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Abstract. Let R be an associative ring. We prove that if for
some fixed positive mteger m the mapping x—>™ in- R is onto and
(xy)™ = (yg)® for all =, y in R, then R is commutative. Using this
result, we can easily show that in Herstein’s. Theorem 3 of [4], the™
multiplicative homomorphism can be eliminated. .We also prove that ..
if R has identity and the mapping #->® in R is a multiplicative
epimorphism then R is commutative.

1. Introduction. Let G be a semigroup. Following [3], G is
called left (right) cancellative if for all x, ¥, z in G, xy=xz
(yx = zz) implies ¥ =2z We say that G is -cancellative -if it is
both left and right cancellative. We shall denote the center of G
by Z(G). Throughout this note, R will denote an associative ring.
We shall denote the commutator xy — yx in R by [=, yl, the
center of R by Z(R), the Jacobson radical of R by J (R), and the
set of all positive integers by N For m, # in N, we denote the
greatest common divisor of and n by (m, n). . I_f R has identity,
then we shall denote the group of units. of R by R*.

The following known result is useful.

Lemma A ([5], p. 221). L f x, y are élemeﬁts in d rihg R'such
that [z, y1 commutes with xz, then [z™, Y] = max™ ‘[x, vyl holds for
all m in N.

In [4], Herstem proved

TuroreM A ([4], Theorem 2). Let R be ‘a ring in whzch for
some ﬁxed integer m>1, (x +y)"=2x" + y”‘ for all =z, 'y 9 R
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Then every commutator in R is nilpotent, and the nilpotent elements
of R form an ideal.

THeEOREM B ([4], Theorem 3). If R is a ring in which the
mapping x — x™ for a fixed integer m > 1 is a homomorphism onto,
thern R is commutatiive.

Recently, the author proves that in Theorem B the multiplicative
endomorphism of R is redundant. This is the following

TueoreM C ([11], Theorem 2). If R is a ring in which the
mapping x—x™ for a fixed integer m>1 is an additive
epimorphism, then R is commutative.

We can use ([11], Theorem 1) and ([9], Theorem 10) to extend
the author’s previous result ([8], Theorem 1) to arbitrary rings.
This is done in [10]. In Theorem B, the multiplicative
endomorphism of R seems to be weaker than the additive one. In
this note, we prove that in Theorem B if ##=3 and R has identity,
then R is commutative when the additive endomorphism of R is
eliminated. ’

2. Results, We begin with

THEOREM 1. If R is a ring in whick the mapping x — x™ for
‘some fixed positive integer m is onto and (xy)™ = (yx)™ for all
x, ¥ in R, then R is commutative.

Proof. We note first that any nilpotent ¢ in R must be
central, because (1+ a)z™(1+a)'= {1+ a)zx* (1 + a) )"
=z" and so [@, "] =0 for all z in R. But, the mapping z— z™
is surjective, hence [@, ] = 0 for all z in R.

By the result of [2], the commutator ideal of R is nil. So for
all z, v in R, [x, v] is a nilpotent element. Thus by the results
above, [z, yl€Z(R) for all x vy in R. Hence, we get
0= (xy)" — (yz)” = ma™ ty* ' [z, y] and so by Lemma A twice
[™, y™] =mP 2™ 1y» {2, y] =0 for all =, ¥ in R. Since the
mapping £ —> ™ in R is onto, the commutativity of R follows.
This completes the proof of Theorem 1.
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We see that the composite of epimorphisms is also an
epimorphism. Thus using Theorem A and Theorem 1, we can
easily prove Theorem C.

THEOREM 2. Let R be a ring with identity 1 such that for some
fixed integers m>1 and n>1, (x + ™ = z™ + y" and (x + y)°
=g*+y* for all z, v in R If (m n)=1 or 2, then R is
commutative. ‘

Proof. Assume (m, #)=1. Let 2, ye€ R Then (x+ 9)
=i + 9y implies [z, /] =[27, ¥], where j=m and z By
Theorem 6 of [1], R is commutative.

Assume (m, #) =2. Then either =2 (mod 4) or #z=2
(mod 4). By Theorem 1 of [11], R is commutative. This completes
the proof of Theorem 2.

In Theorem 2, the restriction on (e, #) is essential as
Examples 1 and 2 of [8] show.

TueoREM 3. Let R be a ring with identity 1 in which the
mapping x—x* is a multiplicative epimorphism. Then R is
commeutative.

To prove Theorem 3, we need the following lemmas.

LemMA 1. If G is a cancellative semigroup such that (xy)®
=231 and x* € Z(G) for all x, y in G, then G is abelian.

Proof. By Theorem 14 of [9], G is abelian.

LemMMA 2. Let G be a cancellative semigroup in which the
mapping x — x° is an epimorphism. Then G is abelian.

Proof. For all z, ¥ in G, we have z*%® = (2¥)® = x(yx)*y
and 9® z® = (yz)?yx, and so 2*y® = (yx)’y = y*2* by cancellation.
Since the mapping # — #® in G is onto, x* € Z(G) for all x in G.
By Lemma 1, G is abelian.

In the sequel, we assume that all the hypotheses as in Theorem
3 hold.
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LemMAa 3. J(R)2C Z(R).

Proof. By Lemma 2, R* is abelian. Let @, b & J(R). Since
R* is abelian, we get (1+a) (1+6)=1+b6)1A+a) and so
@b = ba. ‘Thus, J(R) is commttative. So, we have (ab)z = a(bx)
= (bx)a = b(xa) = (xa) b for all x in R. Hence, ](R)2 c Z(R)

LevMA 4. For y, z < R yz=20 zmphes zy = 0.

Proof. Assume yz.= 0. Since the mapping x—x* in R is
onto, there exist @, b = R such that ¢* =y and 5 =2z Then, we
get 0=yz=a*b®= (ab)® and so {(@b)x}® = (ab)*x® =0 for all # in
R. Hence, abe J(R) and (ab)a € J(R). By Lemma 3, we have
zy = b a® = (ba)® = b(ab)(aba) = (ab)(aba)b = (ab)® = 0.

Proof of Theorem 3. Using Lemmas 2 and 4, the rest of the
proof of Theorem 3 is due t6 Kobayashi [7]. This completes the
proof of Theorem 3.

3. Remarks. :

REMARK 1. In Theorem B, we do not know whether the
additive endomorphism can be eliminated.

ReEMARK 2. It is interesting to find an elementary proof of
Theorem 3. '

REMARK 3. In Lemma 2, the exponent 3 is essential. We
modify Example 3 of [6] to show this fact. Let mw —1=2>3 be
fixed. Let p be any arbitrary but fixed prime such that (case 1)
p divides #z if 2 is edd, and (case 2), p divides #/2 if 2 is even.
This is possible since # > 3. Let G be a subgroup of the group of
units of 3 x 3 matrices over GF(p) defined by

. 1 ¢ b
G=40" 1 clla, b, ce GF(p)!}.
0 0 1

It is readily verified that (xy)” = z” y” and 2™ = x for all z, ¥ in
G. However, G is not abelian. :
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REMARK 4. In Lemma 2, the epimorphism can be replaced by
monomorphism because of a* lym™=ymzx™ ! implies (2™ '¥y)”
— :L.(m—l)m ym — ym x(m—-l)m —_ (yxm—-l)m.
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