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REARRANGEMENT INEQUALITIES FOR
EIGENVALUES OF
DIFFERENTIAL EIGENVALUE PROBLEMS

BY

SUL-SUN CHENG( &84 )

Abstract. Among equimeasurable rearrangements of the
coefficient function of a differential eigenvalue problem, we show
that the one in increasing order minimizes the associated least
positive eigenvalue and the one in decreasing order maximizes
it.

This note is concerned with upper and lower bounds for the least posi-

tive eigenvalue of the following eigenvalue problem

(1) 2™ 4 (~1)" 1 ag(t)z = 0,

(2) 28 (0) = 0 = (z("*9)(1), k= 0,1,... ,n — 1,

where g(t) is positive and continuous in [0,1]. Among equimeasurable rear-
rangements of g(t). We shall show that the one in increasing order minimizes
the least positive Aeigenvalue and the one in decreasing ordef maximizes it.
Two real continuous functions f(t) and g(t) defined in [0,1] are said to
be similarly ordered if for each pair of real numbers s and ¢ in [0, 1], we have
[f(s)—f(D]g(s)—g(?)] > 0; f(t) and g(t) are said to be equimeasurable if the
measure of {t € [0,1]: f(t) > ¢} is equal to that of {t € [0,1] : g(t) > ¢} for
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each real number ¢. Let f, fy, and f_ be equimeasurable, and in addition
let fi(¢) and the function g(t) = t be similarly ordered, and f_(¢) and
the function h(t) = 1 — t be similarly ordered. The uniquely defined and
continuous functions f+(t) and f_(¢) are called the rearrangement of f(t)

in increasing, respectively decreasing order.

Lemma 1. ({3, Theorem 378]) Let f and g be real vnon'negative and

continuous functions defined on [0,1], then

/olf-g+=/01f+g_S/Olfszs/olf+y+=/01f-g--

The following is a slightly modified version of a result of Vollman [5,
Theorem 5.1], the proof of which can be obtained by modifying that of

Vollman.

Lemma 2. ([5, Theorem 5.1]) Let H(s,t) be a continuous and nonneg-
ative function defined on [0,1] x [0,1] which is an increasing function when
considered as a function of either the variable s, or t. Let f(t), g(t), and u(t)

be nonnegative continuous functions defined on [0,1], then
1 1 1 1 '
| [ westiiatom dudt < [ [ his,05(gs (s (0 s,
o Jo o Jo

Let the function H(s,t) be defined by

(n-—l-l)! fos(s - T)n—l dT,‘

0<s
(nil)! fot(t - r)*ldr, 0<t

IA
IN

1,

i
s<1.

H(s,t) ={

IA
IN

If g(%) is any function continuous in the interval [0, 1], then it is easily verified

that the unique solution of the differential system

(1)l = g

e®0)=0=(")H®1), k=0,1,...,n-1"
is

1
z(t) = /(; H(s,t)g(s) ds.
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In fact, H(s,t) is the Green’s function of the system [2, Lemma 3.1]. Con-
sequently, system (1) — (2) can be transformed into an equivalent integral-

equation of the form
(3) ATz =z,

where

1
(T:z:)(t):/0 H(s,t)q(s)z(s)ds

is defined in the Banach space
B={ueC™0,1]:4(0)=0, 0< i< n}

equipped with the usual sup norm. By means of the theory of up — positive
operators, it has been shown by Keener and Travis [4, Lemma 2.4] that the

operators T has exactly one (normalized) eigenvector z(¢) in the cone

P={ueB:u(z)>0,1<i< n;
(=1 u*t)(2) > 0,2 <0< 1,0 < j < n},

and that the corresponding eigenvalue is positive and larger than the abso-

lute value of any other eigenvalue. As a consequence, we have

Lemma 3. The eigenvalue problem (1)-(2) has ezactly one (normal-
ized) eigenfunction in P, and the corresponding eigenvalue is positive and
smaller than the magnitude of any other eigenvalue.

