BULLETIN OF THE
INSTITUTE OF MATHEMATICS
ACADEMIA SINICA
Volume 13, Number 1, March 1990

-ONE DISCRETE TIME SERIES MODEL FOR
FAT TAILED INTEGER RANDOM VARIABLES
ZIPF PROCESS

'BY
HSIAW-CHAN YEH( /b3 )

Abstract. A Markov ¢hain Z.AR(I) with Zipf(III) dis-
tributed inputs analogous to those of Jacobs and Lewis (19'78)_’
and Yeh (1983) is defined and its properties are developed. It
is shown by induction that the marginal stationary distribu-
tions are Zipf(IlT)variables.- Also, we have derived the exact and
asymptotic distributions of the extreme order statistics. Fur-
ther, the Z.AR(1) process is shown to be closed under geomet-
_ric minimization and maximization. Statistical inference for the
Z.AR(1) proées_s is developed. A stationary one-dependent mov-
ing ai'efage, Z.MA(1) process, is similarly‘ constructed.” It also
has a Zipf(III)marginal distribution. Finally, a simple extension
to mixed Z.ARMA(1,1) process and its correlational structure
is briefly introduced.

‘1. -Introduction. A wide variety of socio-economic integer variables
such as the size of business firms, discrete income, have distributions which
are fat upper tailed and reasonably well fitied by Zipf distributions. Addi-
tionally, many such variables are repeated observed over time and they form
a disctete time series data.

The motivation behind the Zipf process is to provide a discrete time
series model with which to analyze the fat tailed stationary sequence of

dependent discrete random variables with Zipf marginal distribution.
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The Zipf distribution is a discrete type of Pareto distribution (Arnold
(1983)). In Yeh(1983), I have studied the Pareto processes for modelling
continuous socio-economic time series with Pareto marginals. In this paper
I develop and study an autoregressive Zipf process. It is a Markov chain.
In addition I describe certain natural extensions to a one-dependent moving
average and mixed Zipf ARMA model. Jacobs and Lewis (1978) described
discrete time series models with geometric or Poisson marginals. The Zipf
proecesses herein described are analogous to Jacobs and Lewis models with

maximization playing the role played by addition in their models.

2. The Zipf autoregressive model Z.AR(1). In Arnold (1983)
a random variable X is defined to be a Zipf(IIl) distribution and write
X ~ Zipf(IIl)(ko,0,7) if its survival function is of the form
(2.1)

Fx(k)=Px 2R =14 (AR )

YW, for k = ko, ko + 1,k + 2, ..

where ¢ > 0 is a scale-like parameter and 4 > 0 is a shape parameter and kg,
the location parameter, is an integer. Let {A,} be the Zipf autoregressive
model (Z.AR(1)) which is generated according to the probabilistic model

(2.2) An = max{Va4,-1,(1 - Va)Ya },

where {Vy,} is a sequence of i.i.d. Bernoulli(p) random variables with
P(V, =1)=p,0< p <1, a fixed constant for each n = 1,2,.... Also
{Y.} is a sequence of i.i.d. Zip{(Ill)(ko,0,7) random variables for each
n = 1,2,.... Clearly, such sequence {A4,} is a Markov chain with parame-

ters ko, o, v and p.

Property. In equation (2.2), if Ao ~ Zipf(IlI)(ko,0,7) then all the
Ajs in the process, Z.AR(1), have identical Zipf(111)(ko,0,v) distribution.
Proof. Suppose A,_1 ~ Zipf(1lI)(ko,o,7), then
Fa (k) = P(Aq > k)
= P (max{VpoAn_1,(1 - V,)Yy} > k)
= pP(An-1 2 k) + (1= p)P(Y, > k)
k-k _ _
=1+ (""" (e +1-p)

k- ko 0/t

= +(——
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ie. Ay, ~ Zipf(Il)(ko,0,7) foralln = 1,2, ....

