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Abstract. Let R be a prime ring with involution ¥ and
d a nonzero derivation of R such that d(z") € Z, the center of
R, for all symmetric (skew resp.) elements z in R, where n is
a fixed positive integer. Then R satisfies S,(z;, z3, 3, T4), the
standard identity of degree 4.

0. Introduction and notation. Let R be an associative ring. By
a derivation d on R we mean that d is an additive mapping of R into itself
such that d(zy) = zd(y) + d(z)y for all z,y € R. In [5] Felzenszwalb showed
that if R is a prime ring and d is a derivation of R such that d(z™) = 0
for all z € R, where n is a fixed positive integer, then either d = 0 or R is
commutative. In [17], Misso gave a parallel result for the case when R is

equipped with involution. Explicitly speaking, she proved:

Let R be a prime ring with involution *, char R # 2,3, and d an inner
derivation of R induced by a symmetric element. Suppose that d(s") = 0
for all symmetric elements s € R, where n is a fixed positive integer. Then
d=0.

In this paper we shall handle both the symmetric and the skew case for
general derivations. Recall that a ring R is called an Sy,-ring if it satisfies
Sn(X1,... ., Xn) = EUESym(n)(_l)aX"'(l) -+ + Xo(n), the standard identity of

degree n. Since the structure of prime S4-rings is completely determined,
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removing the assumption on the characteristic of R we shall prove the fol-

lowing

Theorem. Let R be a prime ring with involution * and d a nonzero
derivation of R such that d(z™) € Z, the center of R, for all symmeiric
(skew resp.) elements z in R, where n is a fized positive integer. Then R is

an Sy-ring.

Throughout this paper, unless otherwise stated, R will always denote
a prime ring with involution * and center Z. S will stand for the set of
symmetric elements of R and K for the set of skew elements of R. For two
subsets A and B of R, [A, B] will be the additive subgroup of Rvgenerated by
all elements of the form [a,b] = ab— ba with a € A, b € B. For convenience,
a ring is called §,-free if it does not satisfy S,(X1,...,Xn). Finally, for a
derivation d of R, d* is defined by d*(z) = d(z*)* for all z € R. Notice that
d* is also a derivation. Also, d is called a *-derivation (skew *-derivation
resp.) if d* = d (d* = —d resp.). We also remark that, for a derivation d of

R, d + d* is a x-derivation and d — d* is then a skew *-derivation.
1. The symmetric case. We begin with

Theorem 1.1. Let R be a prime Sy-free ring and d a derivation of R
such that d(s™) = 0 for all s € S, where n is a fired positive integer. Then
d=0.

We shall proceed with a series of lemmas to complete the proof of the
above theorem. Until the completion of this proof we assume that R always
satisfies the assumptions stated in the above theorem. Also, by a simple
observation it is sufficient to assume that d is either a *-derivation or a skew
x-derivation.

Let C be the extended centroid of R and T = RC+C the central closure
of R. Then the involution * can be extended to an involution, denoted also
by *, on T satisfying (3 z;a; +8)* = D z2faf+p*forz; € Rand a;,8€ C
and d can be also extended in a natural way to a derivation, denoted also
by d, on T such that d(za) = zd(a)+d(z)aforallz € R, a € C [7; Lemma
2.4.1 and 5; Lemma 4]. We first prove
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Lemma 1.1 Ifd # 0, then T is a primitive ring with a minimal right

2

ideal €T, where e = e, and eTe is a finite dimensional central division

algebra over C.

Proof.  Since d(s™) = 0 for all s € S, by a standard linearization
process we have d(Zaesym(n) So(1)Sa(2) " " So(n)) = 0 for all s1,...,s,in S.

