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Abstract. In this note, we introduce some conservative
diffeomorphisms Hs4 and Ka on the plane which contains the
following types of conservative Hénon mappings as special cases:
Fa(z,y) = (A—y—z°,z)and Ga(z,y) = (A+y—z2,z). Westudy
the bifurcations of periodic orbits of H4 and K 4 with some sym-
metry properties. For the special types of Hénon mappings Fa
and G4, we show that when we consider them as one-parameter
families of diffeomorphisms on the plane with A as the param-
eter, the bifurcations of the first periodic orbits (fixed points in
these cases) are more complicated than we expect.

1. Generalized conservative Hénon mappings. Let v(z) be any
fixed polynomial all of whose terms are of even degrees > 2 and let w(z) be
any fixed polynomial whose leading term is of even degree > 2. For any real
number A, let H4(z,y) = (A—y—v(z),2) and Ka(z,y) = (A—y—w(z),z).
Then it is easy to see that both H4 and K 4 are diffeomorphisms of the plane
whose inverses are also given by polynomials. Furthermore, the Jacobian
determinant of H4 is 1 and that of K4 is —1. So, for every A, H,4 is a
conservative orientation-preserving diffeomorphism and K 4 is a conservative
orientation-reversing diffeomorphism. We call attention to the fact that the
following types [2-5] of Hénon mappings Fu(z,y) = (A — yv—‘mf“’,:z:) and
Galz,y) = (A+y— 22, z) are Specia.l cases of H4 and K4 respectively.

These mappings will be treated in §2 and §3 separately.
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For the diffeomorphisms H,4 and K 4, we have some results on the bi-
furcation of their pe‘riodic orbits with periods > 3. These periodic orbits all
have some symmetry property. Before we state these results, we need to de-
fine some real mappings first. Forv every positive integer n and any real num-
ber ¢, let H3(c,c) = (zn(A,¢),yn(4,¢)) and K% (c,¢) = (2.(4,¢),u(4,¢)).
Also, let

0
gu,n(c) 8A[ n(A C) Tn—l(AsC)}|A=2c+v(c)7

0
hv,n(c) 0.4[ n(A C mn-—'?(A’c)]}A=°c+v(c)s

J
pw,n(c) 5’3[~n(ﬁ1 c) - ~11——1('A7 C)][A=2c+w(c)'

We can now state and prove our main results in this section.

Theorem 1.1. For the diffeomorphism H 4, the following hold.

(2) Letn > 2 be a fived integer and let g, ,(z) be defined as above. Then,
for every (real) zero ¢ of g, n(z), there is a bifurcation of periodic orbit
of period (may not be minimal) 2n for Hy at A = 2¢ + v(c) from fized
points of H 4. If ¢ is the largest zero of gy n(2), then the bifurcated peri-

~odic orbit of H 4 mentioned above has minimal perzod 2n. Furthermore,
all these bifurcated periodic orbits of Ha are symmetric with respect to
the diagonal line y = z.

(b) Let n > 2 be a fized integer and let h, () be defined as above. Then,
~ for every (real) zero ¢ of hy (), there is a bifurcation of periodic orbit
~of period (may not be minimal) 2n — 1 for Ha at A = 2¢ + v(c) from

fized points of . If ¢ is the largest zero of hy (&), then the bifur-
cated periodic orbit of H 4 mentioned above has minimal period 2n — 1.
Furthermore, all these bifurcated periodic orbits of H 4 are symmetric

with respect to the diagonal line y = x.

Proof.  For every positive integer n, let H(c,c) = (2.(A4,¢),yn(A,c)).
By direct computation, we easily obtain that, if 2, = 2,1, then 2,41 =
Tn-2,Tpt2 = Tp_3,...,22p-2 = &1 = A—c—1v(¢), Tan-1 = 29 = ¢. Conse-

quently, IT3*(c,c) = (¢,c) and the orbit of (¢,¢) under H 4 is symmetric with
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respect to the diagonal line y = 2. Since, for some polynomié.l Qn(A,c)in A
and ¢, we have 2, —2,_1 = (A—2c—v(c))[@n(4,c)(A—2¢c—v(c))+ gu,n(c)],
we obtain that (2, —z,_1)/(A-2c—v(c)) = Qn(4, c)(A—2c—1v(c))+gon(c)
which, for every fixed real number c, is a polynomial in A of odd degree.
Hence, the equation (z, — z,-1)/(A — 2¢ — v(c)) = 0 has, for every fixed
¢, some real solutions in A and these solutions depend continuquély on c.
If we choose ¢ to be any fixed real zero of g, (c) and let A = 2¢ + v(e),
then this point (A4, ¢) satisfies the equation (z, — zn-1)/(A—2¢c—v(c)) = 0.
So, these period 2n (may not be minimal, but > 1) points are bifurcated
from the fixed points of H4. If ¢* is the largest real zero of g, n(c) and
A = 2¢* + v(c*), then it is easy to see that the bifurcated periodic orbit of
H, at A = 2¢* 4 v(c¢*) has minimal period 2n This completes the proof of

part (a). Part (b) can be proved similarly.

