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Abstract. A system of quasilinear parabolic equations
arising in the theory of ‘autocatalytic reactions is studied. A
global existence result is established. Furthermore, the large
time behaviour of the solution is investigated.

1. Introduction. Systems of reaction-diffusion equations enter a
wide number of phenomena in ecology, biology, biochemistry, chemistry and
physics. The important problems about these systems is the time evolution

of the “active masses” and their relations to the steady states.

The present paper discusses a simple prototype scheme of chemical
feedback (autocatalysis) occuring in simple conditions. To be precise, let us
consider a region (which may be the liquid in a test tube or a living cell) in
which takes place a processus in that the product of a region feeds back on

its own formation. This may be represented in the “mass action” style by:

1

(1.1) U+mV — (m+ 1)V.

€
Normally this behaviour will arise from a subscheme of elementary sfeps.
It is assumed that (1.1} occurs under constant temperature and constant

pressure.
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If u and v represent the active masses of substances U and V, then the
forward and backward rates for the two equations are [cf.1, 2, 3]:

m

Ry =uv and R_ = —ey™t!

where ¢ is a positive constant.

Using second Fick’s law and the law of mass action, one can write down

the equations governing the reaction (1.1):
(1.2) u; — aAu = —uv™ 4 ep™*!

(e

(1.3) v — bAv = o™ — ev™ !

for (z,t) € 2 x (0,00) (z is position, ¢ is time and @ C R*, n = 1,2,3 in
practice, the region).

The quantities aAu and bAv are the diffusion terms while u; + wv™ —
ev™t1 and v, — uv™ + ev™*t! are the reaction terms.

If we assume that reactants and products are confined in a closed system
(so an equilibrium is established in which all are present in a certain propor-
tion) then equations (1.2)-(1.3) are supplemented by boundary conditions

of Neumann type:
(1.4) Vu-n=Vv-n=0 on 99 x (0,+00)

where n is the outward normal to 9 the boundary of Q which is assumed
to be regular.

It is also assumed that initially » and v are present:
(1.5) u(z,0) =¢(z) >0 and o(z,0)=1(z)>0for z € Q.

When the effect of diffusion is not considered, namely ¢ = & = 0,
system (1.2)—(1.5) becomes an ordinary differential system which is simple
to integrate.

In this work, we analyse the behaviour of solutions of system (1.2)—(1.5).

2. Notations and preliminaries. In order to study system (1.2)-
(1.5), we introduce the Banach space X = C(Q, R?) (of functions ¢ = (u,v)*"

which are continuous in ) endowed with the norm:

<l = l(®)]oo + [2(2)] oo
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where |f|oo = sup |f(z)] for z € Q.

Let A be defined as the unbounded linear operator
DA = diag(a,b)A
with domain:
D(A) = (¢ € X/DA( € X and Vu-fi = Vo = 0)
and let F’ denote the nonlinear operator:
C€X - PO = (—uv™ + ev™ uv™ — ev™H) € X.

With the above notations in mind, system (1.2)-(1.5) can be written in the

abstract form:
(21) 2 (Cw) = AC+ F((1)
(2.2) - (0)=(9,¥) € X4,

where X, denotes the subset of X consisting of nonnegative valued functions
in X.

It is standard to show that a unique local classical solution of problem
(2.1)+(2.2) exists; by this we mean that:

¢ € C'([0,T),X)nC([0,T), D(A))
and satisfies system (1.2)—(1.5). This can be proved by using general results
concerning the semigroup theory as DA generates an analytic semigroup on
X. Moreover we have the alternative:

either T=o0

or T < oo and lim ||¢]| = oo as ¢ goes to T.

3. Global existence and large time behaviour. Concerning global

existence we have:

Theorem 1. The unique solution (u(z,t),v(z,t)) is global and bounded
for all (z,t) € Q x (0,00). That is if the positive constants K1 and K are
defined by:

Max(|¢|oo, €lt|oo) < K1

Max(e ™} @loos |¥]oo) < K2
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then the solution (u(z,t),v(z,t)) satisfies:
(3.1) 0<u(z,t)<K; and 0<ov(z,t)< K,

for (z,t) € & x (0,00).

