FURTHER RESULTS ON THE E-K-R THEOREM FOR THE DISTANCE REGULAR GRAPHS $H_q(k, n)$

BY

TAYUAN HUANG (黃大原)

Abstract. The distance regular graph $H_q(k, n)$ is defined on the set $M_{k \times n}(GF(q))$ of all $k \times n$ matrices over GF(q) such that two matrices A and B are adjacent if and only if the rank of A - B is 1. It has been shown that the maximum size of families \mathcal{G} contained in $M_{k \times n}(GF(q))$ with the property that rank $(A - B) \leq k - r$ for all $A, B \in \mathcal{G}$ is $q^{n(k-r)}$ and those families \mathcal{G} with size $q^{n(k-r)}$ are characterized whenever $n \geq k+1$ and $(n, q) \neq (k+1, 2)$, (Discrete Mathematics, 64 (1987), 191-198).

The remaining cases (n, k, r, q) = (k + 1, k, k - 1, 2), (k, k, k - 1, q) and (4, 3, 1, 2) are treated in this paper. Partial results for (k, k, r, q) are also derived.

1. Introduction. Let X be a set with n elements, and $r < k \le n$. A family $\mathcal{F} \subseteq {X \choose k}$ is called a r-intersecting family if $|A \cap B| \ge r$ holds for all $A, B \in \mathcal{F}$. The first intersection theorem was proved by Erdős, Ko, and Rado in the late 1930, however it was not published until 1961.

THEOREM [5, 6, 14]. Let n, k, r be integers with $n \ge k \ge r \ge 0$, and X be set of n elements. Suppose that $\mathcal{F} \subseteq {X \choose k}$ is a r-intersecting family. Then, for $n \ge n_0(k, r) = (r+1)(k-r+1)$,

a)
$$|\mathcal{G}| \leq {n-r \choose k-r}$$
, and

b)
$$|\mathcal{G}| = \binom{n-r}{k-r}$$
 if and only if $\bigcap_{A \in \mathcal{G}} A$ consists of r elements.

A number of analogues of the E-K-R theorem have been obtained for structures other than subsets of a set. For example, among

Received by the editors December 18, 1987 and in revised form April 21, 1988. AMS classification numbers: 05A05, 05C35.

Key words: Erdős-Ko-Rado theorem, distance regular graphs, bilinear froms.

the others, Hsieh [9], Frankl and Wilson [8] obtained analogues for subspaces of a finite vector space, Frankl and Furedi [7], Moon [11] for integer sequences, Stanton [13] for Chevalley groups. Analogous results hold for matrices too. Let $M_{k\times n}(GF(q))$ be the set of all $k\times n$ matrices over GF(q).

THEOREM 1 [10]: Let $\mathcal{G} \subseteq M_{k \times n}(q)$, and rank $(A - B) \leq k - r$ for all $A, B \in \mathcal{G}$ where $0 \leq r \leq k$. Assume that $n \geq k + 1$, and $(n, q) \neq (k + 1, 2)$, then

- a) $|\mathcal{G}| \leq q^{n(k-r)}$, and
- b) $|\mathcal{G}| = q^{n(k-r)}$ if and only if, up to isomorphism,
- $\mathcal{F} = \{A \mid A \in M_{k \times n}(q) \text{ with zero entries in the last } r \text{ rows}\}.$

REMARK. Using a different approach, Moon [12] proved Theorem 1 under the conditions that n > k + 1 and $q \ge 3$. Moreover if n > r + 2, assume $r \le (q - 1) q^{n-r-3}$.

In Section 2, we present some combinatorial structures on $M_{k\times n}(GF(q))$ which will be used later. The remaining cases (n, k, r, q) = (k+1, k, k-1, 2), (k, k, k-1, q) and (4, 3, 1, 2) in the above theorem are treated in Section 3 and Section 4 respectively through different approaches. Some partial results for (k, k, r, q) are derived in Section 5.

2. Some combinatorial structures on $M_{k\times n}(GF(q))$. For the set $M_{k\times n}(GF(q))$ of all $k\times n$ matrices over GF(q), let $\mathcal{R}_i = \{(A,B) | A, B \in M_{k\times n}(GF(q)) \text{ with rank } (A-B)=i\}$, $0\leq i\leq k$ ($\leq n$). Then $\{\mathcal{R}_i | 0\leq i\leq k\}$ forms a partition of $M_{k\times n}(GF(q))$, $\mathcal{R}_i^i=\mathcal{R}_i$ for all i, and furthermore, for $(A,B)\in\mathcal{R}_i$, the cardinality of the set $\{C | C\in M_{k\times n}(GF(q)) \text{ with } (A,C)\in\mathcal{R}_j \text{ and } (C,B)\in\mathcal{R}_k\}$ is a function of i, j, and k only, independent of the choices of A and B. In other words, $(M_{k\times n}(GF(q)), \mathcal{R}_1)$ forms a distance regular graph of diameter k, denoted by $H_q(k,n)$. Refer to [1] for more details about distance regular graphs.

