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Abstract. For X1, X3,... i.i.d. with finite mean and
Y, = max{Xl,. e X,,} — ¢n, ¢ positive, a number of authors
have considered the problem of determining an optimal stopping
rule for the reward sequence Y,. In general, it requires complete
knowledge of the distribution of the X;. Martinsek (1984) exam-
ined the problem of approximating the optimal expected reward
when the X, are exponentially distributed with unknown mean.
This paper deals with the case where X; are N(4, 1) distributed
with 6 unknown. Stopping rules designed to approximate the
optimal rule (which can be used only when ¢ is known) are
proposed. Under certain conditions the difference between the
expected reward using the proposed stopping rules and the op-
timal expected reward vanishes as ¢ approaches zero.

1. Introduction. In the theory of optimal stopping procedures there
arises an important class of problems of the following nature:

Suppose that X;, X3,... are i.i.d. random variables with E|X;]| < co.
We observe the X;’s sequentially and are allowed to stop observing at any
stage. If we stop with n-th observation, we receive a reward Y,,, where Y,,
is some measurable function of X;, X,,...,X,,. The problem is to find a
stopping rule which maximizes the expected reward. Such-a rule, if one
exists, will be called optimal stopping rule.

We shall be considering a particular class of reward functions of the

form:

(1.1) Y, = max{Xy,X2,...,Xn}—cn, ¢>0.
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This problem and variations on it have been treated extensively by Mac-
Queen and Miller (1960), Derman and Sacks (1960), Sakaguchi (1961), Chow
and Robbins (1961, 1963), Yahav (1966), Cohn (1967) and DeGroot (1968).

The optimal stopping rule for this problem, i.e., the rule which maxi-

mizes E(Y7) over all stopping rules T with E(Y7 ) < oo, is

(1.2) T =inf{n >1: X, >rc},
where k

(1.3) E(X;—r)t =c

and

(1.4) E(Yr:) = E(X1:) = cE(T7) = 7e.

(for a proof of this result, see Chow, Robbins and Siegmund 1971, pp.56-
58). However, in order to use the stopping rule T it is necessary to know
7., which in turn requires knowledge of the distribution of the X;. If only
partial information about the distribution is available, it may not be possible
to compute 7., and in such cases it would be desirable to approximate the
optimal rule 7 and the optimal reward E(Y7-) as well.

V This type of approximation problem has been considered previously
by Bramblett (1965) and Martinsek (1984). Bramblett (1965) showed that
for certain cases involving unknown location parameters, the ratio of the
expected reward using an approximating stopping rule to the optimal ex-
pected reward approaches one as ¢ goes to zero. In other words, he showed
that certain approximating stopping rules are asymptotically optimal in the
sense of Kiefer and Sacks (1963) and Bickel and Yahav (1967, 1968). But he
was unable to get results about the vanishing of the difference in expected
rewards as ¢ approaches zero.

Martinsek (1984) considered the case where X; has an exponential dis-
tribution with unknown mean, and proved that the difference between the
optimal expected reward and the expected reward using an approximat-
ing stopping rule vanishes as ¢ goes to zero. But as he mentioned in the
last K‘section, results about the performance of the approximating stopping
rule depend on the properties of the underlying distribution. Therefore, his

method cannot be applied to any case other than exponential.
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The purpose of this paper is to consider the special case of the normal
distribution with unknown mean, and to prove a result which suggests that
a certain approximation to the optimal rule performs well asymptotically.

Assume throughout the rest of this paper that the distribution of Xj is
N(6,1). An easy computation shows that

(1.5) E(X1—r)" = ¢(r—0) - (r - 0)[1 - &(r - 9)],
where .

olz) = e/
and

®(z) = / ’ e(y)dy.

— 00

Therefore, the optimal stopping rule is

(1.6) T =inf{n >1: X, >r.},
where
(1.7) Pre—0)—(r.— )1~ B(r.—8)] =c.