In other words, 0, K1[ x 10, K2[ is an invariant rectangle.

Proof. 1t is worth noting that 0 < u(z,t) and 0 < v(z,t) whenever

0 < ¢(z) and 0 < ¥(z). Now, assume that (3.1) does not hold for all
(z,t) € 2 x (0,00). Define the sets B and C as:

B:i={(u,v):0<u< K1,0< v < K3}

C:={t > 0: (u(z,t),v(z,t)) € B for all (z,t) € Q x (0,1)}.
’ Let t. be the least upper bound for the set C'. Then there must be an
z. € Q such that (w(z«,t.),v(x,t.)) € OB. Since the solution (u,v) is
stricktly positive when either ¢(z) = 0 or ¥(z) = 0, at least one of the
following equalities holds:

(2, 1) = Ky

V(Za,te) = Ko

(3.2)

suppose u(Z«,tx) = K71, then u(z,,t,) must be the maximum of u(z,t,) for
all z € Q by the definition of t.. Suppose z. € ; then aAu(z,t.) < 0 and
—uv™ + ev™ ! < 0 at (z.,t.) since —Kjv™ + ev™*+! < 0 for v > 0; conse-
quently equation (1.2) implies that u; < 0 at (2«,t«) and hence u(z.,t) > K
for ¢ < t.; this contradicts the definition of t.. Suppose now z, € 9Q; we
can claim that aAu(z,,t,) < 0. Otherwise Au(z,t.) > 0 for z in a domain
with z. as a boundary point and u(z«,t.) as maximum; by Theorem 7 of [6]
it will then imply that Vu(z,,t.)-n > 0 which will contradict the boundary
condition on u. Once again we have —uv™ + ev™*! < 0 at (24,%.) and as
before equation (1.2) will lead to u(z«,t.) > K1 for some t < ¢, contradict-
ing the definition of .. Consequently the set C is unbounded and hence the
solution (u,v) remains bounded for all ¢ > 0.

To investigate the asymptotic behaviour of the system, we shall make

use of its free energy defined by: for £ > 0

G(u,v)(t) = /Q(uln(u/ﬂ) —u+ 2+ vin(v/v) — v+ v)dz
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where (&, 7) = (€cp, o), co € R, are the marginally locally stable stationary
solutions. The other steady states are (¢,0),c € RY. Calculating the rate

of change of G along the trajectories:
d
2@ = / (ueIn(u/7) + v In(v/7))dz
Q

= /((aAu —uv™ + ev™ ) In(u/a) + (bAv + wo™ — ev™ ) In(v/7))dz
Q
= —4ae/ |Vul/?)? - 4b/ Vol /22—
Q Q

/(uvm — ev™ 1) (In(uv™) — In(ev™ 1))
Q
as (a — b)(In(a) — In(d)) > 0 when a > 0 and b.> 0, we have:
d
(3-3) 5(G) <0,
as G > 0 and (3.3) holds, G is a Liapounov functional and hence:

Lemma 2. It hold £(G) < 0 and £(G) = 0 if and only if u = @ and
v="0 for all z € Q. Then G, = lim G(u(t),v(t)) ast goes to co exists.

As an immediate consequence of (3.3) we have:

Corollary. System (1.2)-(1.5) does not have t-periodic or (z,t)-

periodic, nonnegative and nonconstant solutions.
At this point, we can state our main theorem.

Theorem 3. There exists a constant M < oo such that for all ¢ and
¥ continuous and positive, the solution (u,v) satisfies:

(3.4) luG Ol < M and (Ol <M fort> 1.

Moreover lim |u(-,t) — @] = 0 and lim |v(+,t) — T}l = 0 as t goes to co.
Where || ||1 denotes the norm of C*(Q) and

(3.5) Co(1+ €) = (1/meas(®)) / (8(z) + P())de.

