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Abstract. In this paper we give a sufficient condition for
the global regularity of the 3-Neumann problem. This condi-

tion is satisfied, for instance, by any smoothly bounded convex
domains in C2.

1. Introduction. Let D be a smoothly bounded pseudoconvex domain
in C™ with the standard Euclidean metric. The 8-Neumann problem on D
is concerned with the regularity of the solution u to the following equation.

Namely, given f € L% (D), let u € L} (D) be the solution that satisfies
(1.1) Q(u,v) = (3u,0v) + (37,0 v) = (f,v),

for all v € ﬁp,q(D). For definitions see the statements of Theorem 1. Then
we ask ;
(i) (Local regularity) Is u smooth up to the boundary near zo € bD if f is
smooth up to the boundary near z¢ ?
(i1) (Global regularity) Is u € C'gf’q(_ﬁ) if fe C;,’f’q(ﬁ) ?
Since the equation (1.1)is elliptic inside the domain, hence interior regularity
causes no trouble by standard elliptic regularity theorem.
Local regularity of the 9-Neumann problem on finite type domain in
the sense of D’Angelo [9] have been proved by Kohn [12] [13] [14] and Catlin

[3]. On the other hand some techniques have been developed to establish

the global regularity of the 9-Neumann problem on weakly pseudoconvex
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domains, for instance, see Boas [1], Boas and Straube [2], Catlin {4], Chen
[6]. Recently the author also showed in [7] that the local geometry of the
boundary presents no obstruction to the global regularity of the 9-Neumann
problem.

The purpose of this article is to present a sufficient condition for the
global regularity of the 9-Neumann problem. Here are our main results.

Let D C C™, n > 2, be a smoothly bounded pseudoconvex domain
"= 1lonbD. If

with a normalized defining function r», namely, Z‘ 8
j=1 ]
5‘;‘(330) # 0 for some z¢ € bD, then one can choose

ar 9 Or 9

1.2 Li=——+——, k=1,...,n-1,

(12) kT 0z Oz, 0z, 0z "

to be a basis of TV°(bD) near 2. Put L', = > 8_7' 0 .
= (?Zj azj

Theorem 1. Let D Q C™, n > 2, be a smoothly bounded pseudoconvez
domain with a normalized deﬁningAfunction r. Suppose that the Levi form
degenerates to infinite type.on_a compact subset M of the boundary and that
D s of finite type outside M. Let V be an open neighborhood of M. Suppose

also that D satisfies the following three conditions,

(ii) There exists a real (or purely imaginary) tangential vector field T defined
on V and complimentary to T'°(bD) @ T*1(bD). Set

n—1 n-—1
(1.3) [TL]—akT+Z(LLJL +Zb“ 5 o k=1..,n-1,
: j=1 j=1 :
, n—1 n—1
N — —~ —~ I
(1.4) [T L) =aT+ Y ayli+ > byL;, k=1,....n-1,
‘ j=1 j=1
n—1 n.l -
(1.5) [T L ] = anll+bnLy + Y ani L+ > basL;,

j=1 - j=1



1991] GLOBAL REGULARITY OF THE E—NEUMANN PROBLEM 193

-1 n—1
-+ ~ 5 o=t ~ T
(1.6) [T,I,] = @nl! +bnL, Zanjz;g + Z»bnij,

where ay, ak, by, bk, arj, Gkj, by; and Ek], k=1,...,n, are smooth func-
tions defined on V.

(iii) ax and ax, k= 1,... ,n, vanish on M. '

Then the 8-Neumann problem is globally regular on D. More precisely, if
f e Wk (D), let ue L2 (D) be the solution to the equation (1.1) for all
v E 5p,q(D), then u € W} (D) and ||ullx < C||f||x, where Wk (D) is the
Sobolev space of order k for (p,q)-forms on D and ’5p,q(D) is the completion
of all smooth (p,q)-forms with Neumann boundary conditions, denoted by
D, o(D), under Q.

