APPROXIMATIONS TO OPTIMAL STOPPING RULES FOR NORMAL RANDOM VARIABLES BY ## WUN-YI SHU(許文郁) Abstract. For X_1, X_2, \ldots i.i.d. with finite mean and $Y_n = \max\{X_1, \ldots, X_n\} - cn$, c positive, a number of authors have considered the problem of determining an optimal stopping rule for the reward sequence Y_n . In general, it requires complete knowledge of the distribution of the X_i . Martinsek (1984) examined the problem of approximating the optimal expected reward when the X_i are exponentially distributed with unknown mean. This paper deals with the case where X_i are $N(\theta, 1)$ distributed with θ unknown. Stopping rules designed to approximate the optimal rule (which can be used only when θ is known) are proposed. Under certain conditions the difference between the expected reward using the proposed stopping rules and the optimal expected reward vanishes as c approaches zero. 1. Introduction. In the theory of optimal stopping procedures there arises an important class of problems of the following nature: Suppose that X_1, X_2, \ldots are i.i.d. random variables with $E|X_1| < \infty$. We observe the X_i 's sequentially and are allowed to stop observing at any stage. If we stop with n-th observation, we receive a reward Y_n , where Y_n is some measurable function of X_1, X_2, \ldots, X_n . The problem is to find a stopping rule which maximizes the expected reward. Such a rule, if one exists, will be called optimal stopping rule. We shall be considering a particular class of reward functions of the form: (1.1) $$Y_n = \max\{X_1, X_2, \dots, X_n\} - cn, \quad c > 0.$$ Received by the editors September 25, 1988 and in revised form April 9, 1990. AMS 1980 subject classifications: Primary 62L15; secondary 60G40. Key words and phrases: Optimal stopping, uniform integrability, last time. 296 WUN-YI SHU [December This problem and variations on it have been treated extensively by MacQueen and Miller (1960), Derman and Sacks (1960), Sakaguchi (1961), Chow and Robbins (1961, 1963), Yahav (1966), Cohn (1967) and DeGroot (1968). The optimal stopping rule for this problem, i.e., the rule which maximizes $E(Y_T)$ over all stopping rules T with $E(Y_T^-) < \infty$, is $$(1.2) T_c^* = \inf\{n \ge 1 : X_n \ge r_c\},$$ where $$(1.3) E(X_1 - r_c)^+ = c$$ and (1.4) $$E(Y_{T_c^*}) = E(X_{T_c^*}) - cE(T_c^*) = r_c.