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ON REDHEFFER’S TYPE THEOREMS
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Abstract. In the present paper we show that Redheffer’s
tjfpe theorems for C? entire solutions of differential iilequa.lities
on the Euclidean space can be generalized to complete Rieman-
nian manifolds of nonnegative Ricci curvature.

In the paper [5] Redheffer gave a systematic method for studying c?
éntire solutions of differential inequalities on the Euglidean space R". We
shall be concerned here with the interesting theorems of Redheffer and try to
-~ establish the same type theorems in the case of complete Riemannian mani-
folds of nonnegative Ricci curvature. We shall see that the proof of Redheffer
will essentially work for us except some technical modification. For simplic-
ity, we just only interpret the technique in two special cases, Theorem 1 and
Theorem 2. Finally we state the sharper forms, Theorem 3 and Theorem 4,

since the proofs build on the same idea but more complicated.
Now we consider the two dimensional case:

Theorem 1. Let M be a complete Riemannian surface with nonnega-
tive Gaussian curvature. Let u be a real valued C? function defined on M |
with the supremum m. Suppose'that there ezists a positive constant € such
that

Au > —%IVMZ

in the set {z € M *m —¢ < u(z) < m, 0 < [Vu|(z) < €}. Then u is

Received by the editors January 5, 1990 and in revised form August 3,19‘90\:;5 :

1



2 HSING-HSIA CHEN AND YI-JUNG HSU [March

constant.

Proof. Suppose u is not constant, then there are positive numbers

R; and 6§ with supu = m — §, where B, is the closed geodesic ball with
B,

center at zp and radius R;. Denote the function » : M — B; — R by

v(r) = lnln(h(r)), where R; is some constant with eR; > R; > Ry > 0, B;

is the closed geodesic ball with center at z¢ and radius Ry, r is the distance
(6 - 1)7’+ Rl - €R2

function from zg and h(r) = B
1— £t

. Then at the point where

r is smooth, we have

e—1 2
Vol = [(Rl._ Rg)ln(h(r))h(r)]
and
Y. (e-1DAr IVl (e—1)2
A= B T B Y T = B RG)?
(6 - 1) _ lV’U'Z _ (6 - 1)2

1) = F(Ri = Ro)m(A(r))A(r)
2 (e - 1)(R'1 — eRz)
SV R TR R
< —|Vo)?,

(B1 — R2)? In(h(r))h(r)?

here we have used the Laplacian Comparison Theorem [7]. Since » has the
supremum m, there is a point T in m — By with u(Z) > max(m — ¢, m — §).

Choose a small positive constant € so that

(1.2) w(z)- Ev(r('a?)) > max{(m — ¢,m — §), Eaﬁ <eand €< e

Since v(r) — 00 as r — 0o and u is bounded from above, u(z) —ev(r(z)) —
—~00 as r(z) — 00, there is a R3 with R3 > R; such that u(z) — ev(r(z)) <
m — € for all ¢ in M — B3, where Bj is the open geodesic ball with center at
zo and radius R3. Hence the maximum of u — €v(r) over M — Bj is attained
at some point # in By — B.

If r is smooth at kﬁ:,ythen at &

(1.3) |Vu| = €|V,
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(1.4) Au < eAv.

Since at £, |Vu| =€Vv| >0, m > u > m—e+€ > m—e. Furthermore, by
-1
1.2) and (1.3), |Vu| = €Vv| < @'(R -
(12) and (13), V0] = &V0] < B'(Ra) = T
that m — € < u(£) < m and 0 < |[Vu|(Z) < e. But by (1.1), (1.2), (1.3) and
(1.4), at & |

< €. We conclude

1
Au < eAv < —g Vo2 = —(&)71|Vu|? < —ZIVu'|2,

which is a contradiction.