Unfortunately, it is not possible to give closed-form expressions for r. as
Martinsek (1984) did for the exponential case. The methods of Martinsek
(1984) cannot be used to approximate the optimal stopping rule in such
situation. We will do it implicitly, using the following idea. For each n, we

can estimate 7. by 7., where 7, ,, satisfies
(1.8)  @(fem —Xn)~ (Fomn — Xn)[1 = ®(Fon — Xn)] = ¢,

and approximate the optimal rule T by

(19) Tc = lnf{n > ne: Xn > f'c,n}a

where n, is a positive integer depending on ¢. We hope that E(YTC) is close
to E(YT-). In the next section it is proved that if n, = éc¢~* for some § > 0

and 0 < o < 1, then

(1.10) E(Yr-)— E(Y;) — 0, as ¢— 0.
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2. Some properties of r, and T}. In this section we prove some

inequalities for 7. and T} which will be needed later.

Lemma 2.1. Let r. be as defined in (1.7). Then for 0 < ¢ < 1/+/2m,

¢l (=02 > \for [14 (re — 6)%).

Proof. For z > 0, we have

(2.1) T 2 < ~ e"yzlzdy < }*6—12/2
) 1+ 22 = Jr ~z ’

(cf. Freedman (1983), (4) Lemma, p. 11-12). By (1.5) and (2.1), if r > 6.

1 2 o0 1 2
E(Xi -1 = —=e =02 _(r_¢ / —e Y /2¢
(X1 —r1) o (r—40) > y

1 —(r—0)2 1 (7‘— 0)2 ol r—p)2
(2.2 < e—(r=0)%/2 _ e (r—9)*/2
: V27 V2r 1+ (r— 6)?
1 1 —(r—9)2/2.

TVl (- 07
For 0 < ¢ < 1/+/2m, it is easy to see that r, > 6. Let !, be the number
satisfying

1 L =02 _

V2r 1+ (rh — 6)?

By (2.2), we have r. < r.. Therefore

c—le—(rc—9)2/2 > c—le—(r;—e)2/2
= V2r [1+ (v, - 6)’]

> V2r [1+ (r. — 0)?],
completing the proof.
Lemma 2.2. For 0 < c¢< 1/y2m,

P{XIZTC}ZT
[

. — 0.

Proof. By (1.7),

1 ~(re—6Y2/2 P{X; >} _
\/ﬂc e —(re— 9)——————————c = 1.
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From Lemma 2.1,

[+ (re — 6)2] = (re — 0)5X—162~”—°} <1

Lemma 2.2 follows immediately.
Lemma 2.3. Foranyf>0,r.<o(c™?)asc — 0.

Proof. By (2.2),ifr > 60,

.

o1 1 20
E(X; -t < —(r=6)*/2
o= s Zmiv G -op°
(2-3)
L _(r-8)2p2
< ——e .
T W2

Let 7/’ be the number gfeater than 6 satisfying

1w
(2" =0)%/2

Vor

= C.

By (2.3), we have

r <1 =0+ (2log 1 )1/2:o(c"ﬁ) as ¢—0, for 3 >0.

(o

Lemma 2.4. Let T} be as defined in (1.‘6) and (1.7). Then E[(TF)"] =
o(c7?) as ¢ — 0, for all p > 0.

Proof.

E(eT™) = c-ikP{T: =k}
k=1

=cC: ZkP{Xl < TC7"'7Xk—1 < chXk > ‘Tc}
k=1

o0

=c- Zk(P{Xl < rc})k_lP{Xl > re}

T P{X; >}
By Lemma 2.2,

, 1
(24) E(CTC*) S ;‘T'g' -0 as ¢—0.
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Since T is geometrically distributed, for all p > 0 there exists M, > 0 such
that
E[(cT7)"] = E[(T2)"]
< oMy [B(L)] = M,y - [E(T2))”
Lemma 2.4 follows from (2.4).

3. Performance of T.. Unlike T}, the stopping rule T, defined by
(1.9) is not a geometric random variable. The key to studying the behavior
of T, is to approximate T, by appropriate geometrically distributed random

variables T:: 5 and Tc_’ s which are defined as follows.

