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. Abstract. The minimum distance structures of cyclic codes are
determined by the distribution of their zeros or equivalently their
nonzeros. In this paper, we consider each cyclic code as the direct
sum of cyclic subcodes. From the relations on the distribution of the
nonzeros of subcodes, we are able to derive ‘extra error protection
capabilities for some message bits. Hence, we construct some cyclic
UEP codes

1. Introduction. In a coding system, each message is encoded
into a unique codeword. Conventionally, an error-correcting code
is’ dvesigned so that either the whole transmitted message is correctly
recovered from the received vector or the whole transmitted
message is incorrectly decoded. If we consider each message as a
k-tuple, the conventional coding technique gives all the %k message
bits of a message the same level of error protection. However, in
some applications, some message bits of a message are more
significant than other message bits of the same message. Therefore,
it is desired to give the more significant message bits greater level
of error protection. A code which provides multiple levels of error
protection for its message bits is called an unequal error protection
(UEP) code. The notion of UEP codes was first introduced by
Masnick and Wolf [1]. Then, UEP codes have been studied by
many coding theorists [2-9]. An important subclass of UEP codes
is the class of cyclic UEP codes. Many cyclié codes for which
the code lengths are equal to products of relatively prime integers
have been proved to have good UEP capabilities I8, 91, since such
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codes are equivalent to direct sums of concatenated codes. In this
paper, we study the UEP capabilities of some cyclic codes which
are not necessary to be equivalent to direct sums of concatenated

codes.

9. Preliminaries. The error protection capability of a UEP
code can be represented by its separation vector. For simplicity,
we only consider UEP codes with two different levels of error
protection. Let C be an (#, b + k2) code for the message space
{0, 1}%: x {0, 1}*... Bach meésage # for C, which is a (ki + ks)-tuple,
is composed of two parts, 1 and T, such that & = (&1, Z2), where
Z; is a B;-tuple from the component message space {0, 1}% for
i=1 2. We denote each codeword in C encoded from Z by #(Z).
Denote the Hamming distance between two codewords, #(Z) and
2(Z"), by d(¥(x), v(F’ )) The separation vector §= (s, s3) of C is
defined by ‘ ' T ‘

s: = min [d[5(F:, Fs), D(F, F)]: 8(ZFs, 22) and 8(a, 72) € C,
% and Z € {0, 1}% for i =1, 2, and & +# &},
) ; - ; :
: sz = min {d[9(Z%1, &2), 9(F, T2)] : 9(Z1, T=) and 9(F;, T) €C,
Z; and Z! € {0, 1}% for i =1, 2, and % Z:}.
‘Let (&, 5;;) be a transmitted codeword of C and let 7 be the

received vector. It [3] has been shown that #; for i =1, 2 can be
correctly decoded from 7 if

(2) - dl9(&, Z), 71 < L(si — 1)/21

Equation (1) can be simplified if C is a linear code. Let w(2(&))
denote the Hamming weight of each codeword #(z) in C. The
separation vector § = (s, s;) for C is

(3) s; = min {w[v(:cl, Z2)] 1 2%0},

where ¢ =1, 2 The linear (22, k1 + B2) code C is the direct sum
of an (#, ki) linear code C: and an (#, k) linear code C:. Each
codeword ¥(Zi, &2) can be uniquely expressed as the sum of a
codeword ‘17(.731)"in C: and a codeword #(Z:) in C, The following
Theorem shows an easy method of investigating the UEP capab1hty
of a linear code.
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TueorREM 1. Let di> ds.  If the minimum distance of C is d,
and the minimum weight of any codeword in C — C, is at least di.
Then, C is a code with separation vector (si, s:) for the message
space {0, 1}” X{O 1}%2, where s, > dy and s: = ds.