Theorem 1.2. For the diffeomorphism K 4, the following hold.

(a) Let n be any fized positive integer and let p,, »(z) be defined as above.
Then, for every (real) zero c of py n(2), there is a bifurcation of periodic
orbit of period (may not be minimal) 2n for K4 at A = w(c) from
symmetric period 2 orbit of K 4. If c is the largest zero of py n(z), then
the bifurcated periodic orbit of K 4 has minimal period 2n. Furiicermore,
all these bifurcated periodic orbits of K 4 are symmetric with respect to
the diagonal line y = —z. ,

(b) For every odd integer m > 3, there is a real number A, such that the
point (0,—An,/2) is a periodic point of K 4,, with minimal period m

whose orbit is symmetric with respect to the diagonal line y = —z.

Proof. We only give a proof of part (b). For every integer n > 2, let
K7%(0,—A/2) = (sn(A),1n(A)). If s, = —sn_1, then, by direct computation,
we obtain $pq1 = —Sn—2, Sn42 = —Sn—3,...,82n-3 = —52 = —(A — A?/4),
| S, = —s7 = —A[2. Consequently, Ix'i"_l(()?—/l/?) = (0,—A/2). Since
the cquation $p — s,_1 = 0 is a polynomial equation in A of event degree
with zero constant term, we see that the equation s, —sn—1 = 0 has nonzero

real solutions in A. If A} is the largest real zero of s, — Sp—1 = 0, then we
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easily see that the point (0, - A /2) is a periodic point of K 4. with minimal

period 2n — 1 whose orbit is symmetric with respect to the line y = —=z.

2. The conservative orientation-preserving Hénon mapping.
In this section we consider the conservative orientation-preserving
Hénon mapping F4(z,y) = (A — 2% — y,z). This mapping is exactly the
mapping H 4 discussed in §1 with v(z) = 2%. We can find the explicit for-
mulas for all periodic points of F4 with minimal periods 1, 2, 3, 4 and some
periodic points with minimal period 6. The following result can be verified

by direct computation.

Theorem 2.1. For the diffeomorphism Fy, the following hold.

(1) For any A < —1, F4 has no periodic point.

(2) ForallA> -1, (-1+VA+1,-14+VA+1) and (-1 -/A+1,-1-
\/A—+1) are the only fized points of Fy. )

(3) Forall A>3, {(1+VA-3,1-VA-3),(1-VA-3,1+ VA -3)}
s the only period 2 orbil of Fy. It is bifurcated from the branch (—1 +
VA+1, -1+ VA +1) of fized point of Fs at A = 3.

(4) For all A > 1, {(VA-1,VA=1),(1 - VA-1,VA-1),(VA—-1,
1 - VA=-1)} and {(~VA-1,-VA-1),(1 + VA-T1,-VA-1),
(—VA-1,1+ VA = 1)} are the only period 3 orbits of F. They are
bifurcated spontaneously at A = 1 and the first branch intersects the
branch (=1 + VA +1,-14+ VA F 1) of fized point of I’y al A =5/4.

(5) (a) For all A > 0, let B = A+ 2V/A. Then {(VA.VA), (=VA,VA),
(VA, =VA), (VA -VA)} and {(~VA,VDB),(~VB.-VA),(-V4,
—f]}),(ﬁ,—ﬂ)} are period 4 orbits of Fn. They are bifurcated
from the branch (=1 + VA +1,-1 + VA + 1) of fized point of F4 ai
A=0.