If 7 is not smooth at £, then we modify the proof by a technique given
by S. Y. Cheng [2] as follows. Let o : [0,7(&)] — M be the minimizing
geodesic joining z¢ and £. Choose a small positive number 7 such that o(r)
is not conjugate to £. Then thére exists a geodesicvcone C with vertex at
o(7) and contains a neighborhood of Z such that r,, the distance function
from o(7), is smooth inside C. Let ¥ = r, + 7. Then by using triangle
inequality the function u — €(7) also attains a local maxinexumlat z. Sincg
(R1 — R») ln(h(r))h(r)}

7 is smooth at £, for 7 small enough, |Vo(7)|® = {

and

Av(T) = "'(F) + V' (F)Ar,
< e—1 (e — 1)2
~ r.(Ry — Ry)In(h(r))h(r) (Ry1 — R2)?In(h(r))h(r)?
(e - 1)(T(6 - 1) + (Rl - €R2))
r+(R1 — R2)? In(h(r))h(r)?

— |V'v|2 _

= —|Vol (M) +
< —IV’I)P(F),

still hold at #. The same argument as above gives a contradiction. This

completes the proof.

Remarks: (a) The assumption of nonnegative curvature is necessary,
as is seen from the function u(z,y) = 22 + y? on the standard Poincaré disk
D = {(z,y) € R? : 2% + y* < 1} of Gaussian curvature —1.

(b)lelxe result is false in higher dimension. There are counterexamples

in the Euclidean space of dimension greater than two ([5]).
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(c) The exponent of |Vu| is optimum since we can not replace by any

exponent o with a < 2 ([5]).
As an immediate application, we have

Corollary. Let M be a compleie Riemannian surface with nonnegative
Gaussian curvature. Let u be a real valued C* function defined on M such
that Au > f(u) on M. If there is a positive continuous function g defined

on some interval [a,00)and a positive constant ¢ with

/°° _ dr <o,
b ([, (c+g(t))dt)? ‘

for some constant b, b > a and

2
inf f_(a:_) > / p= dr | >
=2L g(z) L (2[7(c+ g(t))dt)?

for some L > b, then u is bounded from above.

Proof. Denote the Tunction w defined on [b,00) by

T

z d
wlz) = /b @[T (c+ g(0)dn)}

It is easy to see that w" + c(w')* +g(w')* = 0 and 0 < w'(z) < 1 for z large
enough, = > zo. In particular, we have w" + ¢(w')? + g(w')* > 0 on [zo,0).
Let

o0 dr
<= /L (2 [7(c+ g(t))dt)3’

where L is a large constant so that IL>L,ce<1and w (supw—e€) > zo.
For the remainder of the proof, we smoothly extend w to the whole real line
so that w' > 0.

Now suppose that u is not bounded from above. Let v = w(u). Then

we have

"

(s + ) 199 + 5 2 ~g(WIVol’ + f(w) > 0
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and

(w ,)2 IVvI2 + ' f(u) > —c|Vv]?,

for all poinfs in M at which simultaneously supw — € < v < supw and

0 < |Vv| < e. Which implies at such points

Av = w"qu{2 +w'A

2 o ,)2 [Vol* +w' f(u)
> —c|Vo|?

1
> —~|Vol*.
€
Consequently, v is constant and u is constant, a contradiction.

Remarks. (a) Some problems which are related to the previous result
have been studied in S. Y. Cheng and S. Y. Yau [3] (Theorem 8) and R. Red-
heffer [5]. (b) When the function f depends also on u and |Vul, using the
same method, we can find a sufficient condition for u to be bounded from
above'on M (for the detail, see H. H. Chen [1]).

Combining Theorem 1 with an interior gradient estimate of 5. T. Yau

[7], we also have the following result (Li and Tam [4]).