Replacing s; by s} for i = 2,... ,n and using the hypothesis, we yield

(1) Z 52(1) “'SZ(k-nd(Sa(k))SZ(kH) '”'SZ(n) =0.
o€Sym(n),o(k)=1
Suppose first that d(S) C Z. If char R # 2, then, by [8; Corollary,
p.358], R is an Sy-ring, which is absurd. On the other hand, if char R = 2,
then s® € Z for all s € S by [13; Lemma 4] and hence R also satisfies S, by
[13; Theorem 3], a contradiction. Thus d(S) € Z.
Choose an element s; in S such that d(s;) ¢ Z. Let X,,...,X, be

noncommuting indeterminates; then by (1)
F(Xayo s Xy X3y es X2

= Y X Xom) Kote-1) X3 (h-1)) " dS0(k)) ** (Ko(m) X))
o0€Sym(n),o(k)=1
is a nontrivial *-GPI satisfied by R. Combining [4; Lemma 8] with the main
result of [16], we have that T = RC + C is a primitive ring with a minimal
right ideal eT', where > = e € T, such that eTe is a finite dimensional

central division algebra over C. This completes the proof.
We now dispose of the case when C is an infinite field.
Lemma 1.2. If C is an infinite field, then d = 0.

Proof. Assume on the contrary that d # 0. Let C* = {a € Cl|a* = a}.
Suppose first that d(a™) # 0 for some a € C*t. Choose a nonzero *-ideal
I of R such that af C R. Let s € I N S; then d({as)®) = 0 and hence
0 = d(a™)s™ + a™d(s") = d(a™)s™. Sos" =0forallse INS. fn>1,
’then, forse INS,z € R, we get that s" "1z + 2*s""1 € IN S and hence

0= 2(s" 1z +2*s""1)"s" "1 = (2"~ 1)*+L, By Levitzki’s lemma, s*~! = 0
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for all s € I N S. By induction on n, I N .S = 0 follows; this implies that
22 = 0 for all z € I, which is absurd. Therefore d(a™) =0 for all « € C7.

Since C is an infinite field, so is CT. Pick n — 1 nonzero elements
Qi,...,0pn_1 in CT such that if 7 # j, then o # o}. Choose a nonzero *-
ideal U of R such that o?U C Rforalli=1,2,...,n—1. Let §(U) = {z €
Uld(z) € U for all i > 1}. Since d is assumed to be either a *-derivation
or a skew *-derivation, 6(U) is a *-ideal of R which is invariant under d.
Moreover, by hypothesis, s € §(U) for all s € U N S. Hence §(U) # 0.

Now 6(U) is a prime ring with involution % and d is a nonzero derivation
on 6(U), for otherwise d = 0 on R as desired. Let s,t € §(U)N S, A €
{o?,a},... ,a”_,}; then d((s+At)") = 0. Expanding this and using d(A) =
0, we yield

(furs weellats poelfs L))o

where {n '_s_ , i} is the sum of terms with deg(s) = n — 7, deg(t) = rin-

the expansion of (s +1)". Since of # o} if 1 # j, d ({ n ‘_S_'r f‘}) = 0for

S t
n—1 1

w1 =dsh=a([{,2, 1)) =0

for all t € 6(U) N S. By [14; Theorem 1] for char R # 2 and [13; Lemma 4]
for char R = 2, s® € Z(6(U)) C Z, where Z(é(U)) denotes the center of
s(U).

Now for any s € UN S, then s™ € §(U) and by hypothesis d(s") = 0.

Thus the above implies 8" € Z. So U is an Sy-ring and hence so is R, a

every . In particular, d ({
Then

}) = 0. Suppose first that d(s) = 0.

contradiction. This completes the proof.

'With Lemma 1.2 in hand we shall reduce our problem to the case when
R = M, (F), the m by m matrix ring over a finite field F'. To arrive at
this aim we need another lemma. Recall that a projection is a symmetric

idempotent element.
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Lemma 1.3. Let F be a field and * an involution on M, (F). Then,
~if m > 3, My (F) is generated by projections as an algebra over F.