(b) For all A > 4, let C = A — 2/A. Then {(\/K,—\/E),(-\/ﬁ, \/_1),
(\/E, \/—5),(—\/5, \/Z)} is a period 4 orbit of Fu. It is bifurcated from
the branch {(1 + VA =3,1 = VA=3),(1 — VA -3,1 + \/.T——j)} of

period 2 orbit of Fy at A = 4.
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(6) (a) For all A > —3/4, let D = 1 + 4(A+ VA+1). Then {(—VA+1,
(=-1=VD)/2),((~14+VD)/2, VAT 1), (-14+VD)/2,(-1+VD)/2),
(—vVA+1,(~1 +vD)/2),((-1 - VD)/2,—VA+T), (-1 = VD)/2,
(=1 — V/D)/2)} is a period 6 orbit of Fu. It is bifurcated from the
branch (-1 + VA + 1,-1+ VA + 1) of fized point of F4 at A = —3/4.
(b) For all A > 5/4, let E = 1+ 4(VA - VA—1). Then {(VA+1,
(=1 = VE)/2), (=1 + VE)/2, VAT 1), (-1 + VE)/2, (-1 + VE)/2),
(VAT L(-1 + VE)/2),((-1 - VE)[2,VA+1D),((-1 - VE)/2,
(=1 — VE)/2)} is a period 6 orbit of Fa. It is bifurcated from the
branch {(=vVA—1,-vVA-1),(1+ VA-1,-VA - 1),(—vVA=-1,1+
VA =T1)} of period 3 orbit of Fy at A =5/4.

Remark. We call attention to the fact as shown in Theorem 2.1(4)
and (6b) that, for every A > 1 and A # 5/4, Fy has exactly two dis-
tinct period 3 orbits. They are bifurcated spontaneously at A =1, and at
A = 5/4, one of them coalences into and then separates from the branch
{(-1+ VA ¥ 1,-1+ VA + 1)} of fixed point of F4 while the other under-
goes a period-doubling bifurcation. This provides an example of period 3 to

period 3 bifurcation (see also [6]).

Let gn(2) = gy n(z) and hp(2) = hyn(2) with v(z) = 2?. As indicated
in Theorem 1.1, the zeros of the mapping g, (hn resp.) are the bifurcation
values of some periodic orbits of H4 (I 4 resp.) with periods > 3. These
mappings g, and h, can also be obtained by some simple recurrence relations
which are shown in the following result. This result also includes some
- relations and properties of g,’s and h,’s which can be easily proved by

induction.

Theorem 2.2. Let gi(z) = 1, g2(z) = -2z, hy(z) = -1, hao(z) =
22 — 1, and for all integers n > 3, let go(z) = —22¢n_1(2) — gn-2(z) and
hp(2) = —22h,_1(2) — hn-2(z). Then the following hold.

(1) For every integer n > 0, we have
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' - 2 —k+ 1
, G2ni2(2) = —2x-kz_;(~1)k( " E + ) (42%)"* and

n+1 _
G2n4s(®) = Z(‘l)k<2n kk ' 2) (42%)nFH
: : . k=0
(2) gm(z) = 9k+1(2)gm—k(2) = ge(2)gm—k-1(2) for 1 <k < m.

(3) hp(z) = grt1(2)hm—-k(2) — k(@) hm—k-1(z) for 1 < k < m.

(4) For all positive integers m and n with m dividing n, g, (z) divides gn(a:)

(5) g2k+1(2) = [grs1(2)]* = [98(2)]* = [~ gk41(2) - gr()][—grr1(2) + gk (2)].

(6) For every positive integer k, hiy1(z) = —gr41(2) — gi(z) and hyy1(z)
divides gy 41(2). ‘ ;

(7) For all positive integers k and n, hn(:c) divides h(yn_1)k4+n(Z).

(8) For every integer n > 2,¢,(z) has ezactly n — 1 distinct real zeros and
these zeros all lie in the interval (—1,1). Furthermore, between any two

consecutive zeros of gn(x), there is a zero of gn4+1(¢), and vice versa.

Proof. ~ We only give a sketchy proof of part (8). When n = 2,
the result is clear. So, assume that n > 3. Now, by definition, we have
gn(z) = —22gn_1(2) — gn—2(z). Consequently, it follows, by induction, that
at the zeros of gn-1(2), the signs of g,(z) (which are determined by g,_»(z))
change alternatively. This, together with the sign of g,(1) and that of g,(0)
or that of [g,(z)/2]jz=0 depending on whether n is odd or even, implies the

desired result.

Remark. It seems that the zeros of all the h,’s are dense in the
interval (—1,1) (see [1, 3]). However, we are unable to show this. Instead,
we show in the following that A = —1 is a limit point of the set of the zeros
of all the h,’s. In the meantime, we also show that A = 0'is a limit point

of the set of the zeros of all the g,’s.