$$ (for a proof of this result, see Chow, Robbins and Siegmund 1971, pp.56-58). However, in order to use the stopping rule T_c^* it is necessary to know r_c , which in turn requires knowledge of the distribution of the X_i . If only partial information about the distribution is available, it may not be possible to compute r_c , and in such cases it would be desirable to approximate the optimal rule T_c^* and the optimal reward $E(Y_{T_c^*})$ as well. This type of approximation problem has been considered previously by Bramblett (1965) and Martinsek (1984). Bramblett (1965) showed that for certain cases involving unknown location parameters, the ratio of the expected reward using an approximating stopping rule to the optimal expected reward approaches one as c goes to zero. In other words, he showed that certain approximating stopping rules are asymptotically optimal in the sense of Kiefer and Sacks (1963) and Bickel and Yahav (1967, 1968). But he was unable to get results about the vanishing of the difference in expected rewards as c approaches zero. Martinsek (1984) considered the case where X_i has an exponential distribution with unknown mean, and proved that the difference between the optimal expected reward and the expected reward using an approximating stopping rule vanishes as c goes to zero. But as he mentioned in the last section, results about the performance of the approximating stopping rule depend on the properties of the underlying distribution. Therefore, his method cannot be applied to any case other than exponential. The purpose of this paper is to consider the special case of the normal distribution with unknown mean, and to prove a result which suggests that a certain approximation to the optimal rule performs well asymptotically. Assume throughout the rest of this paper that the distribution of X_i is $N(\theta, 1)$. An easy computation shows that (1.5) $$E(X_1 - r)^+ = \varphi(r - \theta) - (r - \theta)[1 - \Phi(r - \theta)],$$ where $$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$ and $$\Phi(x) = \int_{-\infty}^{x} \varphi(y) dy.$$ Therefore, the optimal stopping rule is $$(1.6) T_c^* = \inf\{n \ge 1 : X_n \ge r_c\},$$ where (1.7) $$\varphi(r_c - \theta) - (r_c - \theta)[1 - \Phi(r_c - \theta)] = c.$$ Unfortunately, it is not possible to give closed-form expressions for r_c as Martinsek (1984) did for the exponential case. The methods of Martinsek (1984) cannot be used to approximate the optimal stopping rule in such situation. We will do it implicitly, using the following idea. For each n, we can estimate r_c by $\hat{r}_{c,n}$, where $\hat{r}_{c,n}$ satisfies $$(1.8) \qquad \varphi(\hat{r}_{c,n} - \overline{X}_n) - (\hat{r}_{c,n} - \overline{X}_n)[1 - \Phi(\hat{r}_{c,n} - \overline{X}_n)] = c,$$ and approximate the optimal rule T_c^* by (1.9) $$\hat{T}_c = \inf\{n \ge n_c : X_n \ge \hat{r}_{c,n}\},\$$ where n_c is a positive integer depending on c. We hope that $E(Y_{\hat{T}_c})$ is close to $E(Y_{T_c^*})$. In the next section it is proved that if $n_c = \delta c^{-\alpha}$ for some $\delta > 0$ and $0 < \alpha < 1$, then (1.10) $$E(Y_{T_c^*}) - E(Y_{\hat{T}_c}) \to 0$$, as $c \to 0$. 