Proof. As in [12], let E*(M,(F)) be the subspace of M,,(F) spanned
by all projections of M,,(F) over F. Denote by A*(M,.(F)) the subalge-
bra of M,,(F) generated by all projections of M,,(F) over F. Of course,
E*(Mn(F)) C A*(Mn(F)) holds always. If * is of the second kind, then, by
[12; Theorem 1], E*(M,n(F)) = M,,(F) and hence A* (M (F)) = My (F).

Assume from now on that * is of the first kind. Qur argument will
depend on the type of the involution *. Note that, by a simple observa-
tion as in [12; Lemma 1], if A*(Mx(F)) = My(F) for some k > 2, then
A*(Mn(F)) = Mn(F) for all n > k. Thus for the equality AY (M (F)) =
Mn(F) to be true, it is sufficient that the equality A*(Mp(F)) = Mk(F)

hold only for some k < m, such as k = 2 or 3.
Case 1. Suppose that * is of the transpose type.

Since * is of the first kind, we may assume, without loss of generality,

that * is given by
(i)™ = (w77 835)(eji)(mibis),

where 7y,... , 7, are m fixed nonzero elements in F ,0;=1if{=3and 0
otherwise. _
Assume [F| > 3. In this case we claim that A*(M,(F)) = M,y (F). The

involution * is now given by

-1
(: ’?):(:ﬂ 7r6'y), Where7r:7r17r2‘1..

Choose an element 0 # p € F such that p? 96 —n. Then A*(My(F))

contains the following projections

1 2
€11, €22, and ( A H)

7r+p,2 T

Since A*(M3(F)) is a subalgebra of My(F), A*(M2(F)) = M,(F) follows
and hence A*(M,,,(F)) = M, (F) for all m > 3.
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Assume |F| = 2. In this case * is just the usual matrix transpose
and note that A*(My(F)) # Ma(F). So we have to check the equality
A*(M3(F)) = M3(F). An elementary calculation gives the following four
projections in A*(M3(F)), that is

e11, €22, e33 and (
forall¢,7,1<7,7<3

From these, it is easy to check that e;; € A*(M3(F)
and hence A*(M3(F)) = M3(F).
Finally assume |F| = 3. We claim that A*(M3(F)) = M3(F). Note that

whether this equality holds is independent of the permutation on the 7;’s and

-

1
0
1

— O

furthermore (7,72, 73) and (—7, —72,—73) induce the same involution.
Thus it suffices to check only for (my,m2,73) = (1,1,1) or (1,1,2). For
(71,m2,73) = (1,1,1), A*(M3(F)) contains the following projections:

1 0 0 2 01 2 1 0
€11, €22, €33, 0 2 1 . 0 1 0 N and 1 2 0 .
0 1 2 1 0 2 0 0 1

But if (7,72, 73) = (1,1,2), A*(M3(F)) contains the following projections:

. 1 11
e11, €22, e33, and 111
2 2 2

In either case, it is easy to check that the equality A*(M3(F)) = M3(F)
holds.

Case 2. Suppose that * is of the symplectic type.

In this case m must be even and the involution * is given by (A4;;)* =

(AZ%,), where the A;; are 2 by 2 matrices and o is the mapping

il
(59— 7)
vy 6 -y o
It suffices to prove the equality A*(My(F)) = M4(F). An elementary cal-
culation gives the following projections in A*(M4(F')):

0 0 0 1 0 0 10
0 0 0 0 0 0

€11 + €22, €33+ €44, w -1 1 Bj , and 0 0 U12 0}’
0 0 0 1 —w 1 0 1/
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where w € F. Hence A*(My(F)) = My(F), which completes the proof.

With the lemma above, we are in a position to give the proof of Theorem

1.1. We first make a well-known

Remark. Let D be a division ring with involution and V a left vector
space over D. Suppose that ( , ) is a non-degenerate Hermitian or alternate
form on the self-dual space V over D. Then every finite-dimensional sub-

space of V is contained in some finite-dimensional non-degenerate subspace

of V.