2.1 The autocorrelation structure of the Z.AR(1) process. Let
{A~} be the sequence in the Z.AR(1) process. It follows from the previous
property that all the A, ~ Zipf(III)(ko,0,7) foralln = 1,2, .... For ji>1,
J is an integer, the autocorrelation between Ay and A,y ; is calculated as

follows:

From the representation (2.2) one finds

E(AnAny;)
= PE(AL) + o7 (1= p)EX(An) + p72(1 — p)EX(An) + ...
= PE(AZ) + (1 - o)) E*(4,).
It follows that
Cov(AnyAntj) = p? {E(AL) — E¥(A,)} = p?Var(A,).
Thus the autocorrelation of lag _7 G=>21)is

(23) Corr(An, Any;) = pi.

It is geometrically decreasing as j increasing.

2.2 The transition matrix of the Z.AR(1) process. It follows
from (2.2) that {A.} is a Markov chain with countable state space E =
{ko,ko + 1,...}. Let Pi; represent the probability that the process {A.}

will when in state ¢, next make a transition into state j. Then the matrix
P = (P;j)oo

is the transition matrix of one-step for the Z.AR(1) process.

For any two states 1,5 € E, P;; is evaluated as

P;j = P{Ant1 = jlA, = i}
_ P{A, = i,max{Va414n,(1 = Vog1)Yn1} = i}
B P(A, =1) )

(2.4)
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Note that A, and Y,,; are independently and identically distributed as
Zipf(II1)(ko,0,7) with marginal pmf{

7(j) = P(Yas1 = J)
(2.5)

| o
=+ Ry o Y frje B

o
Then under some algebraic calculations, the transition probability is ob-

tained as

—p)(G),  if j#i4,
(26) P,,-:{ (1-p)n(5) i#

p+(1-p)(i), if j=i,

for every pair (3,5),%,j € E = {ko, %o + 1,...}, where 7(3), 7(j) are defined

as in equation (2.5).

2.3 The distribution of the runs. Let A, A;,... be a sequence in
the Z.AR(1) process. Fix a state ¢ € E, the length of a run of #'s starting

at time epoch one for {A;} is defined as
Ty =inf{j: A4; #£i} - 1.
The probability mass functjon (pmf) is derived as follows.
P(T; = 0) = P(A; #1) =1-n(7),

where 7(3) is given in equation (2.5). Then forl = 1,2,3,... , by the Markov
property of Z.AR(1), we have

P(Tl = l) = P(Al - ivAZ - i,"' )Al = i7AI+1 # i)
keE—-{i}
(2.7) = (1= p)m(i)(1 - ”(i))Pili_lv

where P;;, P;; are given in (2.6). It is straightforward to check that

AiP(Ti =1
=0
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and conclude that for any fixed state i € E, T; is a non-defective discrete
random variable. : ‘ \

The survival function of T; is directly calculated from the pmf of T3,
equation (2.7), as ‘ L
1, if n= O

(2.8) P(T; > n) = { . 1, | 1f it

Property. The empected run length for the Z. AR(l) process is. always
greater than or equal to the expect run length of an i.i.d. sequence of

Zipf(111) random varzables

Proof. From equa,ﬁon (2.8), the expécted run length

L . ,n_°°, Apr-1 _ w(i)
(2.9) E(T,)-—T;P(Tzz )—;w( )P e p){1-7r(z)}

Clearly E(T;) > l—fgrl()z—) for 0 < p < 1. Refer to the equation (2.2), consider
two particular cases

Case (i): p = 0, i.e., V, = 0 with probability 1, then A, =Y, for all
n =1,2,..., so the Z.AR(1) process is reduced to thvé:sequence of 4.i.d.
prf(III)random variables and in this case E(T) = I—-LT—(,L) |

Case (ii): p = 1, i.e., V, = 1 with probability 1, then A, = A, for
all n = 1,2,.... Hence once Ay = i, then Ay = Ay = A3 = -+ = i 50
E(T;) =

3. Extreme order statistics.
3.1. Exact and asymptotic distribution of extremes. Let
A1, Ay, ..., A, be the first n observations from a Z.AR(1) process. Define

my, = min{Ay, Az,...,An}.