We would like to point out here that ﬁrst, condition (i) is not neces-
sary. It can be achieved by introducing a suitably chosen cut-off function.
Secondly, the techniques employed in this article have been used before by
M. Derridj, D.S. Tartakoff and the author to study the global analytic hy-
poellipticity of the d-Neumann problem. (e.g. see Derridj and Tartakoff
[10], Chen [5].) However in their works they need the vector field T to be .
defined globally and the functions ay, ax, k = 1,... ,n, defined in Theorem
1 vanishing on the whole boundary. Therefore we think our conditions are

more reasonable.

2. Examples. The formulation of the d-Neumann problem is well-
known now, e.g. see [11]. So we omit it

Next we give some examples that satisfy the hypotheses of Theorem 1.

Example 1. Any smoothly bounded convex domain in C? satisfies the
hypotheses of Theorem 1, hence the d-Neumann problem is globally regular

on such domains. The details of the proof of this fact will appear in Chen
(8]

Example 2. Let B, denote the unit ball in C™, n > 2. Put

Di=B,n{(z1,.--,2n) €ECM"yn < a with 0 < @ < 1 and zp = Zpn + t¥Un},
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and round the edge of D;. Call this domain D. It is easy to see that D is a
smoothly bounded pseudoconvex domain that is Levi-flat on a real (2n—1)-
dimensional ball M sitting in {y, = a}, and that D is of finite type outside
M. In fact one can make D to be strictly pseudoconvex outside M. Note
also that the domain D is not circular, not of finite type, and that D does not
satisfy property (P) introduced in Catlin [4] either. Let p(z) be a defining
function of D. We see that p(z) = y, — @ in some open neighborhood U of

the interior of M. We normalize p(z) as follows. Put

(2)
r(z) = P 172"

a~J ()

On U we have gfi —0forj=1,...,n—1and 22 = —i. It shows that

1
dzn 2
#(z) is a normalized defining function for D and r(z) = 2(y, —a) on U.

Condition (i) is clearly satisfied. For condition (ii), set
- "L Or i "L or
=il Ty =i S L0

and

dr 0 or 0 :
Li.:a—zn—as 9 05, fork=1,...,n—-1L

We see that T is a real tangential vector field and complimentary to

T WD) @ T (bD).

On U we have

and

Lo=—-i—,k=1,....n -1,
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Therefore
[T,L.] = [T,I,}]=00n U fork=1,... ,n.

It follows that ax = ax = 0 on U for k = 1,... ,n. Hence condition (iii) is
satisfied. Then by Theorem 1 the d-Neumann problem is globally regular
on D. ’

3. Proof of the main results. The idea for proving Theorem 1 is
very standard. We have to first obtain an a priori estimate for the solution
u. Since the equation (1.1) is not elliptic up to the boundary, we modify
the equation as in Kohn-Nirenberg [15] as follows. Define the form Qs, for
0<é<1,by

(3.1)  Qs(u,v) = Q(u, v)+6z ((a” -f—y) + (; u, a(z”>)’

for all u,v € Dp,q(Dj. Then we extend Qs by continuity to ’15;5,’,1(1)), the
completion of D, 4(D) under Q5.

Lemma 3.2. '5g’q(D) is independent of § > 0, and is contained in
Dpo(D)NW, (D).

Since Qs5(#,¢) > Q(,¢) for all ¢ € 5g;q(D), given f € L';’,,q(D), there

exists an unique solution us € 25f,,q(D), denoted by us = Nsf, such that

(3.3) Qs(us,v) = (f,v),

for all v € ’ISZ‘Z (D). Tt is also obvious that elliptic-type estimate holds for
Qs. Therefore if f € CJ, (D) we have us € C (D) From now on we will
assume that f € C3, (D) sois us = Nsf.

Next we choose a local orthonormal basis wi,... ,Wn-1,Wn for (1,0)-

forms on V. We may assume that

ar

Z‘azj

Wy =
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Let Ly,...,L._1,L, be the dual basis for T1O(C™) on V. We see that
Ly,...,Ln_q arein TYO(bD) and

—1/2

ZI@ZJ Z * 0z 821

Then locally on V one can express @ and 8 as follows. If u € D, o(D), write

u = ZUIJ'U)I AWy with |I| = p and |J| = ¢, where I and J are strictly
J '
increasing multiindices. Then

(3.4) du = (-1)? Z sk"Jfk(u”)wI A wx + terms of order zero,
KIJK '

(35) Ju= (—1)PH1 Z el Le(urs)wr AWy + terms of order zero,
kIHJ

where |I| = p, |J| = q, K| =q+1,|H|=q—1and ef; (or £/,;) is the sign

of the permutation taking kJ (or kH) to K (or J respectively).