Theorem 2.3. For every positive integer k, let gi(z) and hi(z) be
defined as in Theorem 2.2. Then the following hold.
(a) For every integer n > 7, hn(~1+6/[(n—1)n])ha(—1) < 0. Consequently,
A = —1 is a left accumulation point of bifurcations of minimal period

2m — 1 points of Fy for inﬁhitely many positive integers m.
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(b) For every positive integer n, gany2(1/+/(n+ 1)(n+ 2))g2n+2v(0) <0
and gony3(1/+/(n + 1)(n + 2))g2n+3(0) < 0. Consequently, A =0is

a left accumulation point of bifurcations of period 4m points of Fy for

infinitely many positive integers m.

Proof. (a) For every positive integer n, we have

: . . n-1 ’
Cha(-14 €/2) =(2n — 1){ 14 z [(_1)m+1 (ij_‘_ﬁ:_l_)'] €m}
m=1 .

(2m +1)!
— (2n—1) {_1 N "(n3!— D, _(nt 1)n(n5—!— D(n-2)

4 (n+2)(n+1)n(n —'— (n —2)n - 3)63 _ }
7!

So, by taking € = 6/[(n — 1)n] with n > 7, we obtain that h,(—1+4 6/[(n -
1)n]) > .025(2n—1) for all n > 7. Consequently, hn(—=1+6/[(n—1)n])hxs
(—1) < 0 for all n > 7. Therefore, if n > 7 is a fixed integer, then there is a
bifurcation in (=1, —146/[(n— 1)n]) of periodic orbit of F4 of period 2k —1
(may not be minimal) for every positive integer k > n. In particuldr, the
point A = —1 is a left accumulation point of bifurcations of periddic orbits
of F4 of minimal period 2m — 1 for infinitely many positive integers m.

(b) For every positive integer n, we have

n+1

’ _ !
g2n+3(x) — Z(_l)m (2n m+2)
m=1

(2n — 2m + 2)!m!

(zm'2)n—m+l .

So, if z = 1/1/(n + 1)(n + 2), then it can be easily shown that, for all inte-
gers 0> 1, [gansa(1/ /(0 ¥ D)0 + 2)| > 41 and ganga(L/(n + D)(n + 2))
g2n43(0) < 0. On the other hand, for every positive integer n, we have

n

Gana(z) = D (-1)"H!

m=1

(271, —-m+ 1)' ( _2)71—111
(2n —2m + 1)!m!" ’

Consequently, it can also be easily shown that, for all integers n-2> 1,

lg2n42(1/v/(n + i)(n + 2))| > 41 and
gang2(1/y/(n + 1)(n + 2))g2n12(0) < 0-
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Therefore, for every positive integer =, there is a bifurcation in (0,
1/+4/(n + 1)(n + 2)) of periodic orbits of F, of period 4k (may not be min-
imal) for every integer k¥ > 4. In particular, the point 4 = 0 is a left
accumulation point of bifurcations of periodic orbits of F'4 of period 4m for

infinitely many positive integers m.

3. The conservative orientation-reversing Hénon mapping. In
this section we consider the conservative orientation-reversing Hénon map-
ping G4(z,y) = (A — 2% + y,z). This mapping is exactly the mapping K 4
discussed in §1 with w(z) = z*. For this mapping G 4, we have the following

easy result which can be proved by direct computation.

Theorem 3.1. For the mapping G 4, the following hold.

(1) For any A < 0, the mapping G 4 has no periodic point. ‘

(2) For A = 0, the point (0,0) is a fized point and there are no other periodic
’points'for Gg. .

(’3) For all A > 0, (VA,VA) and (—VA,—V/A) are the only fized points of

| G4 and {(VA, f\/Z),(—\/Z, VA)} is the only periodic orbit of G 4 of

mintmal period 2. v '

(4) Forall A> 1, {(~1+vVA - 1,1-VA=1),(1+ VA= 1,-1+/A 1),
(-1-VA-1,1+ VA-1),1-vVA-1,-1- VA —1)} is a periodic
orbit of G 4 with minimal period 4 which is bifurcated from the period 2

orbit {(VA,~VA),(—VA,VA)} of G4 at A= 1.

For every positive integer n, let p,(2) = py o(z) with w(z) = 22, As
indicated in Theorem 1.2, the zeros of p,, are the bifurcation values of some
periodic orbits of G4 of some even periods > 4. These periodic orbits are
all symmetric with respect to the diagonal line y = —z. These mappings
can also be obtained by some simple recurrence relation as is shown in the
following result. This result also lists some relations and properties of p,’s

which can be easily proved (by induction).