By the Markov property of {4;}, the survival function of m, can be calcu-

lated as
P (i) = P(mn > i) = P(A1 2 )){P(43 > i1 > §)}"!

1 - 1 14 p(izkeyn) "
D BTSRRI
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for any ¢ € F and any integer n > 1.
The asymptotic distribution of T, is readily deduced from (3.1). As-
suming 0 < p < 1, it follows that

Y
lim P{%—(mn —k) >z} =00 for g0,

vy, d
ie., m%)l—(mn — ko) —>Weibull(,ly).
A similar analysis is for M, = max{4;, 4,,..., A,}. The distribution

function of M,, for any k € F is

Fp, (k) = P(M, < k) = P(A; < k){P(Az < k|A; < k)}*?

1 14 p(hzkay-1/v] *7
(3:2) = Ty &y T+ (Eky-177 ;

for any integer » > 1. If 0 < p < 1, the asymptotic distribution of M, is
deduced from (3.2) which is

lim P{;;,%—;(Mn —-ky) <t} = e~ =2 o i 0.

n—oo

3.2. Geometric minima and maxima. Suppose that A, As,...
is a sequence in the Z.AR(1) process and that N is a geometric random

variable with probability function
P(N=n)=pg" ! for n =1,2,...,(¢g=1-p).

Assuming that N is independent of the A’s, I define the geometric minimum

as

m = min{4;, A;, ..., An}.

Since N and A!s are independent,
P{m >[N =n} = P{m, >i} for i€ E,

where My, is defined as in section 3.1. Thus

P(m>i)= Y P{m>ilN = n}P(N = n)

R n=1
(33) ~[+ [{Jf—");]l/"rl,

1-gp
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ie.,

m ~ Zipf(IIT)( ko, o(

Y
sY)s
T~ "

and observe that the Z.AR(1) process is closed under geometric minimiza-

tion.

Analogously, the geometric maximum can be defined as
M= max{Al, A2, e ,AN}.
Using (3.2) and conditioning on N, can get

t— ko

-1 :
—_— 1/ , foranykecFE.
o(y } RS

(3.4) P(Mzk)={1+[

Thus

M~ Zipf(IID ko, (=227,
and hence that the Z.AR(1) process is closed under geometric maximization.
To summarize the relation between (3.3) and (3.4), I may write

)1m =% (1 2 ol =L 4y ~ Zipf(IL)(ko, 0,7).

p
Sy ap
This property is similar to that of Pareto processes. (Yeh, Arnold and
Robertson (1988)).

4. Statistical inference for the Z.AR(1) process. Let (a1,as,...,
an+1) be an observed sequence on the Z.AR(1) process. In this section I
will introduce how to draw inferences about the parameters {p,o,v} from
the sample. ‘ '

The likelihood of the observations (ay,az,...,an41) is (Andersone and
‘Goodman (1957))

L(al,a2, e ,an+1) = P(al) H P(a_k.*.]lak),
k=1

where P(ag41lax), k= 1,2,...,n, are the transition probabilities defined in
(2.4). The log-likelihood of (a1,as,...,8,41) is

(41)  logL(a1,az,...,an41) = In(P(a1)) + Y _In P(axss|ax).
k=1
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It is clear that the sample (ay,ds,... ,@n+1) contains only one observation

on the initial density

7(’(0,1) = P(Al = al) = P(al)

1 1
and n observations on the set of transition densities »
P(agiqlar), k=1,2,...,n,

so that the information about P(a;) contained in (a1,a3,...,a,41) does not
increase with n. Thus in (4.1), the term In P(a;) is dominated by the sum
of the other n terms, > 7, In P(aky1ax), as n becomes very large. Since
the large-sample theory is usually applied to the development of statistical
inference, so it will be convenient to drop the term, In P(ay) in (4.1) and
take

InL = Z In P((Lk+1 |ak)
k=1
as the log-likelihood function.

