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Abstract. In the paper some asymptotic and oscillatory
properties of the solutions of the equation

a2 o(t) o(t)
) [:t(t) + / z(t — s)dn (4, s)] + / z(t ~ s)dr2(t,s) = 0
° °

are investigated.

1. Introduction. Necessary and sufficient conditions for oscillation of
all solutions of second order neutral differential equations were obtained in
the paper [1] but the equation considered in it is with constant coefficients
and constant delays. For such equations the oscillatory and asymptotic
behaviour of their solutions is investigated in [2]. In [3] sufficient conditions
for oscillation of the solutions of the linear neutral differential equatidns with
variable coefficients are obtained. In the present paper the asymptotic and

oscillatory behaviour of the solutions of the equation

2

o(t) a(t)
(1) ditz_[ z(t) + /0 z(t — s)dm (1, s)} + /0 z(t — s)dry(t,5) = 0

is investigated. Some of the results obtained generalize the corresponding
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results of [3]. Similar results but about nonlinear equations with constant

delay were obtained in [4].

2. Auxiliary results. We shall say that conditions (A) are met if the
following conditions hold:

Al. o(t) € C([to,+0),R),

A2. [to%&go){a(t)} >0,

. A3. tlixgo(t —o(t)) = +oo0.

We shall say that conditions (B) are met if the following conditions
hold:

B1. 7;(¢,0) = 0 for ¢ € [to, +00), 7 = 1,2,

B2. 7;(t,0(t)) € C([to,0),R), i = 1,2,

B3. 73(t,s) is nondecreasing in s for s € [0,0(t)].

Definition 1. The function f is said to eventually enjoy the property
K if there exists to such that for ¢ > to the function enjoys the property K.
Let

_ a(?)
(2) : z(t) = z(t) + / z(t — s)dmi(t,s).
0
Then

a(t)
(3) 2'(t) = —/0 z(t — s)dr(t, s).

Definition 2. The function z defined for all sufficiently large values
of t is said to be an eventual solution of (1) if for all sufficiently large ¢ the

functions z and z are continuous and z eventually satisfies equation (1).

Remark 1. In the paper no solutions are considered for which z = 0

eventually.

Definition 3. The eventual solution z(t) of (1) is said to oscillate
if its set of zeros is unbounded from above. Otherwise it is said to be

nonoscillating.
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According to Definition 1 the nonoscillating solutions of (1) are charac-
terized by the fact that they are eventually positive or eventually negative.
We shall denote the set of all eventually positive solutions by Q+.

Lemma 1. Let conditions (A) and (B) hold. Let m1(t,s) be nonincreas-
ing in s for s € [0,0(t)] and

(4) / "t o(t))dt = oo

to

(5) n(t,o(t)) > -1.

Then, if z(t) is an eventually positive solution of (15, then 2' is a nonin-

creasing function and tlim 2(t) = tlim Z'(t) = 0, 2'(t) > 0 eventually and
—00 —00

z(t) < 0 eventually.

Proof. From (3) and B3 it follows that 2”(¢) < 0 eventually. Hence
Z'(t) is an eventually nonincreasing function. Let for ¢ > #, 2/(¢) be a
nonincreasing function. Then 2(t) is a monotone function. Suppose that
 there exists #; such that ¢, > #; and 2'(¢2) < 0. From (4) and B2 it follows
that m(s,0(s)) # 0 in any interval [¢t,00) and since z(t) is an eventually
positive solution, then there exists 3 > t» such that 2’ (t) < 2'(t3) < 0
for t > t3. Then tlirgo 2(t) = —oo and from (2) and (5) it follows that the
solution z(t) is unbounded. From tlirgo 2(t) = —oo it follows that z(¢) < 0
eventually. Then from (2), (5) and 71(¢, s) nonincreasing in s there follows

the estimate

o(t)
0>z(t)+ /0 z(t — s)drl(t s) > z(t) + , max z(s) - 1(t, o(t))

~o(t).4.
2 z(t) - | max  2(s).