Proof of Theorem 1.1. Assume on the contrary that d # 0. By Lemma

1.1, T is a primitive ring with a minimal right ideal eT’, where e?

= e, and
eTe is a finite dimensional central division algebra over C. From Lemma
1.2, we may assume that C is a finite field. Thus eT'e = Ce. Suppose first
that dimer.eT = k < co. Then the density theorem implies T = My(eTe).
From [7; Theorem 1.4.3] R is an order in T’; furthermore, C is exactly the
quotient field of Z. Since C is a finite field, Z = C follows and hence
R =T = Mi(C). Note that d(C) = 0. Also, by hypothesis, d(f) = 0 for
every projection f € R. Thus d(A*(My(C))) = 0. Since R is Sy-free, k> 3
and hence applying Lemma 1.3 we get d(R) = 0. Thus d = 0 for the case
when dimer.eT < oo.

Assume, henceforth, that dimereeT = co. From [7; Theorem 1.2.2], for
some suitable choice of eT', T becomes a ring of linear transformations on
the left vector space V = €T over A = eTe; furthermore, V can be equipped
with a non-alternate Hermitian or an alternate form, denoted by ( , ), such
that the elements of T are continuous with respect to this form ( , ); T
contains all continuous linear transformations of finite rank and the * of T
(extended from that on R) is just the adjoint relative to this form. Denote
by Sv (V) the set of all elements of finite rank in 7. Note that Sy (V) is just
the socle of T. Then RN Sy(V) # 0. Thus, to get d = 0, it suffices to show
that d(RN Sy (V)) = 0. '

Let 1 € RN Sy(V); then v € RN Sy(V) also. Suppose that this

form (, ) is both Hermitian and non-alternate. By the above remark, there
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exists a finite dimensional non-degenerate subspace W of V containing both
Vr and Vr* such that dima W > 3 and W is also Hermitian, non-alternate
relative to this form ( , ). Let W+ denote the orthogonal complement of W;
then V=W @ W+ and {z € Sy(V)[Wz CW and Wiz =0} M,(A),
where m = dimpoW > 3, is a *-invariant subring contained in 7. Since
A is a finite field, by [18; Theorem 1] we get that M,,(A) C R and the
adjoint is an involution on M,,(A) which is of the transpose type. Note that
Wr C Vr C W. Also, for any v € V, 2 € W we have (v,2r) = (vr*,2) €
(W,W+) = 0. Thus (V,Wr) = 0 and hence Wtr = 0. So r € M, (A).
But d(A) = 0 and d(f) = 0 for every projection f € M,,(A), Lemma 1.3
implies d(M,,(A)) = 0. In particular, d(r) = 0. That is, d(RN Sy (V)) =0
and hence d = 0, which is absurd. Of cdurse, a similar argument can be

applied to the alternate case. This completes the proof.
As a consequence of Theorem 1.1, we give a slight generalization.

Theorem -1.2. Let R be a prime S4-free ring, d a derivation of R,
and I a nonzero ideal of R. Suppose that d(s™) € Z for all s € IN S, where

n is a fized positive integer. Then d = 0.

Proof. As in the course of the proof of Theorem 1.1, we may assume
that d is either a *-derivation or a skew #-derivation. Replacing I by INI* #
0, we may assume that I is a nonzero x-ideal of R. Suppose that there
exists € Z N S such that d(a™) # 0. Then, for s € I NS, we have
as € INS and hen/ée d((as)™) = a™d(s") + d(a™)s™ € Z. Thus s" € Z
for all s € I N S. From [13; Theorem 3], I is an Sy-ring and hence so is R.
This is a contradiction. In other words, d(a™) = 0 for all @ € ZN S. Let
s € INnS. Then d(s>™) = 2s"d(s") € Z. If char R = 2, then d(s?"*) = 0;
while if char R # 2, then either d(s”) = 0 or s® € Z. However, if s” € Z,
then d(s”Q) = 0. At any rate, d(.s”Q) = 0 forall s € INS in case char R # 2.