Note that all the values a1,a2,...,an41 are in the state space E =

{ko, ko + 1‘,. .-}. For any i € {a1,a2,...,a,41}, let

n; = the number of {k : such that ar = ¢ and ag+1 =1, for 1 <k < n},
for any pair (7, k),j,k‘e ‘{al,agy,; ..k, Gn41} With j # k,

njk = the number of {k: such that ax = j and ayyq = j, for 1 <k <n}

Define two sets
. Dy = {i|n; > 0},

Dy = {(j, k)|njx > 0},

.Eni—i— Z Njk = N.

Clearly,

Then the log-likelihood of the given ordered set of sequence (a3, as,...,a,41)

can be written as

L= ) mn(P)+ > njln(Pi).

1ED1 (Jvk)EDZ



1990] ZIPF PROCESS

Consider partial derivatives equations

, alnL 1 dPn 1 dP;
(4.2) 5‘ + Y npp——it =,
7 Py dp (ieDs Pix dp -
Oln L 1 dP,, 1 dP;
(4.3) an Z Mgt Y mpp i =0,
(J’k)GDz Jk
(4.4) ’alnLv: 1 dpP; . 1 dPy —o
' oy 2P dy T *Pix dy
i€eD, (j,k)ED2 J

where Pi;,ij are given in (2.6) as

, o 1
Pi=p+(1-p)x(@)=p+(1 *P){ T+ (5B 1y (z‘_ﬂ:ﬁ)l/w} ’

— k4+1—k
T (ERyA T 1t (ER)i

ij=(1—p>vr(l_c)=(1—p){ e - — }

Then in (4.2),

dPn - 1 - 1
dp 1+ (A 14 (=Rt [

dPjr 1 1
dp | 1R 1 (BRI

and in (4.3)
| i& =(1 .1_ 11 (i— ko)lh (i+41 _ ko)l/—y '
do (1-p) 70' [(l + (%Q_)]/—y)z - (1+ (i:};la—kn )1/7)? >
Pix _ 1“ Uiy (k=k)/7  (k+1=ko)t/
-Tl_(;_—( -p) ; o [(1+’(k_—;lm)1/'y)2—(1+(ki’ 10—k9)1/7)2 s
and in (4.4)
dP;; _ 1 (i_":ﬂ)l/’Y i — ko
oy (1—p){ —5[(1+(_J)1/7)2 In(—=)
(il(?lm)l/v 1+ 1-ko
(14 (BlEayi/ryz R
dPJk _ (ﬂa)l/‘y k — ko
= (1 ){ 42 [(1+(_ﬂ)1/7)2 In( - )

;(_-l-_lz__ﬁa)ll'v E+1—ko
(14 (ke g
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The maximum likelihood estimates of p, o, can be solved from equations
(4.2), (4.3), (4.4) by Fletcher and Powell method (1963). The location

parameter ko can be estimated by the minimum of {a3,az,...,a,41}, say

} a(l).

5. Extensions and related processes. Analogous to Yeh (1983)s
Pareto process model, two possible extensions of the Z.AR(1) process with
Zipf(IIT) marginals to moving averages Z.MA(1) and mixed autoregressive-

moving averages Z.ARMA(1,1) are discussed in this section.

5.1. The Zipf moving average process Z. MA(l) The'Z. MA(l)

process is defined is deﬁned as
(5.1) Xn = max{VpYn,(1 = Vo)Yn_1},

where {Y,,}&° is a sequence of i.i.d. Zipf(III)(ko,,v) variables. Note that,
unlike the Z.AR(1) process, the Z.MA(1) process is not a Markov chain in
general.