2. Some properties of r_c and T_c^* . In this section we prove some inequalities for r_c and T_c^* which will be needed later. **Lemma 2.1.** Let r_c be as defined in (1.7). Then for $0 < c < 1/\sqrt{2\pi}$, $$c^{-1}e^{-(r_c-\theta)^2/2} \ge \sqrt{2\pi} \left[1 + (r_c-\theta)^2\right].$$ *Proof.* For x > 0, we have (2.1) $$\frac{x}{1+x^2}e^{-x^2/2} \le \int_x^\infty e^{-y^2/2} dy \le \frac{1}{x}e^{-x^2/2}.$$ (cf. Freedman (1983), (4) Lemma, p. 11-12). By (1.5) and (2.1), if $r > \theta$. $$E(X_{1}-r)^{+} = \frac{1}{\sqrt{2\pi}}e^{-(r-\theta)^{2}/2} - (r-\theta)\int_{r-\theta}^{\infty} \frac{1}{\sqrt{2\pi}}e^{-y^{2}/2}dy$$ $$\leq \frac{1}{\sqrt{2\pi}}e^{-(r-\theta)^{2}/2} - \frac{1}{\sqrt{2\pi}}\frac{(r-\theta)^{2}}{1+(r-\theta)^{2}}e^{-(r-\theta)^{2}/2}$$ $$= \frac{1}{\sqrt{2\pi}}\frac{1}{1+(r-\theta)^{2}}e^{-(r-\theta)^{2}/2}.$$ For $0 < c < 1/\sqrt{2\pi}$, it is easy to see that $r_c > \theta$. Let r_c' be the number satisfying $$\frac{1}{\sqrt{2\pi}} \frac{1}{1 + (r'_c - \theta)^2} e^{-(r'_c - \theta)^2/2} = c.$$ By (2.2), we have $r_c \leq r'_c$. Therefore $$c^{-1}e^{-(r_c-\theta)^2/2} \ge c^{-1}e^{-(r'_c-\theta)^2/2}$$ $$= \sqrt{2\pi} \left[1 + (r'_c - \theta)^2 \right]$$ $$\ge \sqrt{2\pi} \left[1 + (r_c - \theta)^2 \right],$$ completing the proof. **Lemma 2.2.** For $0 < c < 1/\sqrt{2\pi}$, $$\frac{P\{X_1 \ge r_c\}}{c} \ge r_c - \theta.$$ Proof. By (1.7), $$\frac{1}{\sqrt{2\pi}}c^{-1}e^{-(r_c-\theta)^2/2} - (r_c-\theta)\frac{P\{X_1 \ge r_c\}}{c} = 1.$$ From Lemma 2.1, $$[1 + (r_c - \theta)^2] - (r_c - \theta) \frac{P\{X_1 \ge r_c\}}{c} \le 1.$$ Lemma 2.2 follows immediately. Lemma 2.3. For any $\beta > 0$, $r_c \le o(c^{-\beta})$ as $c \to 0$. *Proof.* By (2.2), if $r > \theta$, (2.3) $$E(X_1 - r)^+ \le \frac{1}{\sqrt{2\pi}} \frac{1}{1 + (r - \theta)^2} e^{-(r - \theta)^2/2} \\ \le \frac{1}{\sqrt{2\pi}} e^{-(r - \theta)^2/2}.$$ Let $r_c^{\prime\prime}$ be the number greater than θ satisfying $$\frac{1}{\sqrt{2\pi}}e^{-(\tau_c''-\theta)^2/2} = c.$$ By (2.3), we have $$r_c \leq r_c'' = \theta + \left(2\log\frac{1}{c\sqrt{2\pi}}\right)^{1/2} = o(c^{-\beta}) \quad \text{as} \quad c \to 0, \quad \text{for} \quad \beta > 0.$$ **Lemma 2.4.** Let T_c^* be as defined in (1.6) and (1.7). Then $E[(T_c^*)^p] = o(c^{-p})$ as $c \to 0$, for all p > 0. Proof. $$\begin{split} E(cT^*) &= c \cdot \sum_{k=1}^{\infty} kP\{T_c^* = k\} \\ &= c \cdot \sum_{k=1}^{\infty} kP\{X_1 < r_c, \dots, X_{k-1} < r_c, X_k \ge r_c\} \\ &= c \cdot \sum_{k=1}^{\infty} k\left(P\{X_1 < r_c\}\right)^{k-1} P\{X_1 \ge r_c\} \\ &= \frac{c}{P\{X_1 > r_c\}}. \end{split}$$ By Lemma 2.2, (2.4) $$E(cT_c^*) \le \frac{1}{r_c - \theta} \to 0 \quad \text{as} \quad c \to 0.