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Abstract. A tree is an w-free if a base path can be choser such
that every vertex is at distance < # to this path. The extent of a
tree is the least » such that it is am zetree. A chordat graph is the
intersection graph of seme subtrees of a representirig tree. The rank
of a chordal graph is defined to be the least extent of such representing
trees. [In this paper, we provide an algorithni for detertmining the éxtent
and the intersection of all base paths of a tree. We show that a chordal
graph of rank >1 has three simplicial vertices. We establish a rank
reduction theorem for chordal graphs. Then we use it to determine
the rank of a free regarded as a chordal graph arnd te invéstigate a
certain kind of betweeness property within a chordal graph.

1. Introduction. All graphs in this paper will be finite and
have no loops or multiple edges. We tse G = (V(G), E(G)) to
denote a graph, where V(G) and E(G) are its vertex and edge
sets, respectively. If X € V(G), we use G\X to denote the graph
obtained from G by deleting vertices in X and all edges incident
uwpon them. The cardinality of a set X is written as [X|. A set
of pairwise adjacent vertices is said to be a cligue. A c¢lique is a »
maximal eligue if # is not properly included in another cligue.
The distance d(x, ¥) between two vertices is the length eof a
shortest path connecting x to ¥ and d(x, ¥) is defined to be oo if
x and ¥ are in different components. The distance between a
vertex x and a set X € V(&) is defined to be min{d(x, ¥) |y € X}.
A chord of a cycle C in G is an edge joining two nonconsecutive
vertices of C, i.e., an edge of G which is not in C but joins two
vertices of C. A graph G is said to be chordal if every cycle of
length > 4 has at least one chord. Equivalently, G does not contain
an induced subgraph which is a cycle of length >4. In the
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literature, chordal graphs have also been called i7rigiegulated,
rigid-circuit, monoione transitive, and perfect elimination graphs.

The importance of chordal graphs was recognized when they
were shown to be one of the first classes of graphs that are perfect.
Thus they ushered in the study of the theory of perfect graphs.
The usefulhess of chordal grai:)hs has been strengthened when
efficient algorithms weére successfully designed for some basic
problems which were shown to be NP. complete for general graphs. -
For a survey of chordal graphs, see Golumbic [4]

There is a class of chordal graphs, the so- calied mterml graphs,
which are among the most useful mathematical structures for
modeling real world problems. A graph G is an interval graph if
its vertices can be put into one-to-one correspondence with a set S
of intervals of the real line such that two vertices are adjacent in
G if and only if their corresponding intervals have nonempty
intersection. We call S an interval "represen‘tation for
G. Equivalently, S can be regarded as a set of subpaths of a given
path. - . R

Chordal graphs can be characterized as the intersection graphs
of subtrees of trees. In particular, the special class of interval
graphs are the intersection graphs of subpaths of paths, which are
the least complex trees. Our research presented in this paper
started -with an effort to make this sense of complexity more
precise. We will introduce a notion of extent for trees at the first
stage. Then we define the rank of a chordal graph to be the least
extent of a tree representation for that graph. In view of this
concept of ranx(, we expect to generalize results concerning 1nterva1
graphs to similar ones for chordal graphs of higher ranks.

" When we remove all end vertlcesp, i e. vertices of degree 1 of
a tree, the extent is mnaturally reduced by 1. Trees are chordal
graphs by the trivial reason that they have no cycles The role
of an end vertex of a tree is played by a szmplzczal vertex in a
'general chordal graph We will establish a rank reduct10n theorem
by the removal of sxmphc1al vertices. '

Two applications of this reduction will be given. One determines
the rank of a tree and the other generalizes a betweeness property
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in interval graphs to chordal graphs of higher ranks.

The author wishes to express his appreciation to Dr. Gerard
J. Chang, Mr. Bor-Liang Chen, and MISS Der- Fen Liu for useful
dzscussxons concermng this research

2. Extent and Base Line. A tree. T is said to ,be an n-lree
if- there is a path P in T such that d(z, P) <# for all vertices z.
In this terminology, a 1-tree is an ordinary path, a 2-tree is what
usually called a caterpiiler, and an #-tree is automatically an
(92 + 1)-tree.

The extent ¢(T) of a tree T is defined to be the smallest »
such that 7 is an #z-tree. Any path P in 7T, satisfying d(z, P)<#»
for ali vertices x, is called a base patk of . T. A base path can be
exhibited if we iteratively test whether the remaining tree is a
path and remove all end vertices from the tree. The number of
iterations turns out.to be the extent of the tree. The complexity
of this algorithm is linear. The base path so produced is called
the base lime which plays a special role among all base paths.

THEOREM 1. The base line is the intersection of aZZ basé paths.

