right-hand side of the equation above will be then of

the same form as the left-hand side. A rearrangement shows
(2.5) |L] < 2CAFF1-E(y),

Let g(t,t2) = AF+1=E(1) - I(t). By differentiating,
(2.6) 9(t,t2) is increasing in ¢ if ¢, is fixed and large enough.

Remember E < dy. If 1 > § > v, a simple computation shows that under
(A.3;dv)

(2.7)  glta +13,82) > (22) ""FH=BEVdv [axp(18 .- (2t)"¥)] > C' > 0

if ¢; is away frem 0. As a linear combination of some P(X(t;) = 11X (10)),
f(t2) is always bounded by some constant. Combining together with (2.6)
and (2.7), we get from (2.4) that (2.5) holds for I; too, as soon as ¢ > t, +13.
Hence we have shown that for any 1- > § > v, there exists t; such that the

solution to (2.1) with an arbitrary initial f(t,) satisfies
(2.8) LF@I < CATFI=E() if ty > ¢; and t > 1, +£5.

It remains to check (2.3). When Lemrga. 2.1 is applied in the first step

to those states with minimum out-going cost 0 but not in any Oth—order
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cycle, E = F = 0 and b(t) is of the form }> C; A% (1) P(X () = 1| X (o)) with
u; > 1. Hence we have (2.3) automatically and then (2.8) holds if the initial
time ?p > t1. The Oth—order cycles will be merged at the next step, in which
E = F = 0 still, but b(¢) gets an extra contribution from the states Jjust
treated. By using (2.8) just obtained, (2.3) holds if #p > #; +¢¢. As before
(2.8) can be proved for this step, except that we need a new, larger triple
(t1,%2,C). Repeating the previous procedure as many times as needed, we
eventually have (2.3) and then (2.8) for each step. This completes the proof
of pért (iv).

3. Proof of Theorem 2. The basic idea of the proof is the same as
in Chung [6; Theorem 5.1.2]. For brevity we consider ¢t € Rt only. The
discrete time case can be treated similarly. Let J(t) = fot A%(s)ds.

Part (i). Let v(¢) = > igs7i(t) and B =.Js7 AP(s)ds, where p is given
in (A.4). By using Theorem 1(i) and the Hélder inequality,

CB, if a > p,

Ev(t) < CJ(1) <
v(t) < ()——{CBa/Ptl"a/P, ifa < p.

Then Y E{y(tn)/tn} < 0o for t, = n®*/* if ¢ < p,= n® if @ > p. Hence
2-7(tn)/tn < o0 ae. and in particular, limy(¢,)/t, = 0 a.e.. Because
¥(tn) < 9(t) < Y(tnyr) fort, <t < t,4y andlimit,y/t, = 1, the conclusion
follows easily. oo

Part(ii). Apparently, we may assume v;(t) counts from #; instead of 0,

where #; is given in Theorem 1(iv). Write

E{vi(0)} = E{ /t : 1{X(S)=,~}ds}2
= Q/t: ds /tP(X(s) = X(w) = i|X(t1))dw.

s

(3.1)

The integrand above can be written as P(X(s) = | X (¢1))-P(X(w) = | X(s)
= 1) = h(s,w). It follows from Theorem 1(iii) and (iv) that |A(s,w) — 87|
< C(A%(s) + A%(w)) if s + s° < w. Otherwise, use the trivial bound 1 for

h(s,w). A simple computation shows that, increasing the constant C,
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(3:2) |E(E() - (t = 01)*B]| < C[t*+° + I ().

Similarly |E(7i(t)) — (t — t1)8:] < CJ(t). Hence (increasing C)

E[(vi(t)/t) = B S C{' 1 + 471 + J(1)/1}.

Since § < 1, (1.5) can be proved as did in part(i). The detail is omitted.
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