$$ Since T_c^* is geometrically distributed, for all p>0 there exists $M_p>0$ such that December $$E[(cT_c^*)^p] = c^p E[(T_c^*)^p]$$ $$\leq c^p M_p \cdot [E(T_c^*)]^p = M_p \cdot [E(cT_c^*)]^p$$ Lemma 2.4 follows from (2.4). 3. Performance of \hat{T}_c . Unlike T_c^* , the stopping rule \hat{T}_c defined by (1.9) is not a geometric random variable. The key to studying the behavior of \hat{T}_c is to approximate \hat{T}_c by appropriate geometrically distributed random variables $T_{c,\beta}^+$ and $T_{c,\beta}^-$ which are defined as follows. (3.1) $$T_{c,\beta}^{+} = \inf \{ n \ge 1 : X_n \ge r_c + c^{\beta} \}$$ and (3.2) $$T_{c,\beta}^{-} = \inf \{ n \ge 1 : X_n \ge r_c - c^{\beta} \},$$ where $\beta > 0$. Lemma 3.1. For any $\beta > 0$, both $ET_{c,\beta}^+/ET_c^*$ and $ET_{c,\beta}^-/ET_c^*$ go to one as $c \to 0$. Proof. $$\frac{ET_c^+}{ET_c^*} = \frac{P\{X_1 \ge r_c\}}{P\{X_1 \ge r_c + c^{\beta}\}}.$$ By (2.1) $$\frac{1}{\sqrt{2\pi}} \frac{r_c - \theta}{1 + (r_c - \theta)^2} e^{-(r_c - \theta)^2/2} \le P\{X_1 \ge r_c\}$$ $$\le \frac{1}{\sqrt{2\pi}} \frac{1}{r_c - \theta} e^{-(r_c - \theta)^2/2}$$ and $$\frac{1}{\sqrt{2\pi}} \frac{r_c - \theta + c^{\beta}}{1 + (r_c - \theta + c^{\beta})^2} e^{-(r_c - \theta + c^{\beta})^2/2} \le P\{X_1 \ge r_c + c^{\beta}\}$$ $$\le \frac{1}{\sqrt{2\pi}} \frac{1}{r_c - \theta + c^{\beta}} e^{-(r_c - \theta + c^{\beta})^2/2}.$$ Therefore, $$\frac{(r_c-\theta)^2+c^{\beta}(r_c-\theta)}{1+(r_c-\theta)^2}e^{(r_c-\theta)c^{\beta}+c^{\beta}/2}$$ (3.3) $$\leq P\{X_1 \geq r_c\} / P\{X_1 \geq r_c + c^{\beta}\}$$ $$\leq \frac{1 + (r_c - \theta)^2 + 2c^{\beta}(r_c - \theta) + c^{2\beta}}{(r_c - \theta)^2 + c^{\beta}(r_c - \theta)} e^{(r_c - \theta)c^{\beta} + c^{\beta}/2}.$$ By Lemma 2.3, it is not difficult to see that both sides in (3.3) go to one as $c \to 0$. For $ET_{c,\beta}^-/ET_c^*$, the argument is quite similar. **Lemma 3.2.** Define \hat{T}_c by (1.8) and (1.9) with $n_c = \delta c^{-\alpha}$ for some $\delta > 0$ and $0 < \alpha < 1$. Then for $0 < \beta < \alpha/2$, as $c \to 0$, (3.4) $$E(\hat{T}_c) \le o(1) + n_c - 1 + E(T_{c,\beta}^+).$$ Proof. Define $$L_{c,\beta} = \sup\{n \ge 1 : |\overline{X}_n - \theta| \ge c^{\beta}\}, \quad 0 < \beta < \alpha/2.$$ By Theorem 7 of Chow and Lai (1975), $\left(3.5\right) \quad \left\{ \left(c^{2\beta}L_{c,\beta}\right)^p : c < 1/\sqrt{2\pi}\right\} \ \text{ is uniformly integrable for all } \ p > 0.