Prosf. Let B be the base line of a tree .T. Let P be any
arbltrary base pa.th Suppose that two ends of B are the vertzces
zx and ¥ (which could be identical).

If B is not a subpath of P, then at most one of -z and ¥
belongs to. P. There are distinct paths. P, and P, going out of =z
and ¥, respectively, such that both have length e(7) — 1. Suppose
that o does not belong to P. After the removal of z, the tree T
separates  into components. Now P is included in one of the
eomponents. Thus we can either extend P, or extend P, to have
a path reaching P and having length >e(T) — 1. This contradic‘ts‘
the fact that P is a base path. Therefore B is a subpath of P.

With respect to the base line B of the tree 7, a unique level
number can be assigned to each vertex x. We say that = is at
level # if d(x, P) =% — 1. The highest level number is equal to
the extent of the tree. If z is at level #>1, then there is a
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unique vertex ¥ at level # — 1 which is adjacent to x. This vertex
¥ is said to be the predecessor of x.

3. Rank reduction. Let F be a family of nonempty sets. We
allow members of F to be identical. The intersection graph of F
is obtained by representing each set in F by a vertex and connecting
two vertices by an edge if and only if their corresponding sets
have nonempty intersection. A graph G is a chordal graph if and
only if G is the intersection graph of a family of distinct subtrees
of a tree. (Buneman [1], Gavril [3], and Walter [7].) It is
straightforward to verify that this characterization still holds when
we allow repeated occurrences of subtrees. Now we say that a
chordal graph G is an #-busk if it is the intersection graph of
some subtrees of an z-tree. Thus an interval graph is a 1.bush.
An n-bush is automatically an (# + 1)-bush. The 7ank of a chordal
graph G, denoted by #%k(G), is defined to be the smallest 2 such
that G is an #-bush.

Using this rank notion, results for general chordal graphs
could be refined. The following theorem is an improvement of
the well-known fact that a chordal graph has two mnonajacent
simplicial vertices if it is not a clique. (Dirac [2]) A vertex is
called a simplicial vertex if all vertices adjacent to it form a
clique.

THEOREM 2. If G is @ chordal graph with rk(G)>1, then G
kas at least three mutually nonadjacent simplicial vertices.

Proof. Among all representations for & as the intersection
graph of subtrees of a tree, we choose a tree 7" with the smallest
number of vertices and e(T) = 7k(G). Let B be the base line of
T. Since e(T)>1, T has at least three end vertices i, 3 and
Zs. By the minimality condition on 7, each vertex x; must occur
in some subtree representing a vertex of G, otherwise it can be
deleted. If x; itself is not a representing subtree, then z; belonging
to the intersection of two subtrees will imply the predecessor of
x; belonging to the intersection. It follows that z; can be deleted
without affecting the intersection graph. Let each x; represent a
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vertex v; of G. Evidently, vy, v:, and v; are simpilicial and mutually
nonadjacent. ‘ ‘

To obtain the rank of a chordal graph, we shall apply a
procedure similar to the one for determining the extent of a tree
based on the following reduction. ‘

THEOREM 3. Let G’ be obtained from the chordal graph G by
deleting all simplicial vertices of G. If 7B(G) > 1, then 7k(G')
= 7k(G) — 1 ‘ ‘

Proof. Among all representations for G as the intersection
graph of subtrees of an (#+ 1)-tree, we may choose an (#+ 1)-tree
T with subtrees T1, T3,--+, T» such that |V(T)| is minimum. Let
Ly, Xz, xr be all end vertices of 7. Using the minimality
condition on T, we can reason as we did in the proof of Theorem
2 to show that each of &, xs,---, #r is a representing subtree.
Since a subtree of T can represent different vertices of G. Each z;
is a subtree representing a clique of simplicial vertices. After
trimming &1, %z -+, 2 off the tree 7T, we obtain a tree 7. A
representation for G’ can be drawnon 7. Thus 72(G')<72(G)—1.

Let Ki, Ks,---, K; be the partition of all simplicial vertices of
G into maximal cliques. Let G’ be the intersection graph of some
subtrees of an #n-tree 7. Since each K; consists of simplicial
vertices, we can use the same subtree to represent every vertex in
K;. Therefore, without loss of generality, we may assume that
each K; is a single simplicial vertex v;. Now suppose that vertices
adjacent to v, in G are reﬁresénted by subtrees T, Tee -, T
Any pair of these subtrees has nonempty intersection since »; is a
simplicial vertex. 1t is well-known that a family of subtrees of a
tree satisfies the Helly property, i.e. the intersection of the whole
family is nonempty if the intersection of any two members is
nonempty. (SeevGolumbic [4 p. 92, Proposition 4.7].) Now there
is vertex 2z belonging to all of Ty, T%,---, T. We create a new
vertex & and make 2 the predecessor of x:. Let {x:} be the new
subtree representing »;. Modify each T} so that z;z becomes an
edge of 7i;. In this manner, we can successively attach new
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vertices i, s, Tr to T to obtain a new tree IV together with
modified subtrees to represent G. The extent of 7" is at most
7+ 1, i.e. 7B(G) < 7R(G') + 1.