Now choose an open neighborhood Vi of M such that V; C ViccV.
Also choose a cut-off function ¢, 0 < ¢ < 1, such that ¢ = 1 in some
open neighborhood of M and such that the support of ¢ is contained in V;.
Denote by Op(s,k) any tangential differential operator of order k& formed
out of the L;,L;,i=1,... ,n— 1 and T in all order with precisely s L;’s or
L;’s. Denote also by 5})(/.,) any differential operator of order %, i.e., it may

involve the normal differentiation. Define

(3-6) | @Op(s,k)us = Y (9Op(s, k)(us)1s)ws A Ty,
) 1,J

and

(3.7) POp(k)us = 3 (pOp(k)(us)1s)wr ATy

I1,J

Then inductively we will show that

(3.8) L= ) lleOp(k)usl* + IL < C(R)IISIIE,

finite sum
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where
n _ v n—1 -
(3.9) I = Y NTi(eTrus)lP + Y N Ls(eT* T us)ll®

+ ||¢Tku5H2 + Q&((PTkU(s, ¢Tku5)7

and in the first term of I we sum over a finite basis of k-th order differential
operators évp(k), and the constant C'(k) depends on k, but will be indepen-
dent of 6. The second and third terms of I in fact are included in the first
term of Iy, we single them out just for clarity and technical reasons.

The initial step %k - 0 is easy to check simply by observing that the
derivative of the cut-off function ¢ is supported at finite type points of D
where we have a stronger local estimate, namely, subelliptic estimate of
order €, 0 < € < 3. So we assume that the estimate (3.8) holds up to k- 1.

Then we will show that it also holds for k. First we estimate 1.

Lemma 3.10.

n—1

- L 9 = 2 1 2 8 5
S LT  tug)l* < Clk = LSIfIR-q + glsup I T us)l?,
=1

where sup [A;]* = sup(|M1]%, ... 5] An=1]?) on Vi, and Als are defined by

n—1 n—1
(3.11) [Lj,fj] = /\jT+ ZCﬁLi-}- Zdjizi,
t=1 i=1

and S could be any positive number. Here cj; and dj; are smooth functions
defined on V.

Proof. The proof is straight forward simply by the integration by parts

and by using the following well-known trick
1
|AB| < ZIAP + SIBI,
where § could be any positive number. So we are done.

Since sup |};|* is finite on V1, by choosing S large enough we may
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assume that £(sup [A;]?) < 1, so we have

(3.12) I < C(k = 1, )Iflli-y + CQs (T us, 9T us),
where the constants C and C(k — 1,5) are independent of §. Put
(3.13)  IILy = |[0pT* us||® + [|0" T us]|?

o3 (|Zerul + o)

= (¢T*f,oT*us) + E+ E" +6 Z(Ez; + E,;),
i=1

~where £ = Ey + E; + E5 + E4, and
Ey = ([0, ¢)T*us, 00T us),
= (9T"us, [0, Bl T us),
= ([0, T*Jus, 8p*T* us),
Ey = (Ous, [(T*)*, 0] T us).

Similarly there are four terms for each E*, E,, or Ezj, and in E*, E,. or

E,; we simply replace dbyd, 5‘2—_ or a—gf respectively.
7 7
Estimates for F; and E,.

s .
|E;| < C(k, So)llfII7 + 5—0ll399T'”U5||2, j=12,

where the constant Sy > 0 will be determined later.

Estimate for Fj.

Lemma 3.14.

M»

(i) [0,T*%] = (") [...10,7],7]...]T*

J

1

[
Il

-~
j—brackets

) 10,7),7]. ]

1_.._

M»

.
il

Jj— brackets

k
= k[0, TIT* ' + ) Op(k - j +1).

i=2
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-

(i1) @, (T")"] Z( )(T*)k i [[5,T:r],T*]_...]

j—brackets
— k . ———
= k(T 1[0, T + ) (T*)*7 - Op(< 1),
i=2
where the underline means that there are at most ( ) such terms with suitable
plus or minus signs. Similar equations also hold if we replaces dbyd.