$ In particular, for all p > 0, $$E(L_{c,\beta}^p) = O(c^{-2\beta p})$$ as $c \to 0$. Since $T_{c,\beta}^+$ is geometric distributed, Lemma 2.4 and Lemma 3.1 imply that (3.7) $$\left\{ \left(cT_{c,\beta}^+ \right)^p : c < 1/\sqrt{2\pi} \right\}$$ is uniformly integrable for all $p > 0$. For K sufficiently large, $Kc^{-1} > 2n_c$ for all $c < 1/\sqrt{2\pi}$. We have, treating $Kc^{-1}/2$ as an integer, $$P\{c\hat{T}_{c} > K\}$$ $$= P\{L_{c,\beta} > Kc^{-1}/2, c\hat{T}_{c} > K\} + P\{L_{c,\beta} \leq Kc^{-1}/2, c\hat{T}_{c} > K\}$$ $$\leq P\{c^{2\beta}L_{c,\beta} > K/2\} + P\{L_{c,\beta} \leq Kc^{-1}/2, \hat{T}_{c} > Kc^{-1}\}.$$ $$\{L_{c,\beta} \leq K^{*}c^{-1}/2, \hat{T}_{c} > Kc^{-1}\}$$ $$\subset \{\theta - c^{\beta} \leq \overline{X}_{n} \leq \theta + c^{\beta}, X_{n} < \hat{r}_{c,n} = \overline{X}_{n} + (r_{c} - \theta)$$ for all $Kc^{-1}/2 < n \leq Kc^{-1}\}$ $$\subset \{X_{n} < (r_{c} + c^{\beta}) \text{ for all } Kc^{-1}/2 < n \leq Kc^{-1}\}$$ $$\subset \{\tilde{T}_{c,\beta}^{+} \geq Kc^{-1}/2\},$$ where $$\tilde{T}_{c,\beta}^+ = \inf\{m \ge 1 : X_{m+K/2c} \ge r_c + c^{\beta}\}.$$ Since $P\{\tilde{T}_{c,\beta}^+ \ge Kc^{-1}/2\} = P\{T_{c,\beta}^+ \ge Kc^{-1}/2\} = P\{cT_{c,\beta}^+ \ge K/2\}$, by (3.8) $$P\{c\hat{T}_c > K\} \le P\{c^{2\beta}L_{c,\beta} > K/2\} + P\{cT_{c,\beta}^+ > K/2\}.$$ Hence by (3.5) and (3.7), (3.9) $$\{(c\hat{T}_c)^p : c < 1/\sqrt{2\pi}\}$$ is uniformly integrable for all $p > 0$. Then from (3.6) with $p > (\alpha/2 - \beta)^{-1}$ and (3.9) with p = 2, $$E(\hat{T}_{c}) = E(\hat{T}_{c} \cdot I_{\{L_{c,\beta} \geq n_{c}\}}) + E(\hat{T}_{c} \cdot I_{\{L_{c,\beta} < n_{c}\}})$$ $$\leq [E(\hat{T}_{c}^{2})]^{1/2} P^{1/2} \{L_{c,\beta} \geq n_{c}\} + E(\inf\{n \geq n_{c} : X_{n} \geq r_{c} + c^{\beta}\})$$ $$\leq [E(\hat{T}_{c}^{2})]^{1/2} n_{c}^{-p/2} \cdot E^{1/2} (L_{c,\beta}^{p}) + (n_{c} - 1) + E(T_{c,\beta}^{+})$$ $$= o(1) + (n_{c} - 1) + E(T_{c,\beta}^{+}).$$ **Lemma 3.3.** Define \hat{T}_c by (1.8) and (1.9) with $n_c = \delta c^{-\alpha}$ for some $\delta > 0$ and $0 < \alpha < 1$. Then for $0 < \beta < \alpha/2$, as $c \to 0$, $$E(\hat{T}_c) \ge (n_c - 1) + E(T_{c,\beta}^-) - o(c^q)$$ for $q > 0$. Proof. $$\begin{split} &E(\hat{T}_c) \geq E(\hat{T}_c \cdot I_{\{L_{c,\beta} < n_c\}}) \\ \geq &E[(\inf\{n \geq n_c : X_n \geq r_c - c^{\beta}\})(I_{\{L_{c,\beta} < n_c\}})] \\ = &E(\inf\{n \geq n_c : X_n \geq r_c - c^{\beta}\}) - E[\inf\{n \geq n_c : X_n \geq r_c - c^{\beta}\})(I_{\{L_{c,\beta} \geq n_c\}})] \\ \geq &(n_c - 1) + E(T_{c,\beta}^-) - E^{1/2}(\inf\{n \geq n_c : X_n \geq r_c - c^{\beta}\})^2 \cdot P^{1/2}\{L_{c,\beta} \geq n_c\} \\ = &(n_c - 1) + E(T_{c,\beta}^-) - E^{1/2}[(n_c - 1) + T_{c,\beta}^-]^2 \cdot P^{1/2}\{L_{c,\beta} \geq n_c\}. \end{split}$$ By Lemma 2.4 and Lemma 3.1, $$\{(cT_{c,\beta}^-)^p: c<1/\sqrt{2\pi}\} \ \text{ is uniformly integrable for all } \ p>0.$$ In particular, for all p > 0, $$E(T_{c,\beta}^-)^p \le O(c^{-p}).