From the above inequalities it follows that there exists ¢4 > t3 such that for

t > t4 the following estimate is valid

(6) z(t) < {t_n(l’z(x.t)):,t] z(s).
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From the fact that z(t) is an unbounded function it follows that there exists

an increasing sequence {7, }§° such that

lim 7, = 400, lim z(ry) = +00 and max z(s) = 2(n).
n—00 [ 0,7 n]

From A3 it follows that there exists t5 > #4 such that for ¢ > t5 we have
t—o(t) > 1o. Then “ m?;x P z(s) < f?a.z](:c(s) and for sufficiently large n € N
we have  max  z(s) = z(7y), which contradicts (6). The contradiction
obta.ined{;’l‘l;:&f::c)h,:t 2'(t) > 0fort > t;. Since 2 is a nonincreasing function,
then there exists the finite limit tlirgo 2'(t) = ¢ > 0. Integrate (3) from #; to

t and obtain

2(t)=2(t) - /t: /:(v) z(v — $)dr(v, s)dv.

Suppose that tlim infz(t) =d > 0. Then

() < (1) —d /t ra(v,0(v))dv.

From (4) it follows that the right-hand side of this inequality tends to —co
as t — oo, which contradicts the existence of the finite limit tli’r& Z'(t) = ¢
Hence tl_lgxo inf 2(t) = 0. We shall prove that ¢ = 0. Suppose that this is
not true, i.e. ¢ > 0. Hence 2/(t) > ¢ and then tl_l_)rgo z(t) = +oo. From (2)
and 71(t, s) nonincreasing in s it follows that z(t) > 2(¢) and, consequently,
tlggo z(t) = +oo, which contradicts the fact that tl_l_glo infz(t) = 0. Thus
we proved that tl_Lrgo Z'(t) = 0. In order to prove the assertion of Lemma
1 it remains to show that 2(¢) < 0 eventually and tlirgo z(t) = 0. Suppose
that there exists £ > #; such that z(¢) > 0. From 2'(¢) > 0 eventually it
follows that there exists Z such hat 2(t) > z(i) > 0 for t > > T which again
contradicts the fact that tlirgo inf z(¢) = 0 since z(¢) > z(t). Hence 2() < 0
for t > t;. We shall prove that tl_l-)I{.lo 2(t) = 0. From 2(t) < 0 and from the
fact that 2(¢) is an eventually increasing function there follows the existence
of the finite limit tlgglo 2(t) = £ < 0. Suppose that £ < 0. From z(t) < 0, as
at the beginning of the proof of the lemma it is shown that inequality (6) is

valid, from which again as above it follows that the function z(t) is bounded.
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Let z(t) < A. Choose n € N such that —nf > A. Since JLim 2(2) = € and
z(t) is an eventually increasing function, then z(¢) < £ eventually. Then the

following estimate is valid

o(t)
£>z(t) + / z(t — s)dri(t,8) > z(t) — z(s) - Tl(t o(t))

(t) 1
> — .
Il?(t) [t— a(t) f] (S)

Hence

(7) i; o(t)' ’ z(s) — z(t) > —L.

From A3 it follows that for ¢ = #; there exists ¢ such that for ¢t > ¢, we
have t — o(t) > t1. Moreover, let o > t;. For the so chosen ¢, there
exists t3 > ty such that t — o(f) > ¢, for ¢ > t3. We can perform this
procedure infinitely, thus defining the sequence {¢,, }{°. Consider the interval
[tn — 0(tn),tn] (n is such that —nf > A). Let z(t,) = a. Then in this
interval by (7) there exists a point 7y such that 2(m) > a — £. Consider the
interval [y — o(m),71]. Again by (7) in it there exists a point 75 such that
z(my) > z(1) — £ > a — 2{. Repeating this process n times, we shall get to
a point 7, such that 2(7,,) > a — nf. The way in which the sequence {¢,}
is defined guarantees that 7, > ;. But from the choice of n it follows that
z(7y,) > A. The contradiction obtained shows that ¢ = 0 i.e. tlirgo 2(t) = 0.
This completes the proof of Lemma 1.