4. Applications. In this section, we will derive ~some
consequences of Theorem 3. The first one concerns the rank of a
tree which is obviously a chordal graph.

 LemmA 1. Let T be a tree. Then 7k(T) =1 if and only if T

is @ 2-lree.

Proof. Necessity. Since #72(T) =1, the tree T is an interval
graph. By the forbidden subgraphs characterization for interval
graphs by Lekkerkerker and Boland [7], T does not contain the
graph in the following figure as an induced subgraph.

o~ e O o ]

Therefore the extent e(7T) cannot be greater ‘than 2.

Sufficiency. Suppose e(T) < 2. Let the base line of T consist
of the path x:xs -z, Each z; is adjacent to a stable set of
vertices {#i, ¥ -, ¥i,} which could be empty. In the intersection
graph representation for 7, we use the path zizizi--- zg‘_ z: to
represent the vertex ;. and: each z§ to repreéen’c 5. Then we
identify #i* with af, for i=2,3,---,m, to obtain the entire path.
It follows 7&(T) = L S : -

THEOREM 4. Let T be a tree such that &(T)>1. Then
7B(T) = e(T) — 1. S o

Proof. Use induction on e(7). The conclusion holds for
e(T) =2 by Lemma 1. Now suppose e(7)>2. By Lemma I,
rk(T) > 1. Simplicial vertices of T are precisely end vertices of
T. If T is obtained from T by deleting all end vertices, then by
the algorithm in Sections 2 e(7”) =e(T) —1>1. By the induction
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hypothesis, #2(T")=e(T") — L Theorem 3 implies #2(T)
= 7B(T) — 1. Therefore we have v&(T) =e(T) — 1.

Our next application concerns a kind of closeness concept
within a chordal graph. For three sets of vertices @, R, and S,
we say that @ is n-between R and S if, for any y € R and z€ S
and any path P joining ¥ and 2z, we have d(x, P) <% for any
z € Q. Obviously, being #-between implies being (# -+ 1)-between.

Halin [5] has established the characterization that a graph G
is an interval graph if and only if, for any three maximal cliques
of G, one is separating the other two. We can generalize the
necessary condition to higher ranks. ’

THEOREM 5. Let G be a chordal graph such that rk(G)=n>1.
Then, for any three cliques @i, Q: and Qs, ome is n-belween ithe
other two.

Proof. If @, and @: are in different components, then €, is
trivially #-between them since no counterexample path from Q; to
Q. could be constructed. So we may assume that G is connected.
We prove the theorem by induction on 7&2(G) = .

Suppose # = 1. Extend each @: to a maximal clique ;. By
Halin’s theorem, we may assume that @} is separating @; from Q.
Thus any path P joining a vertex in @; to a vertex in Q. will
pass through Q.. So every vertex in @, is at most at unit distance
to P.

Now assume that #22(G) =2+ 1 and the theorem holds for
lesser ranks. All simplicial vertices of G are partitioned into
maximal cliques K, Xs,--+, K such that no edge joins vertices in
different cliques. By Theorem 3, the graph G\(KG U Kz U---U K3)
is of rank #. Each @:; can intersect at most one Kj;. Suppose
ve@; NK;. Then any vertex x € K; and any vertex ¥y € Q;
are adjacent to ». It follows that x and ¥ are adjacent since
v is simplicial. If we use N(S) to denote the set {x € V(G )\S|
z is adjacent to all vertices in S}, then we have obtained Q\K;
C N(K;). By the connectivity of &, we know N(XKj;)+# .
Obviously, N(K;) is a cligue. Now we define Q; as follows.
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Q) = {Qi if none of Kj; intersects @i,
¢ N(K;) if only K; intersects ;.

Then @5, Qi and Q; are nonempty cligues in G\(KiUKzU --- UKz).
By the induction hypothesis, we may assume that Q] is z-between
Q: and Q.. Let P be a path joining a vertex in € to a vertex in
Qs. A subpath of P joins a vertex in @) to a vertex in @5 Every
vertex in Qi is at distance <2 to P. So every vertex in Q: is at
distance <u#+1to P ie, @ is (#+ 1)-between @: and Qs. '
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