Proof. See [3]. -

. 3. Cyclic UEP Codes. A cyclic‘ code can be easily decomposed
‘into the direct sum of cyclic subcodes. Some classes of cyclic
UEP codes have been discovered [2, 4, 7, 8, 9]. In an earlier work
[9], we show that many cyclic codes of composite length are UEP
codes by considering these codes as direct sums of concatenated
codes. We now turn our attention to cyclic UEP codes which are
not necessarily equivalent to direct sums of concatenated codes.
Hartmann, ei. al. [10]. stud1ed the minimum distance - structures of
cyclic codes by lnvestlgatmg the relatmns on the distribution of
the zeros for each code. In this paper, we modify Hartmann’s
work by consuiermg cyclic codes as direct sums of cyclic subcodes
and- studymg the relations on the nonzeros of the subcodes.

Let C be the direct-sum code of an (2, k1) bmary cyclic code
C1 and an (#, k) binary cyclic code C;. Let 8 be a 'primitive #-th
root of unity. Define the location polynomial ¢(X) assocxated with
a code polynomial v(X) in C, Whlch has weight 7,

4 (X = H (X + %) = X" o1 Xr~tgee ot 6y X+ o

i=1

The Generalized Newton’s identity [10, 11]
(5) S;+ a1 Sj_1 + g2 8j_2 +--F UrSj-;-:'kO.

must be satisfied for any integer j, where S; = v(#7). Since S; are
related to the distribution of zeros and nonzeros of C, we can
apply equation (5) to the study the error-correcting capability
of C.

THEOREM 2. Let C be a binary cyclic code wzth MINLIUN
distance ds. Let Ci comtain B*, p's,---, B'1 and their conjugates as
nonzeros. Consider equation (5) with v =dy dz+ 1,---5 di — 1,
where di>ds. Suppose that equation (5) either can #0t be satisfied
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or yields S; =0 for j € {iy, 13-+, 11}. - Then, C is a UEP code for
the message space {0, 1} x {0, 1}*: with separation vector at least
(di, dz).

Proof. The code C; contains g%, g%,---, % and their conjugates
as zeros. Any code polynomial in C but not in C; does not contain
all the g%, gi2,---, g%t as roots. Consider a code polynomial »(X)
in which w(w(X)) = . Suppose equation (5) with 7 is not satisfied.
Then, w(v(X)) can not be . Suppose that equation (5) is satisfied
only for S; =0, where j =1, 43,--+, 4. Then, v(X) must be in C,.
'Hence, the condition given in this theorem implies that a code
polynomial in C but not in C; has weight at least di. The proof
then follows from Theorem 1. '

ExampPLE 1. Consider the (27, 7) binary cyclic code € which
contains % A% and their conjugates as nonzeros. Let C; be the
(27, 1) cyclic code with g° as nonzero and C. be the (27, 6) cyclic
code with #* and its conjugates as mnonzeros. Clearly, C is the
direct sum of C; and C. Note that C has g7, £, 8° B, 1! as
zeros. Hence, the minimum distance of C is at least ds = 6.
Consider v(X) € C. For w(w(X)) = 6, apparently, S, =0. Suppose
ww(X)) =17. Consider equation (5) with »=7. Clearly,
Sts = (S21)? = (S2)* = (S12)® = (S6)16 = (S3)® 0. From Lemma 4
of [10], we have 61 =06 =81 = 0. For j= 11 in equation (5), we
have Ss o5 = 0. Hence, o5 = 0. For j = 14, we have Si: 0: = 0. Hence,
oz = 0. Similarly, for j= 16, 18, and 19, we have 0: =0, 05 = 0 and
o7 = 0 respectively. The fact of 61 =03 =03 =01 =05 =05 =0;= 0
implies that S; =0 for all j. Clearly, equation (5) can not be
satisfied for » = 7. Suppose w(v(X)) = 8. This implies S, =0. It
follows from Theorem 2 that C is a code for the message space
{0, 1} x {0, 1}® with separation vector at least (9, 6).