Theorem 3.2. Let pi(z) = 1, po(z) = 2z + 2, and, for al integers
n 2 3, let pa(z) = pr-1(2)[(-1)"(22) + 2] — pr—2(z). Then the following
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hold.
(1) (a) For all odd integers n > 1, we have

(n-1}/2

i) = {1+ Y (—1)1((f_1n - (om-17)) 225+ 1)8) % |

(b) For all even integers n > 0, we have

nf2

pu(z) = [(z + 2)n/2]{1 + 2(-1)1’({ H (n? 4m2)] [221'(2]' + 1)!])#1’}.
j=1

(2) For all integers k > 2, we have

kol

pZA(m) pz(l Z(‘l)j+1p2k~2j+l(’$) and

k E

P2reg1(2) = pa(2) Z(—l)j“mk—-zjﬂ(w) - Z(—l)j+1P2k-2j+1(93)-

(3) For all integers k and m with 1 < k < m, we have
P2m (%) = par+1(2)p2m—2k(2) — p2x(2)p2m—26-1(2)  and

P2m+1($) = P2k+1($)P2m—2k—1($)—

(2 — 22)pam—2%( Z Y pok—2jp1(2)-

Eod

Consequently, if m and n are positive integers with m dividing n, then
Pm(2) divides pp(2).

(4) For every integer n > 2, pn(z) has ezactly n — 1 distinct real zeros.
All these zeros lie in the interval [—1,1) and those lying in the interval
(—=1,1) are syinmetric with respect to the origin. Furthermore, when
n > 5, between any two consecutive positive zeros of pp(), there is a

positive zero of pny1(x), and vice versa.

Remark. It seems that the zeros of all the p,’s are dense in the

interval (—1,1). However, we are unable to show this. Instead, we show in
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the following that A = 0 and A = 1 are limit points of the set of the zeros
of all the p,’s.

Theorem 3.3. For the one-parameter family G 4(z,y) = (A-z*+y,z)
with A as the parameter, the following hold.

(a) A = 0 is a left accumulation point of bifurcations of periodic orbits of

G 4 with period 4m + 2 for infinitely many positive integers m.

(b) A =1 is a right accumulation point of bifurcations of periodic orbits of

G 4 with minimal period 4m for infinitely many positive integers m.

Proof. (a) For every odd integer n, we have

(n-1)/2

pal) = {1+ 3 (07(( [T - (25 - 171 2024 + 13)e}.
j=1 k=1 ,

So, if z = 2¢/4/(n — 1)(n + 1), then

N € (mP-9)e  (m®-9)(m®—25)¢
p"(g“)_n{l_?sﬁ(mz_nﬁ_(m2—1)(m2—1) 7!+"'}

2 4 2 _ . 2 _ 6
cnfio € 8 (i o9)m =25) &
3175 (m2-1)(m?-1) 7!

+ } < —0.00041

for € = 3.2 and all odd integers n > 20. Therefore p,(6.4/+/(n —1)(n+1))
pn(0) < 0 for all odd integers n > 20. Consequently, if n > 20 is a fixed odd
integer, then there is a bifurcation in (0,6.4 /m) of periodic
orbit of G 4 of period 4k + 2 (may not be minimal) for every odd integer
k > n. In particular, the point A = 0 is a left accumulation point of
bifurcations of periodic orbits of G 4 of period 4m + 2 for infinitely many
positive integers m.

(b) For every positive integer k, let gx(¢) = pax(2)/(2 +2). Then it is
easy to see that gx(z) satisfies the following recursive formula: ¢1(z) = 1,
g@(z) = —2% + 2 and qei1(2) = (=2 + 2)qe(z) — gr-1(z). Therefore, if

0<e<4and 2= V4d—¢ then a(Vi—¢€) =1, g2(Vd—€) = -2+ ¢€and
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G+1(Vid—¢) = (42 + €)qr(v4 — €) — qx—1(v/4 — €). Consequently, we have
(V4 —€) = (- l)n—l‘In(\/_)

~ (~1yn (1+Z( 1)’{H(n 123+ 11 }).

Let € = z%/(n® — 1). Then

(n? — 4) 2* (n ~4)(n? —9) 2®
3! (n2—-1)5!  (n? — 1)(n2 )7
2?2t (n® —4)(n?-9)2b

1_5_{_?_ m2—1)(n2-1) 7"

< —0.00041 for 2 = 3.2 and all integers n > 10.

+

Therefore, ¢,(1/4 — (3.2)2/(n? — 1))ga(2) < 0 for all integers n > 10. Con-
sequently, if » > 10 is a fixed integer, then there is a bifurcation in

(1 — 2.56/(n% — 1),1) of periodic orbit of G4 of period (may not be mini-
mal) 4m for every integer m > n. In particular, the point A = 1 is a right
accumulation point of bifurcations of periodic orbits of G 4 of period 4m for

infinitely many positive integers m.
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