Proof. Obvious.

So if we apply equation (i) in Lemma 3.14, then by induction hypotheses

we obtain

|Es| <C(k, SO)HfIIk+-H@99T"uaH +/»Z|([L],T]T" Lus, 09 T us)|

=1

)Ha(PTku5“2+(l‘SO)Z”(PLJ’T]TIC Lugl[.
i=1

<C(k, S|+ (*

Lemma 3.15. By induction hypotheses we have

. . 2 0 2 :
() 1IelLs, TIT* Yusl® < Ck = 1, )1 fIs + Flsup Al sl
+y(sup [af?)][¢T us]?, for 1< j <m 1,

.. e ' 2 2
(i) l@[Ln, TIT* tus|® < C(k = L, S| flli— + g(suplAjl MpT us||?
+ ’7A||99TkU6H2,

where ¥ = the supremum of the square of the absolute value of the co-
efficient functions on V that results from taking commutators or chang-

ing basis, and supla|* = sup(|ax|®,|@x)?),k = 1,...,n on V1, and A =

sup(|R@,|%, |[R,T] — Ran|*) on V, with R = \/_(ZIC)
%

-1
5

) ° Same es-

timates also hold if we replace L; by L] for1 <y 5 n.

Proof. If 1 € j < n —1, then

n-—-1

(3.16) Lj=gjili, and L} =Y hieLe,

g=1
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where g¢;; and hj, are smooth functions defined on V. Hence

n=1 - on-1
[L;,T] = Z[gm JLi +Zgﬂ o Tl
i=1 i=1
n-1 n—-1n-1
SIS WIS ) yERE:
— o 1 - soi= 1 £=1
+ ) (—giibie) Le-
i=1 ¢=1

Therefore by Lemma 3.10 and induction hypotheses, we have (1). For (ii)

we observe that T is complimentary to T1°(bD) & T%}(bD) on V, so one

can write
- n—1 —
T =g(L, — L) = D _(9:Li+g.L;) with g # 0 on V,
=1
and ‘
, n—1
— —I
L=¢g'T+I,+ > (9 g: L+ g7'9L;)-
i=1

Hence we have L,, = RL!, R = V2 on the boundary, and

(3.17)[L,,T] = [R,T)L, + R[L',T]

n?

n—1

= [R,T]L; R(anL’ +b,L, +ZanJL’+meL )
i=1 j=1
n-1 .

= ([R,T]- Ran)< ‘1T+L +Y (97 gl + g™ gzL))
i=1

n—1 n—=1 ‘
~ R0y + Y aniL+ Y baiL5).
Again by Lemma 3.10 we obtain (ii). This completes the prbof of the lemma.

Therefore by Lemma 3.15 one can estimate | E3| as follows:
5 14 nk ,
[Es| < C(k, So, I+ (=g )09 sl + GalloT s,

where Gy = v(kSo)(Z(sup |A;|*) + (n — 1)(sup |al?) + A)..
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Estimate for Fjy.

By Lemma 3.14 (ii) we have

k
Ey = —k(0us, (T*)*1[0, 10" TFus) + Y _(Bus, (T*)¥ 7 0p(< 1)0*TFus)

Jj=1

k
= —k(T*"0us, [0, T"10* T us) + > (T 70us, Op(< 1)0*T*us)
j=2

= T1 +T2

In order to estimate T, we will throw one T (or two T's) from the right to
the left. Since T* = —T + h, where h is a smooth function defined on V, we

have

(3.18)  |Ta| < CURIfIR} + (9T *Bus, Op(< )T 2ug)| -
: 1 Y 2 1 ey 2
< C(k, SO fII} + = l1edT us|[* + - l[T*, Bus]
S() SO

1= o :
< C(k, So, I 1% + S,EHOQDT"WHZ + GalleT us||?,

where Gy = Tg(%(sup IA;12) + (n — 1)(sup |a|?) + A).