(3'1) T:’-'B:inf{nZ]_:XnZTC_l_cﬁ}
and

(3.2) T s=inf{n>1:X,>r.—c"},
where 3 > 0.

Lemma 3.1. For any 8 > 0, both ET:ﬁ/ETC* and ETc:@/ETc* go to

one as ¢ — 0.

Proof.
ET+ . P{X] Z Tc}

C

ETr — P{Xy>r.+ P}

By (2.1)

r.— 0

\/2_7rl+(7'c_0)2

e (re=0)?/2 < P{X1>7}

<
- \/27['Tc"9

1 1
e_(rc‘9)2/2

and
1 re — 0+ cP

_(Tc—€+cﬁ)2/2 < PiX, > 8
\/27r1+(rc——0-|-cﬂ)2e SP{X1>2r.+cP}

< 1 1 ﬁe_(rc_9+cB)2/2'
Therefore, V2 re—0+c¢
(re =0 + P(re = 6) oyt et
L+ (r.—6)?
(3:3) < P{X1 2 re}/P{X1 > re+ P}

1+ (1. — 0)* + 2¢P(r, — 6) + %P e(Tc_g)cB+cﬂ/2
- (re — 0)2 4+ cB(r. - 6) '
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By Lemma 2.3, it is not difficult to see that both sides in (3.3) go to one as
¢ — 0. For ET_;/ET¢, the argument is quite similar.

Lemma 3.2. Define T, by (1.8) and (1.9) with n. = 6c¢™ for some
§>0and0 < a< 1. Then for0< < af2, asc— 0,

(3.4) E(T.) < o(1) + n. — 1+ E(T},).

Proof. Define
Leg=sup{n>1:|X,-0]>c"}, 0< B < a2
By Theorem 7 of Chow and Lai (1975),
(3.5)  {(¢*®L.p)" : ¢ < 1/v/2x} is uniformly integrable for all p > 0.
In particular, for all p > 0,
E(Li”ﬁ) = 0(c™%%P) as ¢— 0.
Since T:ﬁ is geometric »distributed, Lemma 2.4 and Lemma 3.1 imply that
(3.7) {(cT:ﬁ)p e < 1/\/5;} is uniformly integrable for all p > 0.

For K sufficiently large, Kc™! > 2n, for all ¢ < 1/\/2—7r We have,
treating K c¢~!/2 as an integer,
P{cT, > K}
(3.8) =P{L.p>Kc /2, > K} + P{L.p < Kc™/2,¢T. > K}
<P{*L.ps> K[2} + P{Lcp < Kc7'/2,Te > K™}

{Lep < Kc™')2,T. > K™t}
c{0- F<X, <0+ X, < Ten = Xn+(re—6)
forall Kc™'/2 <n< K™}
C{Xn < (re+¢P) forall Ke™'/2<n < Ke ™'}
c{T}, > Ke™'/2},
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where
T:ﬁ =inf{m > 1: XpnyKrj2c 2 T+ cﬁ}.

Since P{T 5 > Kc™'/2} = P{T};> Kc'[2} = P{cT}; > K/2}, by (3.8)
P{cT. > K} < P{c** L5 > K/2} + P{cT}; > K/2}.

Hence by (3.5) and (3.7),

(3.9) {(cT,)? : ¢ < 1/v/27r} is uniformly integrable for all p > 0.

Then from (3.6) with p > (a/2 — 8)~! and (3.9) with p = 2,
E(To) = E(f. - Iz, goney) + E(Te- Ip, g<ne))
< [E@E)P2PY* Lo 2 e} + E(inf{n 2 no: Xp 2 re +¢7})
< (B2 2ng?2 - BYA(LE 5) + (ne — 1) + E(Tp)
= o(1) + (n. — 1) + E(T,).