Thus in- either case this problem can be reduced to assuming that
d(s*) = 0 for all s € I NS, where k is a fixed positive integer. As in
the proof of Lemma 1.2, we may define 6(7), which is a nonzero *-ideal of

R invariant under d such that d(s*) = 0 for all s € §(J) N S. Applying
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Theorem 1.1, we get d(6(I)) = 0 and hence d = 0.

Recall that a ring R is called a *-prime ring if the product of any two
nonzero *-ideals of R is nonzero; equivalently, there exists a prime ideal P
of R such that PN P* = 0. We conclude this section byvextending Theorem

1.1 to the x-prime case.

Theorem 1.3. Let R be a x-prime Sy-free ring and d a derivation
of R such that d(s™) € Z for all s € S, where n is a fized positive integer.
Then d = 0. '

Proof. By Theorem 1.2, we assume that R is not a prime ring. Thus
there exists a nonzero prime ideal P of R such that PN P* = 0. Applying
d to PP* =0, we get d(P)P* C P. Since P* ¢ P and P is a prime ideal of
R, we get d(P) C P. Similarly, d(P*) C P*. Thus, if d(R) ¢ P, d induces
a nonzero derivation d on R = R/P by d(%) = d(z) for all z € R, where T
denotes the image of z in R. Let y € P*. Thenq = y + y* € P+P*/P = P>,
a nonzero ideal of R. Thus d(7") = d({(y + y*)*) € Z(R) by hypothesis.
By [5; Theorem 4] and the proof of Theorem 1.2 these imply that R is
commutative. Since R/P* is anti-isomorphic to B/P and R is a subdirect
product of R/P-and~R/P*, R must be commutative. Of course, R is an
S4-ring, a contradiction. Therefore we have seen d(R).C P. Similarly
d(R) C P*. So d(R) = 0 as desired.

2. The skew case. To handle the skew case we first need a result

about rings with power-central skew elements of bounded index. That is

Lemma 2.1. et n be a fized positive integer such that k™ € Z for all
k€ K. Then R is an Sy-ring.

Proof. f Z = 0, then k™ = 0 for all £ € K, which leads to K = 0 and so
R is commutative. Thus assume Z # 0 and hence Z+ = ZNS # 0. Localize
R at Zt —{0} to obtain a simple ring Rz+, which has an involution, denoted
by * also, defined by (za~1)* = z*a~!, for z € R, o € Zt* — {0}. Thus

R+ also has power-central skew elements with the same bounded index n.
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In light of [10; Theorem 10] Rz+ satisfies Sy and, a fortiori, R satisfies Sy
too. This completes the proof.

The main result in this section is the following

Theorem 2.1. Let R be a prime Si-free ring and d a derivation of R
such that d(k™) = 0 for all k € K, where n is a fized positive integer. Then
d=0.

We first dispose of the case when R is not a Pl-ring.

Lemma 2.2. Under the assumptions of Theorem 2.1, if R is not a

Pl-ring, then d = 0.

Proof. If char R = 2, K coincides with S and hence it is just
Theorem 1.1. So we assume from now on that char R # 2. Also, n
may be assumed to be even. Let A be the additive subgroup of R gen-
erated by the set {p(k1,... ,kn)|ki € K,1 < i < n}, where p(z1,... ,2,) =
ZoESym(n) Ts(1)To(2) " To(n)- SiRce m is even, we have that both A* = A
and A € §. Moreover, if k,ky,... ,k, € K, then [k,p(ky,... k)] =
S p(k1,... [k, ki],... ,k,) € A. That is, [A, K] C A. Since R is not a
Pl-ring, it follows from [1; Theorem 1] that A ¢ Z. Hence by [9; Theorem 1]
there exists a nonzero *-fdeal I of R such that [I NS, K]+ [S,IN K] C A.
Note that d(A) = 0, because p(zy,... ,,) is obtained from the polynomial
z™ by a series of standard linearization processes. So d([IN S, K]) =0 =
d([S,I N K)).