Lemma 2. Let conditions (A) and (B) hold and let the function 1(, s)
be nondecreasing in s. Then, if z(t) € QF, then z(t) > 0, 2'(t) > 0,
Z"(t) < 0 eventually and tlim z(t) > 0. A

Proof. From z(t) € Q% and (2) it follows that z(t) > 0 eventually.
From z(t) € %, (3) and B3 it follows that z”’(¢) < 0 eventually. Suppose
that 2'(¢) < 0 eventually, but then from 2"(¢) < 0 eventually it follows that
tlirgo 2(t) = —oo, which contradicts z(t) > 0 eventually. Hence 2'(f) > 0

eventually which implies that 2(t) is a nondecreasing function and since

z(t) > 0 eventually, then tlim z(t) > 0. This completes the proof of the
— 00
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lemma.
3. Main results.

Theorem 1. Let conditions (A), (B), (4) hold and let the function

71(t,s) be nonincreasing in s. Let
(8) n(to(t) > p> 1.
Then for each nonoscillating eventual solution tlirglo z(t) = 0.

Proof. Let z(t) € Q. From Lemma 1 it follows that 2(t) < 0 eventu-
ally. Suppose that tl_l»r(r}o supz(t) = C > 0. Then there exists an increasing
sequence {t,}$° such that lim t, = 400, lim z(t,) = C. From 2(t) < 0
and (2) it follows that T n—’oo

U(tn)
0> o(t.)+ / o(t — $)dr1(tn;8) > ot b max () - T1(tn,o(tn))
0 [tu_o'(tn)ytn]

> z(t, . .
>l by, )00

Hence the inequality z(t,)<(—p)- ~max z(s) holds. Let us pass to the

[t —o(tn)stn)
limit in this inequality as » — co. From A3 it follows that

lim max  z(s)=C
n—00 [ty —0(tn),tal

and we obtain that C < (—p)-C. Hence p < -1, which contradicts (8).
Consequently, C = 0 and then tlim z(t) = 0. If z(t) is an eventually negative
solution, then —z(t) € 2 due to the linearity of equation (1), that is why

in this case as well tlim z(t) = 0. This completes the proof of Theorem 1.
—00

Theorem 2. Let conditions (A), (B), (4) and (5) hold and let the
function 11(t, s) be nonincreasing in s for s € [0,0(t)]. Then each unbounded

solution of (1) oscillates.

Proof. Tt suffices to show that equation (1) has no unbounded nonoscil-
lating solutions. If z(t) € QF, this follows for Lemma 1. I x(t) is an

eventually negative solution of (1), then —z(t) € Q* and, consequently, in
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this case as well z(¢) is a bounded function. This completes the proof of

" Theorem 2.

The case when p < 71(¢,0(t)) < ¢ < —1 will be considered only if
the function 71(t,s) has the special form 7(t,s) = p(t) - e(s — 7(t)), where

et) = {3, g’éf}g Then equation (1) takes the form

2

d o(t)
(1) S0 st -r@)+ [ alt- () =0

and respectively
(2) z(t) = (1) + p(t), =(t — (1))

Theorem 3. For the function 75(t,s) let conditions (B) and (4) hold,
and for o(t) so do conditions (A). Let p(t) € C([to,+0),R) and

9) p<pt)<gqg< -1

Let 7(t) € C([to,+0),RT) and tli)rgo(t — 7(t)) = +oo0.

Then for each nonoscillating bounded eventual solution of (1)

tlim z(t) = 0.