$$ Therefore, $$E^{1/2}[(n_c - 1) + T_{c,\beta}^-]^2 \cdot P^{1/2}\{L_{c,\beta} \ge n_c\}$$ $$\le [(n_c - 1)^2 + 2(n_c - 1)E(T_{c,\beta}^-) + E(T_{c,\beta}^-)^2]^{1/2} \cdot [n_c^{-p}E(L_{c,\beta}^p)]^{1/2}$$ $$= [(O(c^{-2\alpha}) + O(c^{-\alpha} \cdot c^{-1}) + O(c^{-2})]^{1/2} \cdot O(c^{((\alpha/2) - \beta)p})$$ $$= O(c^{((\alpha/2) - \beta)p - 1}) = o(c^q).$$ By (3.10), the proof is completed. **Lemma 3.4.** If $n_c = \delta c^{-\alpha}$ for some $\delta > 0$ and $0 < \alpha < 1$, then for every $\beta \in (0, \alpha/2)$, $$\sum_{j=n_c}^{\infty} E(|X_j|I_{\{|\bar{X}_j-\theta|>c^{\beta}\}}) \to 0,$$ as $c \rightarrow 0$. *Proof.* Choosing p in (3.5) large enough so that $\beta < \alpha(p-2)/2p$, we have $$\sum_{j=n_c}^{\infty} E(|X_j|I_{\{|X_j-\theta|>c^{\beta}\}}) \leq \sum_{j=c_n}^{\infty} E^{1/2}(X_j^2)P^{1/2}\{L_{c,\beta} \geq j\}$$ $$= O(1) \sum_{j=n_c}^{\infty} j^{-p/2}E^{1/2}(L_{c,\beta}^p)$$ $$\leq O(1) \sum_{j=n_c}^{\infty} j^{-p/2} \cdot c^{-\beta p}$$ $$= O(c^{-\beta p} \int_{n_c}^{\infty} x^{-p/2} dx)$$ $$= O(c^{\alpha(p/2-1)-\beta p}) = o(1).$$ **Theorem.** Define \hat{T}_c by (1.8) and (1.9) with $n_c = \delta c^{-\alpha}$ for some $\delta > 0$ and $0 < \alpha < 1$. Then as $c \to 0$, $$E(Y_{T_c^*}) - E(Y_{\hat{T}_c}) \rightarrow 0.$$ That is, the expected loss due to not knowing θ and using the approximating rule \hat{T}_c vanishes as $c \to 0$. *Proof.* Because T_c^* is optimal and $E(Y_{T_c^*}) = r_c$, $$(3.11) 0 \leq E(Y_{T_c^*}) - E(Y_{\hat{T}_c}) \leq r_c - E(X_{\hat{T}_c}) + cE\hat{T}_c.$$ From Lemma 3.4, for $0 < \beta < \alpha/2$ and $c < 1/\sqrt{2\pi}$, by independence of the X_i , $$E(X_{\hat{T}_{c}}) = \sum_{j=n_{c}}^{\infty} E(X_{j}I_{\{\hat{T}_{c}=j\}})$$ $$\geq \sum_{j=n_{c}}^{\infty} E(X_{j}I_{\{\hat{T}_{c}=j,|\overline{X}_{j}-\theta|\leq c^{\beta}\}}) + o(1)$$ $$\geq \sum_{j=n_{c}}^{\infty} E(X_{j}I_{\{\hat{T}_{c}\geq j,|\overline{X}_{j}-\theta|\leq c^{\beta},X_{j}\geq r_{c}+c^{\beta}\}}) + o(1)$$ $$= \sum_{j=n_{c}}^{\infty} E(X_{j}I_{\{\hat{T}_{c}\geq j,X_{j}\geq r_{c}+c^{\beta}\}}) - \sum_{j=n_{c}}^{\infty} E(|X_{j}|I_{\{|\overline{X}_{j}-\theta|>c^{\beta}\}}) + o(1)$$ $$= \sum_{j=n_{c}}^{\infty} P\{\hat{T}_{c}\geq j\}E(X_{j}I_{\{X_{j}\geq r_{c}+c^{\beta}\}}) + o(1)$$ $$= E(X_{1}\cdot I_{\{X_{1}>r_{c}+c^{\beta}\}})\cdot [E(\hat{T}_{c}) - (n_{c}-1)] + o(1), \text{ as } c\to 0.$$ By Lemma 3.3, $$E(X_{\hat{T}_c}) \ge E(X_1 \cdot I_{\{X_1 \ge r_c + c^{\beta}\}}) \cdot E(T_{c,\beta}^-) + o(1), \text{ as } c \to 0.$$ $$\begin{split} &E(X_1 \cdot I_{\{X_1 \ge r_c + c^{\beta}\}}) \cdot E(T_{c,\beta}^-) \\ &= \left[\frac{1}{\sqrt{2\pi}} e^{-(r_c + c^{\beta} - \theta)^2/2} + \theta P\{X_1 \ge r_c + e^{\beta}\} \right] / P\{X_1 \ge r_c - c^{\beta}\}. \end{split}$$ From (2.1), $$P\{X_1 \ge r_c - e^{\beta}\} \le \frac{1}{\sqrt{2\pi}} \frac{1}{(r_c - c^{\beta} - \theta)} e^{-(r_c - c^{\beta} - \theta)^2/2}.