I'now claim that each X; in the Z.MA(1) process has a Zipf(IIl)(ko, o, 7)
marginal distribution. Let Fy,(.) be the survival function of X;. Then for
any integer k > ko,

Fx,(k) = P(X; > k) = P(max{VyYn,(1 - Vo)Yn_1} > k)
[1+( )1’”]“1(p+1-p)

=1+ ('Ic it M

Thus, X; ~ Zipf(II)(ko, #,7) marginally for all i = 1,2, ....

The autocorrellation of {X,} is calculated as

COV(Xn,Xn+1) = E(Xan+1) had E(XH)E(Xn.*_])
= PPE(YaYat1) + p(1 = p)E(Y,) + p(1 = p)E(Yn-1Yn41)
+ (1= ) B(Yao1Ya) - EX(X.).
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Note E(X,) = E(Y,) and all the {Y;,} are i.i.d. Zipf(IIT)(ko, 0,7) variables,

hence

Cov(Xn, Xn41) = {0 + p(1 = p) + (1 - p)* = L}EX(Y,) + p(1 — p)E(Y2)
= p(1 = p{E(Y;}) - E*(Ya)} |
= p(1 - p)Var(Y,).

Thus p; = Corr(Xyn, Xnt1) = p(1 — p). For

Cov(Xn, Xnt2) = E(XnXnt2) — E(Xn)E(Xny2)
= p*E(Y,Yny2)
+0(1 = P)E(YnYns1) + p(1 = p)E(Yn_1Yny2)
(1= P E(YiYur) - BX(Y,)
= {lo+ (1 - ) - 1}E*(Y,) |
= 0.

In general, for j > 3, a,n;a,logously, can get
Cov(Xpn,Xpn4j)=0.
Thué
pi=0  for j>2.
Moreover, from the generating procedure, equation (2.2),

Xn = max{V,Y,,(1 - V,.)Y,_1},

Xn+j = ma,x{Vn+an+j,(1 - Vn+j)Yn+j-1} - for ji>2,

it is clearly observed that X, and X,.; are independently distributed.
Therefore, the Z.AR(1) is a one-dependent process and has a cut-off pattern
of autocorrelation structure with autocorrelations pr=(1-p)and p; =0

for any 7 > 2.

5.2. The mixed Zipf autoregressive-moving average process,

Z.ARMA(1,1). In order to achieve parsimony it may be necessary to
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include both autoregressive and moving average terms-and thus the mixed

Z.ARMA(I,l) process is constructed as

X, = max{U,Y,,(1 = Un)An_1},

(5.2) - v v
Ap = max{V,4,-1,(1 = V,)Y,},

where {Y,}$° is a sequence of i.i.d.  Zipf(IlI)(ko,o,v) random variables
and {U,}$°, {V.}$° are independent sequences of independent Bernoulli

random variables with
P{U,=1}=p and P{V,=1}=p, b

forfixed0<B<land0<p<1.

Unless otherwise indicated, I will assume that Ag has Zipf(III)(ko,o,7)
distribution and. is independent of {Y,}, {U,}, and {V;,} for any n =
1,2,.... I will claim that the {X,}{° forms a stationary sequence of de-
pendent Zipf(III)(ko,o,7) random variables. Note that from the Z.AR(1)
process, I know A/ s have Zipf(III) marginal distributions.

For n = 1, the survival function of X; is

FXI(X) = P(X1 _>__ (I)) = P{max{UlYly,(l - Ul)Ao} 2 .’II}
=1 +(£~—:;k—°)1”]‘1

for any z = ko, ko + 1,...

In general, for n = '1, 2,..., the survival function of {Xn} is

Fx,(X) = P(X, > 2) = P{max{UnYp, (1 - Un)An-1} 2 z}
=pBPY, >z)+(1-B)P(Ap-1 > ).

Note that both {Y,} and {A,-,} are margmally dxstnbuted as lef(III)

va.nables moreover, they are mdependently distributed, hence

1

Fx,(z) = I:F:—E—)_l/_w{ﬂ + (1 -B8)}

[1 + ( )‘/”]
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ie. X, ~ Zipf(IlT)(ko,0,7).