Corollary. Let M be a complete Riemannian surface with nonnegative
Gaussian curvature. Let E be the space of all harmonic functions defined

on M with the growth condition

. Ju(=)l _

lim sup ———

r(z)-—oc0 ( )
where 7 is the distance function from a fized point zo at M. Then (a)
dim E < 3, (b) dim E = 3 if and only if M is the standard two dimensional
Fuclidean space, (¢) dim E = 2 if and only if M is the standard flat cylinder
51 x R! and (d) dim E = 1 if and only if M is the Mobius band, or M is

closed, or the curvature of M is positive somewhere.
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Proof. Suppose that u € F, then the-Bochner-Lichnerowicz formula

reduces to

—Aqu|2 Zu” + K|Vul? >0,

where K is the Gaussian curvature of M. The interior gradient estimate [7]
shows that |Vu| is a bounded function on M and hence, by Theorem 1, |Vu/?
is constant. = The hypothesis of curvature implies that M is flat,
provided dimE # 1. The proof then follows from the classification theo-

rem of complete Riemannian surfaces of flat Gaussian curvature [6]-
In the higher dimensional case, we have

Theorem 2. Let M be an n-dimensional complete Riemannian.
manifold with nonnegative Ricci curvature. Let u be a real valued C? func-
tion defined on M with the supremum m. Suppose that there exists a positive

constant € such that

Au > eIVuI#I

in the set {z € M : m — e < u(z) < m, 0 < |Vu|(z) < €}. Then u is

constant.

Proof. We may assume that e >n ~1and n > 3. In fact,ife <n -1,
then we can replace the Riemannian metric ds? of M by the conformal
metric d5% = ¢?ds?, the function u by % = ¢~%u and ¢ by € = cPe, where
a=(n/2)-1,8=(2-mn)/2(n—1) and ¢ is a small positive constant with
€>n—1.

Suppose u is not constant. Then there are positive numbers By, § and
a point z1 in M — B; with m > u(z;) > max(m — ¢, m — §), supu=m —§

. B
and (2(n — 1)6)':'3% < ¢, where B is the closed geodesic ball with center at
zg and radius R;. For each constant a with ¢ > R,, denote the function

v : (R1,a) > R by

va(t) = /R g(r)dr,.
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where ¢g(7) = (tln g)l‘". Choose a large enough with g(R;) =

(Ri1n Ra—-)l'” < € and
1
u(z1) — va(r(z1)) > max(m — ¢, m — §),

where r is the distance function from zo. Since v4(t) — co as t — a~, there
is a constant R, with a > R > Ry and u(z) — v,((z)) < m— € on B, — By
where B,(B; resp.) is the open (closed resp.) geodesic ball with center
at 7o and radius @ (R resp.). Thus the function u — v,(r) attains a local
maximum at some point z, in By — B;.

If r is smooth at z,, then at z,

(2.1) |Vu| = |V

and

(2.2) Au < Av,.

Since |Vu| = [Vu,| = (r,,,ln—)1 " > 0and u — v,(r) > m — € at z,,

m > u(z,) > m — €. To prove "0 < [Vul(z,) < ¢, it suffices to show that
0 < [Vua(ra)] < €. In fact, since m — ve(re) > u(za) — va(ra) > m =6,
6 > vg(ra), there is a constant 7 with @ > # > 7, and v,(#) = 6. If
g(#) > g(Ry), then g(#) > ming = g(%) and hence 7 > Z. It is easy to see
that g is convex. Thus the area of the region bounded by the tangent line
of g at (#,9(7)), the t axis and the line ¢ = 7 is less than v,(#), that is

(2.3) 90)” < 6.

2¢'(7)
On the other hand, ¢'(t) = (1 — »)(tIn %)“"(ln% — 1) and hence
(2.4) J(F) < (1 — 1)g(F) 7.
From (2.3) and (2.4) we have

9(7) < (2(n— 1)8)"=F < e.
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Thus g(r,) < max(g(R;1), 9(7)) < €, the claim is true. Combining (2.1) and
(2.2) together, we have at z,

Vu|7=7 < Au< A,

<(n- 1)(1’,1111;(—1—)“”(1_111&) n nil(mln i)l_n

a Ta Ta

< (n=1)|Vo,|7=1

= (n - 1)|Vu|72T
< €|Vau|7=T,

a contradiction. Here we have used the Laplacian Comparison Theorem [7].
If r is not smooth at z,, modifying the preof as the proof of Theorem 1, we

have

€|Vu|»-T < Au < Av,y(7)
: yn (=17 _a/ anlTn
< — n - B —— B
< (n — 1)|Vo(7)|=-T + mp— T, ‘(ln Ta)

_ e () Loy A S
= (n - 1)|Vu|=-T + ra——'rr (ln )

. a Ty

< V|,

for some small 7. So we also get a contradiction. This completes the proof

of Theorem 2.