Proof. Without loss of generality we assume that z(t) € Qt. First we
shall show that in this case as well the assertions of Lemma 1 are valid. In
fact all conditions under which Lemma 1 was proved are met, only condition
(5) is replaced by condition (9). Just as in the proof of Lemma 1, from the
assumption that 2’ is not an eventually positive function it follows that z(t)
is an unbounded function which contradicts the condition of the theorem.
In the proof of the assertions tl_lfg(} Z'(t) = 0 and 2(t) < O eventﬁally we
did not use condition (5). Hence they are valid in this case as well. Tt
remains to show that tl_l}g() z(t) = 0. Suppose that this is not true, i.e.
tlirgo z(t) = —£ (£ < 0). From z' > 0 eventually it follows that z(Z) is an
eventually increasing function. Hence z(t) < —£. Then from (2') and (9)

there follows the estimate
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z(t)+p-z(t— 7)) <z(@)+ ) z(ty —7(2)) < £

In the proof of Lemma 1 we showed (without having used condition (5))
that tlim inf 2(t) = 0. Then, since 7(t) is a continuous function and tlirgo (t—
—00 —

7(t)) = +00, we can choose a sequence {t,}{° such that

lim ¢, = 400, lim (¢, — 7(t,)) = +oc0 and nlingo z(t, — (1)) = 0.

n—00

Then we can choose a number N such that for n > N we should have
z(t, — 7(t,)) < 2::1. Then from the inequality z(t) + pz(t — 7(t)) < —£ we
obtain that z(t,) < —‘2—‘1 for n > N and sinqe nh—rnéo t, = 400, this inequality
contradicts the fact that z(¢) € Q*. Hence tl_l_)I{.lo z(t) = 0. Suppose that
Jim sup z(t) = C > 0. Then we can choose an increasing sequence {t,}*,
such that nh—rnéo t, = +00, nli_)néo(fn—r(fn)) = 400 and nli—E%o z(tn—7(n)) =C.

Then from (2') and (9) there follows the estimate
2(tn) = 2(ta) + p(tn) - 2(tn — 7(82)) < 2(ta) + ¢~ 2(tn — 7(20)).

Let {t,,} be a subsequence of the sequence {t,} tending to £, the upper
accumulation point of {z(%,)}$°. Then z(#,, ) < z(tn, ) + ¢ (Tn, — T(tn,))-
Let us pass to the limit in this inequality as & — oo. We obtain that
0<£€+q-C<C+q-C. Hence C > (—gq)-C > C. The contradiction obtained
shows that tlif& sup z(t) = 0 and hence tlixgo z(t) = 0. This completes the

proof of Theorem 3.

The above results concern the case when the function 7 (t,s) is nonin-
creasing in s. Further on in the work we shall consider the function (%, s)

nondecreasing in s.

Theorem 4. Let conditions (A), (B) hold and let 7(t,0(t1)) # 0 in
each half-interval [t,+00). Let 14(t,s) is nondecreasing in s. Then, if z(t)
is a nonoscillating eventual solution of (1), then |z(t)] < C -t eventually in

t for some constant C > 0.

Proof. Without loss of generality let z(¢) € Q*. Then from Lemma 2
it follows that z(t) > 0, 2'(¢) > 0 and z"(¢) < 0 eventually. From the fact
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that 72(t,0(t)) £ 0 in each half-interval [f,+00) it follows that z"(¢) # 0
eventually. Then 2'(t) > 0 eventually. Integfate the inequality 2"(t) < 0
twice from #; to t, where ¢; is large enough. We obtain that z(t) < 2(#;) +
Z'(t1)(t — t1). H ¢, is large enough, then 2(#;) > 0 and there exists a
constant C > 0 such that 2(t) < C -t eventually. From (2) and the fact
that the function 71(¢,s) is nondecreasing in s it follows that z(¢) < C - ¢

eventually. This completes the proof of Theorem 4.

Theorem 5. Let conditions (A), (B) and (4) hold. Let 71(t,s) be
nondecreasing in s. Then each nonoscillating eventual solution of (1) enjoys

the property ltlim inf |z(¢)| = 0.