Refer to (5.2), I find if 3 = 0 and 0 < p < 1, then X,, = A,_1 with
probability one, so { X, } is just Z.AR(1) process,and ifp = 0and 0 < B < 1,
then A,_; = Y,_; with probability one so {X,} is just Z.MA(1) process.
In particular, if 3 = 1, and 0 < p < 1, then {X,,} is reduced to {Y,}, an
i.1.d. sequence of Zipf(IIT)variables. From this discussion, we know that the
mixed Z.ARMA(1,1) is a process of great flexibility in modelling dependent
Zipf(II)(ko,0,v) variables.

According to (5.2), for j > 1,

Xntj = max{Un4;Yn4j, (1 = Unyj)Antj-1}.
The covariance between X, and X, ; is

COV(Xn_Fj ’ Xn)

= :62 COV(Yn+j,Yn) + ;6(1 - ﬂ){ COV(Yn+j9 An—l) + COV(Ym An-l—j—l)}
(5.3)

+(1 - B)? Cov(Anyj—t1, An1)-
For j > 1, the terms

(5.4) Cov(Yy4;,Yn) =0,
(5.5) Cov(Yn4j, An_1) =0,

also.from equation (2.3), I get
(5.6) Cov(Anyj1,An-1) = p’Var(A,—1).
In the third term Cov(Y;,,An4j-1), note
Anyjo1 = max{Voyj-14n4-1,(1 = Vagj-1)¥nsia}s
then |

Cov(Yp, Anyj-1) = p Cov(Yn, Anyj-2) + (1 — p) Cov(Yn,Yntj-1)
= p CoV(Ya, Anti2)

= p’~1 Cov(Yy, An),
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where

Cov(Ya,An) = p Cov(Yn, An—1) + (1 — p) Cov(Y,,Y,)
(5.7) = (1 - p)Var(Ya).
Hence

Cov(Yn, Antj—1) = p~1(1 = p)Var(Y,).

Putting together (5.4) through (5.7), then equation (5.3) is simplified as
(5.8) Cov(Xntj, Xn) = B(1-B)p? "1 (1-p)Var(Yn)+(1—B)? p?Var(An_1).

Note the three sequences {Xy,}, {Y,} and {A,} are marginally identically
distributed as Zipf(III)variables, hence

Var(X,4;) = Var(X,) = Var(Y,) = Var(4,-1).
Then the autocorrelation of X, and X, jforj>1,is

px(j) = Corr(Xn, Xnyj) = B(1=B)p 11— p)+ (1 - B)*p .

Note that 0 < px(j) < 1 and for j > 1, px(j) decreases geometrically
with increasing j if 0 < p < 1. Since p;(X) is independent of n, so the

mixed Z.ARMA(1,1) process is second order covariance stationary.

6. Concluéions. In this article, I have presented an autoregressive
Markov chain {A,} of Zipf(IIl) variables, Z.AR(1) process, in which 4, is
an non-additive random nonlinear combination of the previous value, A,_q,
and an independent Zipf(IIl) random variable. The generating scheme of
Z.AR(1) process is given in equation (2.1). Its autocorrelation structure,
the distribution of runs, the extreme order statistics and the MLE for the
parameters are all discussed detailedly in this paper. I also briefly stud-
ied the Zipf moving average process, Z.MA(1) and the mixed Zipf process,
Z.ARMA(1,1).

In summary of this paper, I found

(i) All the Z.AR(1), Z.MA(1), and Z.ARMA(1,1) processes give a com-
mon Zipf(IIT)(ko,o,v) marginal distribution.
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(ii) The Zipf processes are analogous to the discrete-type Pareto pro-
cesses (Yeh (1983)) and they have dependence character like that of the
discrete time series with marginal geometric or Poisson distributions (Ja-
cobs and Lewis (1978)).

(iii) The innovation variables {Y;} have i.i.d. Zipf(I11I)(ko, 0,7v) distribu-
tions; this construction implies that the Zipf processes are easily simulated

by a computer.
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