Proof. With w = u or v, = a or b, each equation of the system may

be written in the form:

(3.6) wt — (A — nw = T(z, 1)
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where I'(z,t) = nw(z,t) £ (uv™ — ev™*!), and w(z,0) = ¢(z) or P(z). It is
clear that we may consider w € C?, for otherwise the initial value problem
starting at ¢ = 1/2 may be considered. From boundedness of the solution
we infer the existence of a constant N such that |I'|o, < N for all ¢.> 0.
By [5, p.88], for some 7, under homogeneous Neumann boundary con-
ditions A — nI generates an-analytic semigroup in LP(Q) (norm | - |,) for
p > 1 and with —X the associated operator, there is a p > 0 such that
Reo(X) > p (where o(S) denotes the spectrum of X). Equation (3.6) may

then be written as:

w+Xw=T,
with integral solution
(3.7) w(t) = e Flwg + /t e ZC=9D(s)ds.
From [5, p.26], for o > 0,
(3.8) [27e T, < C(o)t™ %",

where |-|, is also used to denote the operator norm. Taking some 0 < & < 1,

applying £¢ to (3.7), and taking norms, we obtain:
t
o < —o ,~pt o\ —p(t—s)
270l < C(o) (776 el + gmas, IV [ (¢ = o) 77 et~ as)
by (3.7), we infer:
(3.9) |B%w(t)], < Ny fort > 1.

From the definition of the fractional space L = (LP(92))? [5, p.29], and a
standard imbedding theorem [5, p.39], respectively,

(3.10) |Z7w(t)lp = ()L,
(3.11) w(t)ls < Clw(®)], for0< 8 <20 —n/p

where C is a constant independent of w. Taking o = 3/4,p=2nand 8 =1,
we obtain the result of combining (3.9), (3.10), (3.11).
Now, to prove the global attractivity of (u,v), we make use of the

positive w-limit set wt:

wt = ((u,v) € X : I, — oo such that (u(ts),v(ts)) — (u,v) in X)
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it is well known that:

— The limit set wt is nonvoid, compact and connect.

— The trajectory approches its own limit set in the X-norm.

— The limit set w* is invariant: new trajectories starting from any point in
w?t remain in w? for all future time.

Now, it is clear that it suffices to show that the w-limit set consists
only of the stationary solution (#,%). But this can be done using the well
known La Salle’s invariance principle [4], which is here reproduced just for
convenience. Let (U(z),V(z)) € w™; it is clear that U(z) and V(z) are
bounded. Let, now, the trajectory (U(z,t),V(z,t)) starts at (U(z),V(z)).
By our results, U(z,t) and V(z,t) are bounded. So by the continuity of G
we have: G(U(-,1),V (-, )) = G for all t > 0, hence G is constant along
this trajectory, so U(z,t) = @ and V(z,1) = o for all (z,t) € © x (0,00);
hence U(z) = @ and V() = v. -

Moreover, adding (1.2) and (1.3) and integrating over Q x (0,1) yields:

(3.12) [ a0+ vty = [ (666)+ w(@)do

combining (3.12) with lim |u(-,t) — ¥|eo = 0 and lim |v(-, %) — ¥|eo = 0 as ¢
goes to infinity yields (3.5).

In studying (Ije, we wished to get a global solution to (I)p using the
uniform estimates (3.4) and passing to the limit as € goes to 0 in contrast
with the work of Masuda [7] where a judicious functional (not natural) of
Liapounov was used. Unfortunatly we have not succeeded in doing so but

we continue to believe that this is possible.
4. Quantitative results.

Numerical results: Figures 1-4 show the behaviour of |u(-,t)|s and
|v(+,t)|eo for 0 < t < 5 for the system (1.2)—(1.5).

The solution was evaluated numerically using a finite-difference implicit
scheme (Crank-Nicolson type).

The diffusion parameters a,b, the initial data ¢, ), the values of € and

m are indicated under each figures.
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