We shall denote the least positive eigenvalue stated in the above Lemma

by A(q). There is a well known minimum principle for A(q) 1, pp.239-241]:
fol (:c(") )2 dt

Jo a(t)z2(t) dt’

where the minimum is taken over the set S of nontrivial comparison func-

tions z(t) such that (i) z(®(¢) and (z("+¥))(t) exist for 0 < k < n and
0 < t < 1; and (ii) the boundary conditions in (2) are satisfied. Fur-

(4) A(g) = min

thermore, no function other than the corresponding eigenfunction of (1)-(2)
yields the minimum. In view of Lemma 3, we may restrict these comparison

functions to nonnegative ones.
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We shall need another minimum principle for A(g).

Lemma 4. ([4, Theorem 3.1]) The smallest eigenvalue A(q) of (1)-(2)

can be characterized by the extremal principle

Jo Jo H(s,t)a(s)u(s)u(?) dsdt
uEPu#O f() ug(s) ds

(5) A7) =

The unique function, ezcept for a constant multiple, which mazimizes (5) is
the eigenfunction corresponding to the eigenvalue Xq).

We are now ready to state and prove the following rearrangement the-

orem for the least positive eigenvalue of (1)-(2).

Theorem. Let A(q) denote the least positive eigenvalue of the boundary
problem (1)-(2). We have A(qy) < A(g) < Mg-), where q; and q_ are

respectively the rearrangements of q in increasing and decreasing order.

Proof. Let w(t) be an eigenfunction of (1)-(2) corresponding to A(p-).
By Lemma 3, we may assume that w(t) > 0 and w'(¢) > 0 for 0 < ¢ < 1.

Since < qw,w >>< g_w,w > by Lemma 1, we have, in view of (1),

Jo (™ (2))* dt

Jo - (w2 (t)dt
f (w™(®))* dt
fo g()w?(t) dt

> min —————fo (x(n)(t))2 dt
L f q(t)z2(t) dt
= Ag).

A(g-) =

Next, let z(t) be an eigenfunction of (1)-(2) corresponding to A(g). By
Lemma 3, we may assume that z(t) > 0. It is easily seen that the function
H(s,t) defined right after Lemma 2 sati'sﬁes the assumptions of Lemma 2.

As a consequence, we have

1 41 S U |
/0/0H(s,t)zq(s)z(s)z(t)dsdt\g/0 /0 H(s,)%q4 ()24 ()24 (2) dsdt.
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In view of Lemma, 4,

: 1,1
A7l (q) = Jo Jo H(?;Z((«‘Ss);(;)z(t) dsdt
< fol fol H(s,t)Q+(3)Z+ (8)z4(t) dsdt
B fol 23 (s)ds
< max fol fol'H(S;t)CI+ (s)u(s)u(t) dsdt
T ueP ugo j;,l u?(s)ds
= A" (g4)-

This completes the proof.

Remark. In [4], Keener and Travis studied the more general eigenvalue

problem

m~—1
() (~)" A Y (0D () = 0,

yP0)=0, 0<i<k-1
y(1)=0, k<i<m-k-1,

~ where the continuous coefficients p; are assumed to satisfy certain pdsitivity
conditions. This problem has a least positive eigenvalue A(pg, p1,--- ;Pm—1)
and a corresponding extremal principle exists for its characterization [4,
Theorem 3.1]. In view of these and our technique, we may prove without

difficulty that the following inequality holds

)‘(P(T,Pi*_a--- 1p;—1) S '\(PO’PI,--- ,pm—l)-

The same ideas can be used to deal with the eigenv;ﬂué problem

(p(1)eM)™ + (~1)"* ' Ag(t)e = 0,
z®0)=0=(pz™)?(1), 0<k<n-1,

‘where p is positive and n — times continuously differentiable on [0,1]. With
the background material in [2,4], we may prove that its least positive eigen-
value A(g) again satisfies A(g+) < AM(q) < A(g-).
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