$$ Therefore, by Lemma 2.3, $$E(X_{\hat{T}_c}) \ge (r_c - c^{\beta} - \theta)e^{[(r_c - c^{\beta} - \theta)^2 - (r_c + c^{\beta} - \theta)^2]/2} + \theta \cdot \frac{P\{X_1 \ge r_c + c^{\beta}\}}{P\{X_1 \ge r_c - c^{\beta}\}} + o(1)$$ $$= r_c \cdot e^{-2c^{\beta}(r_c - \theta)} + o(1)$$ $$= r_c(1 + o(c^{\beta})) + o(1).$$ By Lemma 2.4, Lemma 3.1 and Lemma 3.2, as $c \to 0$, $$cE(\hat{T}_c) \to 0.$$ Therefore, by (3.11), (3.12) and Lemma 2.3, $$E(Y_{T_c^*})-E(Y_{\hat{T}_c}) o 0, \ \ ext{as} \ \ \ c o 0.$$ The proof is completed. ## References - 1. P. Bickel and J. Yahav, Asymptotically pointwise optimal procedures in sequential analysis, Proc. Fifth Berkeley Symp. Math. Statist. Probab., 1 (1967), 401-413. - 2. P. Bickel and J. Yahav, Asymptotically optimal Bayes and minimax procedures in sequential estimation, Ann. Math. Statist., 39 (1968), 442-456. - 3. J. E. Bramblett, Some approximations to optimal stopping procedures, Unpublished Columbia University Ph.D. dissertation, (1965). - 4. Y. S. Chow and T. L. Lai, Some one-sided theorems on the tail distribution of sample sums with applications to the last time and largest excess of boundary crossings, Trans. Amer. Math. Soc., 208 (1975), 51-72. - 5. Y. S. Chow and H. Robbins, A martingale system theorem and applications, Proc. Fourth Berkeley Symp. Math. Statist. Probab., 1 (1961), 93-104. - 6. Y. S. Chow and H. Robbins, On optimal stopping rules, Z. Wahrsch. Verw. Gebiete 2 (1963), 33-49. - 7. Y. S. Chow, H. Robbins and D. Siegmund, Great Expectations: The Theory of Optimal Stopping, Houghton, Boston. (1971) - 8. H. Cohn, On certain optimal stopping rules, Rev. Roumaine Math. Pures Appl., 12 (1967), 1173-1177. - 9. M. DeGroot, Some problems of optimal stopping, J. Ray. Statist. Soc., B 30 (1968), 108-112. - 10. C. Derman and J. Sacks, Replacement of periodically inspected equipment (an optimal stopping rule), Naval Res. Logist. Quart., 7 (1960), 597-607. - 11. D. Freedman, Brownian Motion and Diffusion, Spinger-Verlag, New York. (1983). - 12. J. Kiefer and J. Sacks, Asymptotically optimum sequential inference and design, Ann. Math. Statist., 34 (1963), 705-750. - 13. J. MacQueen and R. G. Miller, Jr, Optimal persistence policies, Operat. Res., 8 (1960), 362-380. - 14. A. T. Martinsek, Approximations to optimal stopping rules for exponential random variables, Ann. Probab., (12)(3) (1984), 876-881. - 15. M. Sakaguchi, Dynamic programming of some sequential sampling design, J. Math. Anal. Appl., 2 (1961), 446-466. - 16. J. Yahav, On optimal stopping, Ann. Math. Statist., 37 (1966), 30-35. Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan 30043, R.O.C.