ExampLE 2. Consider the (27, 20) cyclic code C containing g,
8% and their conjugates as nonzeros. Let C; be the (27, 2) cyclic
code containing £° and g% as nonzeros and C; be the (27, 18)
cyclic code containing g and its conjugates as nonzeros. The
minimum distance d; of C is at least 2. Let v(X).€ C and assume
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w((X)) = 2. Consider equation (5) with »=2. For j=2, we
have S; + 6181 = 0. Note that S:=Si. Hence, 51 =S;. For j=3,
we have 0;8; + 038 = 0. Thus, o2 =018 For j=5, we have
S; + 018 =0, which implies S+ 8 =0. Thus, S¥=1. For
j =18, we have 01817 + 02 Si6.= Sis. Note that Sy = Serusisr17 = Sals
=(81)¥° =(S,)?"1213+17 = (§ )17 and Sis = (S1)%. Then Sis=0. It
follows from Theorem 2 that C is a code for the message space
{0, 1} x {0, 1}*® with separation vector. at least (3, 2).

The results in Example 1 and 2 coincide with those achievved: _
by van Gils [7] using computer search.

By modifying Hartmann’s [10] Theorem, we have the following
result.

THEOREM 3. Let C be a binaryicyclic code of length n. Suﬁpose
Bilisazeroof C for 1<j<4t+1, j+*2t+ 1, where 2 + 1 does
not divide n. Let Cy be ar (%, ki) binary cyclic subcode of C which
contains pir---, Bt and their comjugates as nonzeros. Suppose that
fi- i} C 2 (U +2)i<i<(@+DE+1)—1, 0<5i <2 and
s is any integer}. Then, the separation vector for C is at least
(28 + 3, 2t + 2) and the message space for C is {0, 1}1 x {0, 1}%.

Proof. Since C contains 2¢ consecutive zeros, its minimum
distance d: is at least 2¢ + 1. Let v(X) be a code polynomlal in C.
Consider equation (5) with 7 =2 + L Clearly, Szr+1 and Siye are
not zero. For j=4t+1, 44,---, 2t + 2, we have o =o021-1---=01=0
respectively. Thus, equation (5) reduces to

(6) Sj + 02:418j-20-1 = 0.

Since # is not a multiple of 2¢ + 1, then # = ¢(2¢ + 1) + » for some
integers ¢  and », where O0<<r<<2t+1.  Then, .S“I“)(z,’“)
= Spr@rin<r = Sazr1—r = 0. From (6), we see that Syinarn
= [02,{-[-1]4 . Szg.;.l. Since Szt+1 7é 0, we have o241 = 0. Thus, Sj =0
for all j, which contradicts the previous assumption. Hence,
w(w(X)) #2t + 1 and d, is at least 2¢ + 2. Now, suppose w(v(X))
=2 + 2 and apply equation (5) with 7 =2¢ + 2. Clearly, S = 0.
For j=41 +1, 4,---, 28 + 2, we have o3; = o3s-1="++-=01= 0. Thus,
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equation (5) reduces to
(7 k o S; + o241 Sj-20-1 + o3t+2 Sj-2e-2 = 0.

For 42 +4<j<6t+2, we see that Sj_s;—1 = Sj-z;—2=0. From (7),
we have S; =0 for 4¢ + 4 < j < 6¢ + 2. "Recursively; we found.that
S;j=0 for (2+2)i<j< (2 +1)(E+1)—1, where 0<7<28
Since {fy,---, &} Cc {j2°: (X +2)i<i< (U+DE+FD -1, 0<i< 28
and s is any integer}, then, S; =0 for j=14y,---,%;. From Theorem
2, C is a code for the message space {0, 1}%1 x {0, 1}"3 with separgtion
- vector at least (2¢ + 3, 2¢ 4+ 2). ‘

Example 3. Let C be the (63, 42) binary cyclic code which
contains 4, £% p% B° and their conjugates a zeros. Let C; be the
(63, 7) binary cyclic code with 4% g and their conjugates as
nonzeros and let C, be the (63 35) b1nary cyclic code with g5 g4,
BIs, g, po3 g1 ot and their conjugates as nonzeros. Then, C is
the direct sum of 01 and C. Note that C contains g for
1<j<9, j#5 as zeros. Also note that {0, 13} c{j2e:6i<j
< 5(z + 1) -1, 0<i< 4, s is any integer}. Hence, C is a code for
the message space {0, 1}'7 % {0, 1}* with separation ‘vector at least
(7,6). Note that the true minimum distance of C is 6 [12].
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