Let ke INK,le I*NK,and s € INS; then [k,s] € INS. Hence
d([[k,s],1]) = 0. Expanding it and using d([k, s]) = 0, we get [d({),[k, s]] = 0
and hence [d(l)*, [k, s]] = 0. These imply that [d({) + d(I)*, [k, s]] = 0. Note
that d(!) € I and that I is not a Pl-ring; it follows from [14; Theorem 1] and
[15; Main Theorem] that d({)+d(l)* € Z foralll € I’NK. Sod(I’NK) C Z,
which implies that either IZ is an S4-ring or d = 0. But I? is not a Pl-ring,
d = 0 follows.

Having handled the non-PI case, we next turn our attention to the case

when R is a Pl-ring. For this purpose we need one more lemma.
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Lemma 2.3. Let F be a field with |F| = 3 or 5 and * an involution
on My (F), where m > 3. If a € My, (F), [a,k"] = 0 for all k € K, where n

is a fized positive integer, then a € F.

Proof. Case 1. Assume that # is of the symmetric type.

Let W be the subalgebra of M,,(F) over F generated by all k", where
k € K. Then uWu~! C W for every unitary element u in M,.(F) (that
is, w*u = 1 = wu*). Note that in this case K = K; + [K1, K;], where
K, is the additive subgroup of K generated by skew elements of square
zero. Therefore [K, W] C W [3;p.555]. It follows from [11; Theorem 5] and
Lemma 2.1 that W = M,,(F). Since [a,W] =0, we get a € F.

Case 2. Assume that * is of the transpose type.

Since |F| = 3 or 5,  is given by (a;;)* = p(aji)p~!, where p =
diag{m1,... ,Tm}, 7; # 0 for each i. Let Y = {z € My (F)|[z,k*] = 0
for all £ € K}. Since e;; — mjm;te;; € K if i # j, by the fact that
feij — mjmile;)? = —mm (e + e;;) we have that every element in Y
assumes a diagonal form. So to prove the fact that ¥ C F, it suffices to

consider only the case m = 3. In this situation, every skew element assumes

the form
0 z oy
—azx 0 z 1,
By -z 0

where a = myni!, B = m37; ! and ¥ = a~18. Also, if

0 z Yy
k=1 —azx 0o =1,
-By —yz 0

then k> = Ak, where A = —(az? 4 fy? + 722). Thus k2! = A'~1k2 and
E*+1 = ME for every positive integer {. Since |F| = 3 or 5, it is not hard to
check the fact that Y C F'. We omit its detail.

Now we set about proving Theorem 2.1.

Proof of Theorem 2.1. Assume on the contrary that d # 0. From

Theorem 1.1 and Lemma 2.2 we may assume that R is a prime Pl-ring
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with char R # 2. Thus Z # 0. Suppose first that  is of the second kind.
Pick a A € Z such that \* = —X # 0. Thus for s € §, we have that
d((As)*) = 0 = d(A™). Therefore d(s") = 0 for every s € §. Theorem 1.1
implies d = 0. So assume, henceforth, that * is of the first kind.

ForAe Z,k E‘ K, we have that Ak € K and hence d(A"k™) = 0 Thus
d(A™)k™ = 0. By Lemma 2.1, pick a skew element k such that ™ # 0. So
d(A\") = 0‘ for all A € Z. Consider Rz, the localization of R at Z — {0}.
Rz is then‘ a finite-dimensional simple algebra with an involution, denoted
by * also, defined by (za™!)* = z*a~! for z € R, a € Z — {0}. Moreover,
d can be uniquely extended to Rz. Since d(A\*) = 0 for all A € Z, Rz
satisfies the same assumption. In other words, R may be assumed to be a
finite-dimensional central simple algebra. Since d(k**) = 0 for all k € K,

we assume that n is even.