Remarks. (a) The assumption of nonnegative Ricci curvature is
necessary since we have a C? increasing radial function u defined on the
space form M = {z € R" : |z| < 1} of constant sectional curvature —4 such
that |

1 [* — _
u(z) = 5/ e~ ("D /Tt dt, for p near 1,
0
where p = |z|.
(b) The exponent-of [Vu] is optimum since we can not replace it by any
exponent a with o > 25 ([5]).

The simplest case of our results can be stated in the foliowing way.

Corollary. Let M be an n-dimensional complete Riemannian manifold

with nonnegative Ricci curvature. Let u be a real valued C? function defined
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on M with the supremum m. Suppose that there exists a positive constant €

such that
Au > €|Vl

in the set {z € M : m —e< u(z) < m, 0 < |Vul|(z) < €}. Then u is

constant.

We conclude this paper by stating the sharper forms of Theorem 1 and

Theorem 2 as follows

Theorem 3. Let M be a complete Riemannian surface with nonnega-

tive Gaussian curvature. Let h be a positive C' function defined on (0,00)
such that

h(t)[— In(t)]* decreases and h(t)[—In(t)]® increases, 0 < t < 1 — a,

for some constants a and b, a < 1. Let u be a real valued C? function defined

on M with the supremum m. Suppose that there ezists a positive constant €

such that
(3.1) Au > —|Vu|2h(|Vu|)

inthe set {z € M :m — e < u(z) <m, 0<|Vu|(z) <e}. If

oodt
(32 I, g =

then u is constant.

Theorem 4. Let M be ‘an n-dimensional complete Riemannian man-
ifold with nonnegative Ricci curvature. Let h be a positive, increasing, C*
function defined on (0,00) such that

t®h(t) decreases, near t = 0%,

for some constant a. Let u be a real valued Cc? function defined on M with

the supremum m. Suppose that there ezxists a positive constant € such that

(4.1) _ Au> |Vu|TTR(|V|)
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in the set {z € M :m — e < u(z) <m, 0<|Vul|(z) < ¢}. If

(4.2) ‘ /01 MY gy o,

t

then u is constant.

Remarks. (a) The proof of these theorems essentially follows that of
[5] except we need make sure that the technical process as in the proof of
p_revious theorems still works.

(b) The interest of these theorems is that, in the case of the Euclidean
space, if the integral (3.2) ((4.2) resp.) converges, then there is a nonconstant
entire function u satisfying (3.1) ((4.1) resp.) (Theorem V and Theorem VII
in [5]).

Acknowledgement. The authors are grateful to the referee for the

valuable suggestions.

References

1. H. H. Chen, On R. Redheffer’s method in differential inequalities on complete
Riemannian surfaces, Master Thesis, Chiao Tung Univ., 1989.

2. S. Y. Cheng, Liouvtlle theorem for harmonic map, Proceeding of Symposia in
Pure Mathematics, 36 (1980), 147-151.

3. S. Y. Cheng and S. Y. Yau, Differential equations on Riemannian manifolds,
Communications on Pure and Applied Mathematics, 27 (1975), 333-354.

‘4. P.Liand L. F. Tam, Linear growth harmonic functions on a complete mantfold,
Journal of Differential Geometry, 29 (1989), 421-425.

5. R. Redheffer, On the inequality Au > f(u,|grad »|), Journal of Mathematical
Analysis, (1960), 277-299. :

6. J. A. Wolf, Space of constant curvature, Mcgraw-Hill, New York, 1967.

7. S. T. Yau, Harmonic function on complete Riemannian manifolds, Communica-
tion on Pure and Applied Mathematics, 17 (1975), 201-228.

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, -
R. 0. C.