For term T} we throw one T from the right to the left, and get
(319) T3] < CO. So)llAIE + Il usl
5 (6T Bus, [T, TIT )
=1 ,
< Ol SOl + - e usl

+ kY {I(T* Bus, ol[L;, T), TIT* us)|

j=1
+|(T*dus, [, T[L;, TIT* us)|
+ | (heT* " Qus, o[L;, TIT* us)|
+ [([p, TIT* Bus, o[L 5, TIT* ' us)]
+[(#BT*us, o[T5, TIT*ug)
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+ |([T*, BYus, L, TIT* us)|}
nk =
< C(k, So, AN + g;llawTkuesIP + GalleT" usll?,

where

G = L2 2L (qup ) (54 b k5o (G sup AP

+(n- 1)<sup|a| )+ 4).

1t follows that we have

(3-20) |Ed| < |Thl+ T2
o , /l+n
< C(ks S0, SR + (55 ) 0T sl
+ (G + G3)||<PTkU6|| :
Put these estimates together, we obtain
(3.21) |E] < |Ex| + |E2| + | Es| + | E4
4+2
< Ok, S0, A+ (o) 18T sl

+(G1+ G2 + G3)H¢PT'CU5H .

This completes the estimates for E.
Now we can estimate E* by applying exactly the same arguments, so

we get

. 4 + 2nk
(322) B <CU S0, AR+ (5

+(G1 + Ga + G3)l|T*us||>.

)@ e us I

The estimates for E.; will be done along the same line developed above,

so we get

*

_ . o 10 @ SR
(3.23) IE:»llsC(k,So)IlfHH-—H.——:soT‘ua

B o) <Ok, SIS + = I\ 99T"“6H

B2y <O S0, SR + |5 o7
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+(1250) (1 + (sup ) [T s
g

<8 (1 o [ o)

)

1+kH

<C(k, So, S)IIfII} + ‘PTk“&H

+(gotr (14 5l )

24+ k2

2 k. 112
(2k +kSo+ S, ))HcpT us|l®.
It foﬂows that we have for 1 < 5 < =n,

(324) 1Bx,1 < Ok, S0, SIAG+ (20) || oz G|+ GalleT

where Gy = & -+ (1 + L(sup|A; ! V)(2k* + kSo + k2 So + —"'—) It is clear
that the estlmate (3.24) works also for all Ez]., 1<j<n

Finally we obtain

(3.25) Il = Qs(¢T us,oT us)
, 1 e 2
< C(k, So, I fIl% + THﬂPTku&H“ + SolleT* £1I?

4+ 2nk
+< ton )(H()@TKU‘SH + 110" T  usl|*)
So

+2(G1 + Ga + G3)| [T us|[?
o (5 (el

"1L6H~> + 2G4||9’1’Tkusug>-

* “83]- '

Now choose S5 = max(8+ 4nk,20C (1 + 27)), where C' is given in (3.12), we
get |
(3.26)  II1 < C(k, S0, SR + 2S0ll0T* fI1?

+ (— +A(Gy + G + G3) + 408Gy )||<,9T'°u6n2.
So



204 SO-CHIN CHEN [September

It follows that

(3.27) II, = Z [|Z;0T*us||?
j=1
n-1
+ > LT ugl? + [T us| 2+ 111,

i=1

< C(E, SR + ColloT*us] |2,

where Cp = C’(SA0 +4(G1 + G2 + G3) + 4n6Gy). Since Sy has been fixed, by
shrinking the set V; and letting é > 0 be sufficiently small and letting $ > 0
be sufficiently large, we have Cy < % It follows that

(3.28) Iy < CR)If1IE-
This completes the estimate for II;. In particular it shows that
(3.29) lleT us|l* < CRIFII,

where the constant C(k) is independent of é > 0.

Next we have to estimate the mixed tangential derivatives of ug, i.e.,
@Op(s, k)us for all s < k, and normal derivatives of us. The estimates for
these derivatives are standard, e.g., see [6]. Tence the proof for the estimate
(3.8) is now complete.

Once we have the a priori estimate (3.8), it is standard to see that the
O-Neumann problem is giobaﬂy regular for all order by applying the regu-
larization theorem developed by ‘Kohn-Nirenberg [15]. This also completes

the proof of Theorem 1.
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