Proof. Without loss of generality we shall assume that z(¢) € Q*.
Suppose that tlim infz(t) = a > 0. Integrate (3) from ¢; to ¢, where ¢; is

large enough, #; > tp and obtain
‘ t po(v) t
()= 2'(ty) - / / z(v — 8)dre(v, s)dv < 2'() — a/ 12(v,0(v))dv.
t; JO t1

Hence [, ttl 72(v,0(v))dv < L[2'(t1) — #(t)]. From Lemma 2 it follows that
2'(t) > 0 eventually and 2'(t) is an eventually nonincreasing function. Then
there exists the finite limit tlir(r)lo 2'(t) which implies that the right-hand side
of the above inequality has a finite limit as ¢ — oo, which contradicts (4).
This completes the proof of Theorem 5.

Corollary 1. Under the conditions of Theorem 5 let, moreover, the
following inequality hold

(10) ts;p 71(t,0(t)) < .

Then each nonoscillating eventual solution z(t) of (1) enjoys the property

Lim sup lz(t)] > 0.

Proof. Without loss of generality we shall assume that z(f) € QF.
Suppose that the assertion is not true, i.e. tlim sup z(t) = 0. Then from
~+00

Theorem 5 it follows that tlim z(t) = 0. From the estimate
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o(t)
z(t) = z(t) + /0 z(t — s)dri(t,s) < z(t) -I—[ max z(s) - 11(¢,0(t))

t—o(t),t]

and from (11) it follows that tlim z(t) = 0, which contradicts Lemma 2.
— 00
This completes the proof of Corollary 1.

Remark 2. It is immediately seen that if conditions (4) and (10)
are met simultaneously, then no eventual solution of (1) can be eventually

monotone.

In view of the result of Corollary 1, it is natural to ask what can be said
about the behaviour of the nonoscillating solutions when sup (¢, 0(t)) =
+o00. A partial answer to this question is given by the foltlovsing theorem.
We shall formulate the theorem about the case when 71(t,s) = p(t) - 7(s).

Then the equation takes the form
d2 a a(t)
SO [z(t) +p(0) / ot - s)dr(s)] + / o(t — 8)drs(t, 5) = 0.
0 0

Theorem 6. For the function 75(t,s) let conditions (B) and (4) hold
and for the function o(t)-conditions (A). Let 7(0) = 0 and let 7(s) be a
nondecreasing function with at least one point of discontinuity and p(t) €
C((to,+0),R). Then the following assertions are valid:

(i) if 55 is bounded, then each nonoscillating eventual solution of (1")
is bounded.

(ii) of tlirgo I% = 0, then for any nonoscillating eventual solution z(t)

of (1") we have Jim z(t) = 0.

Proof. Without loss of generality assume that z(¢) € Q. We shall
prove (i). From the proof of Theorem 4 it follows that

2(t) = z(t) + p(2) - /Oa z(t—s)dr(s) <C-t

for some constant C > 0. Hence

p(t) . /: z(t — s)dr(s) <C-t.



1991] ASYMPTOTIC AND OSCILLATORY BEHAVIOUR 323
Then

i
(1)

and we obtain that the function [’ (¢ — s)dr(s) is bounded. Suppose that

/ " a(t - s)dr(s) < C -
0 )

z(t) is an unbounded function. Then there exists an increasing sequence
{tn,}{° such that lim t, = +oo and lim z(t,; = +oo. Let 7(s) have a
discontinuity at t’fle o;oint ¢ € (0,a) anoolet the magnitude of the jump
of the function be 6. Consider the sequence {r,}{°, 7, = foa z(t, + ¢ —
s)dr(s). From the very definition of the Riemann-Stieltjes integral there
follows the estimate [’ z(t, + ¢ — s)dr(s) > (t,) - §. Hence the sequence
{m}{° is unbounded, which contradicts the boundedness of the function
fy z(t — s)dr(s). Thus assertion (i) of Theorem 6 is proved. The proof of
(ii) is carried out by the same scheme. As above,

2t

()

which implies that tlim Jy =(t = s)dr(s) = 0. Suppose that 1tlim sup z(t) =
—+00 =00

/Oa z(t —s)dr(s) < C-

¢ > 0. Then there exists an increasing sequence {#,}{° such that lim %, =
n—r00
+00 and lim z(#,) = ¢. Again as above consider the respective sequence
n—+00

{72}$°, and obtain the estimate

/ax(fn+c—s)dr(s)2w(fn)-6> %-6
0

47

for n large enough, which contradicts tlim z(t — s)dr(s) = 0. This

completes the proof of Theorem 6.