Lemma 3.3. Define T, by (1.8) and (1.9) with n. = §c™* for some
§>0and0<a<1. Then for0< B < af2, asc—0,

E(T.)> (n.— 1)+ E(T 5) - o(c?) for ¢>0.
Proof.
E(Te) > E(Te - Iz, y<n.y) |
>E[(inf{n > n. : Xn > re — N1, j<nc))]
—E(inf{n 2ne: X, > ro—c?}) = Efinf{n> ne: Xp> re=" N1, p2n.))]
>(ne — 1) + E(T;5)— E/*(inf{n> nc : Xn> re—cP})? - P (L. > nc}
=(ne — 1)+ E(T,5) — E"?[(nc — 1) + T " PV {Lep > nc}.

By Lemma 2.4 and Lemma 3.1,
{(cTp)" re<1/V 27} is uniformly integrable for all p > 0.
In particular, for all p > 0,

E(T ;)" < O(c™?).
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Therefore,
EY*[(n, = 1)+ Top]? - P/*{L.pp > nc}
< [(me = 1)° + 2(ne = DE(T,) + E(TL) 1 - [nzPE(LE )2
= [(0(c_2°‘) + O(C-—a . c—-l) + 0(6—2)]1/2 . O(c((a/z)—ﬁ)p)
- O(c((a/2)——ﬁ)p—1) = o(c?).

By (3.10), the proof is completed.

Lemma 3.4. Ifn. = 6c™* for some 6§ > 0 and 0 < a < 1, then for
every B € (0,a/2),

o0

Z E(|1X;lI%,-6>c53) — 0,

j=ne

asc— 0.

Proof. Choosing p in (3.5) large enough so that § < a(p — 2)/2p, we

have
i E(|X;|I{1x,-01>}) < i EYYH( X3PV {L.p > j}
j=nc j=c¢n
= 0(1) i JTPREMVA(LD )
j=ne
<0(1) i TP/ mPp
Jj=n,

— O(gﬁp /oox—pﬂdw) .

Ne

= O(cP/2=D=Fry = o(1).

Theorem. Define T, by (1.8) and (1.9) with n, = éc™* for some § > 0
and 0 < a < 1. Then as ¢ — 0,

E(Yrs) — E(Yy) — 0.

That is, the expected loss due to not knowing 8 and using the approzimating

rule T. vanishes as ¢ — 0.
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Proof. Because T is optimal and E(Yr:) =r,,
(3.11) 0< E(Yr:) — E(Y; ) < re— E(X3) + cET..

From Lemma 3.4, for 0 < 8 < /2 and ¢ < 1/v/2x, by independence of the
Xi7

E(Xz)= Y E(XiIg4_5)
J=n.
> > B(XLig, i —oj<ey) T 0(1)
j=ne
Z Z E(XjI{TcszYj_elscﬂvxizrc'*'cﬁ}) + 0(1)
j=mn,
= 2 Bl x,5meren)) = D EUXG (i, _gp58y) + 0(1)
j=n. j=ne

K

P{Te 2 YE(XiI{x;2r.405)) + 0(1)

J=ne

= E(X1 - Igx, >rotesy) - [B(Te) = (e — D] + (1), as ¢ — 0.

By Lemma 3.3,

E(X3.) > E(X1 - Itx,>ro4003) - E(T ;) + 0(1), as ¢ — 0.

E(X1 - Iix,>r.4e03) - E(T, )
1 8 _g)2 :
= [\/—2_;@ (re+c™=87/2 L OP{X; > 1.+ eﬁ}}/P{X1 > r.—cP}.
From (2.1),

1 ~(re=f—0)*/2

1
>r,.—ePl <
P{X;>r, e}_\/2_7r(rc__cﬁ_0)e

Therefore, by Lemma 2.3,
B(X3) > (1o — ¢ — )ellre=cf =7 =t =612
16 P{Xy > r.+ "}

(3.12) . P{X; > r.— cf}
=7,- e—2c (rc—9) + 0(1) .

+ o(1)

= ro(1 4 o(c?)) + o(1).
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By Lemma 2.4, Lemma 3.1 and Lemma 3.2, as ¢ — 0,
cE(T:) — 0.
Therefore, by (3.11), (3.12) and Lemma 2.3,
E(Yr:)— E(Y3)—0, as c— 0.

The proof is completed.
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