Case 1. Suppose that d(Z) = 0. By a classical result [6; Proposition,
p.100], d is an inner derivation of R. Write R = M, (D) for some division
algebra D and some positive integer m. Denote by W the subalgebra over Z
of R generated by all k™, where k € K. Note that d(W) = 0. In case m = 1,
by [2; Theorem 3] W = R and hence d = 0. If |[D| < 5, then D is a field and
m > 3, since R is Sy-free. It follows from Lemma 2.3 that d = 0. Finally,
assume both m > 1 and |D| > 5. If the involution # is of the symplectic
type, by [11; Theorem 5] the only unitary invariant subalgebra of R are 0,
Z and R. By Lemma 2.1 we have W = R and so d = 0. Assume next that
% is of the transpose type. If m > 3, by [11; Main Theorem] and Lemma 2.1
again we have W = R. Suppose now that m = 2. In this situation, we may

assume that

* = ozl
WA z y\ _{T Zg
for (Z t>€R’ (z t) _(q? qtq_l)’

where 7 is the induced first kind involution on D and ¢ = ¢ # 0in D. From
[11; Main Theorem] we have W = R unless R is one of the only possible

two cases given as follows:

ow-{(5 )

xEZ—i—Kl,yESl} y
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where dimz D = 4, K; = {z € D|Z = —z} 1-dimensional, .5?1 ={z €
Dl|zk +kz =0 forall k € Ky} and ¢ is a fixed nonzero central element.

(ii) W:{ (—2;5 Z)

where dimz D = 4, Ky = {z € D|z = -z}, [K{,K1]=0and 0 # a € Ky,
0#b€ Ky ={z € D|gTq™' = —z}suchthat u=a+fa— 4 =a+Bbis
an isomorphism of Z + K onto Z + K,.

v€Z+ Ky,ve (Z—I—Kl)(a—b)} ,

By a simple observation, in the above cases (i) and (ii) W n § \ - .Z
always holds. In particular, k» ¢ W NS C Z, for all k € K. Thus Lemma
2.1 implies that R is an S4-ring, contrary to our hypothesis. So (i) or (ii)
cannot occur, which completes the proof of Case 1.

Case 2. Suppose that d(Z) # 0. So Z must be an infinite field.
For any unitary element v € R and k € K, we have uku™! € K and
hence d(k") = 0 = d(uk™u™'). Since d(u™!) = ~u'd(u)u"?, expanding
d(uk”u‘l) = 0 we get [u~'d(u),k"] = 0. By Case 1, u~'d(u) € Z follows.
For any k € K, by Z being infinite and dimz R < o, there exists an element
o € Z — {0} such that 1+ ak is invertible in R. Thus (1 — ak)(1+ ak)~! is
a unitary element and so (1+ ak)(1 - ak) 'd((1—ak)(1+ak)~') € Z. An
elementary calculation shows that [k, d(k)] = 0. Up to now we have proved
that [k, d(k)] = 0 for all k € K. By [13; Theorem 2] we yield d = 0 since R -

is S4-free, which completes the proof of Theorem 2.1.

As in the proof given in Section 1, we can extend Theorem 2.1 to the
central case and the *-prime case. The argument is almost the same as those

of Section 1. Thus we only give these statements.

Theorem 2.2. Let R be a prime Sy-free ring, d a derivation of R and
I a nonzero ideal of R. Suppose that d(k™) € Z for all k € K N I, where n
is a fized positive integer. Then d = 0.

Theorem 2.3. Let R be a x-prime Sy-free ring aﬁdd a derivation of
R such that d(k™) € Z for all k € K, where n is a fired positive integer.
Then d = 0.
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