Remark 3. Theorem 6 is also valid for equation (1) if 7 (¢,s) satisfies
the following requirements: 7y(¢,s) is continuous in ¢, there exists #; such
that for ¢ > t; in each interval [t — o(t),t], 71(¢,s) has at least one point of
discontinuity s; and the set of the magnitudes of the jumps at all points of
discontinuity of 71(¢,s) is bounded from below by the constant o > 0. The

proof is carried out in the same way.
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Theorem 7. Let conditions (A), (B) hold, let T1(t,s) be nondecreasing
in s and T1(t,0(t)) < 1 eventually in t. Let the following relation be valid

oo po(t)
(11) /t /0 [1—7(t = s,0(t — s))]}dra(t, s)dt = +o0.

Then each eventual solution z(t) of (1) oscillates.

Proof. Suppose that this is not true and let z(t) be a nonoscillating
solution of (1). Without loss of generality let z(¢) € Q. Then from (2) and
Lemma 2 it follows that eventually the following inequality holds

o(t)
2(8) > #(t) - /0 ot — s)dr(t, ) > [1— 1a(t, 0(2))] - 2(0).

Then from (3), making use of z(t) > [1 — 1(¢,0(t))] - 2(¢) it follows that
eventually the following inequality holds

a(t) ,
2(2) + /0 [ = r1(t = s, 0(t — 5))] - 2(t — 8)dra(t, 8) < 0.

Integrate this inequality from ¢; to ¢, where t; is large enough and obtain

t po(v)
2'(t) + [1~7(v—s,0(v—38))]-2(v— s)dr(v,s)dt < 2'(t1).
t; JO

From Lemma 2 it follows that there exists a constant ¢ > 0 such that
z(t) > a eventually. Then

t po(v) ‘
2'(t) + a/t /0 1 - 71(v—s,0(v —8))]dra(v,s)dt < 2'(t1).

Passing to the limit in this inequality as t — 400 and taking into account

Lemma 2, we obtain that

oo po(v)
/ / [ = ri(t = s,0(t — 8))]dra(t, s)dt < +o0
6 Jo
which contradicts (11). Theorem 7 is thus proved.

Theorem 8. Let conditions (A), (B) and (4) hold. Let m1(t,s) be
nondecreasing in s and 11(t,0(t)) < p < 1. Then each eventual solution z(t)

of equation (1) oscillates.
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Proof. Suppose that this is not true, i.e. there exists an eventual
solution z(t) of (1) which is nonoscillating. Without loss of generality let
z(t) € QF. Then as in the proof of Theorem 7 we conclude that eventually
the inequality z(t) > [1 — (¢, 0(¢))] - 2t holds. From this and from (3) we
obtain that

o(t)
2"(t) + /0 [1-7m(t—s,0(t=s))]-2(t — s)dry(t,s) < 0.

From Lemma 2 it follows that there exists a constant @ > 0 such that

2(t) > a eventually. Then from the above inequality it follows that
() +(1— p)-a - na(t,0(t)) < 0.

Integrate this inequality from t; to ¢, where ¢, is large enough and obtain

)=+ (1-p)-a- /t 72(v,0(v))dv < 0.

Passing to the limit in this inequality as ¢ — oo and taking into account
Lemma 2, we obtain that ft(:o T9(v, 0(v))dv < oo which contradicts (4).

Theorem 8 is thus proved.
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