In addition to the structure of distance regular graphs, there is another interpretation for $M_{k\times n}(q)$, which we describe as following:

Let V be a k+n dimensional vector space over a finite field GF(q), $W \subseteq V$ be a fixed subspace of dimension n, and $\{w_1, w_2, \dots, w_n\}$,

 $\{e_1, e_2, \dots, e_k, w_1, w_2, \dots, w_n\}$ be bases of W and V respectively. Let and $U = \langle e_1, \dots, e_k \rangle$, and

 $\mathcal{G}_k = \{A \mid A \subseteq V \text{ is a } k \text{ dimensional subspace with } A \cap W = 0\}.$

It is known that each element A in \mathcal{A}_k has a base $\{e_1 + w_1', \dots, e_k + w_k'\}$ for uniquely chosen w_1', \dots, w_k' in W. Let $w_i' = \sum_{1 \leq i \leq k} a_{ij} w_i$ and M(A) be the matrix

$$\begin{bmatrix} a_{11} \ a_{12} \cdots a_{1n} \\ a_{21} \ a_{22} \cdots a_{2n} \\ \vdots \\ a_{b1} \ a_{b2} \cdots a_{bn} \end{bmatrix}$$

then the correspondence $A \to M(A)$ defines a bijection from \mathcal{P}_k onto $M_{k\times n}(q)$. Moreover, $\dim(A\cap B)$ is r if and only if the rank of M(A)-M(B) is k-r. Hence, a subset $\mathcal{F}\subseteq M_{k\times n}(q)$ with the property that $\mathrm{rank}\,(A-B)\le k-r$ for all $A,\ B\in\mathcal{F}$ corresponds to an analongue of r-intersecting family in \mathcal{P}_k , i.e., $\mathcal{F}\subseteq\mathcal{P}_k$ such that $\dim(A\cap B)\ge r$ for all $A,\ B\in\mathcal{F}$. With the above correspondence, we shall make no difference between $M_{k\times n}(GF(q))$ and \mathcal{P}_k in the rest of this note. For further details, refer to [10].

An analogue of the Erdös-Ko-Rado theorem for the distance-regular graphs of bilinear forms $H_q(k,n)$ is obtained by Delsarte (implicitly) and Huang. A subset $\mathcal{E} \subseteq M_{k\times n}(GF(q))$ with cardinality $|\mathcal{E}| = q^{nr}$ and the property that rank $(A-B) \ge k-r+1$ for all distinct $A, B \in \mathcal{E}$ was constructed by Delsarte [3, p. 237]. Another theorem of Delsarte [2, Theorem 3.9] shows that $|\mathcal{E}| |\mathcal{F}| \le q^{nk}$ for each family $\mathcal{F} \subseteq M_{k\times n}(GF(q))$ with the property that rank $(C-D) \le k-r$ for all $C, D \in \mathcal{F}$. The following theorem follows immediately.

THEOREM. Let $\mathcal{G} \subseteq M_{k \times n}(GF(q))$, and rank $(A-B) \leq k-r$ for all $A, B \in \mathcal{G}$ then $|\mathcal{G}| \leq q^{n(k-r)}$.

The extremal families are characterized by Huang.

THEOREM 2 [10]. Let $\mathcal{G} \subseteq M_{k \times n}(GF(q))$, and rank $(A-B) \le k-r$ for all $A, B \in \mathcal{G}$, where $0 \le r \le k$. Assume that $n \ge k+1$, and $(n, q) \ne (k+1, 2)$, then

 $|\mathcal{F}| = q^{n(k-r)}$ if and only if, up to isomorphism,

 $\mathscr{G}=\{A|A\in M_{k imes n}(q) \mbox{ with zero entries on the last r rows}\}.$ In other words, $\dim\left(\bigcap_{F\in\mathscr{F}}F\right)=r.$

Under the given conditions, based on the interpretation of $M_{k \times n}(GF(q))$ as \mathcal{A}_k together with the following inequality

$$\begin{bmatrix} r+p \\ r \end{bmatrix} \begin{bmatrix} k-r+1 \\ 1 \end{bmatrix}^p < q^{np}, \quad 1 \leq p \leq k-r,$$

where $\begin{bmatrix} n \\ k \end{bmatrix} = (q^n-1)\cdots(q^n-q^{k-1})/((q^k-1)\cdots(q^k-q^{k-1}))$ is a Gaussian coefficient, the above theorem is proved by showing that $|\mathcal{G}| < q^{n(k-r)}$ whenever $\dim\left(\bigcap_{F \in \mathcal{G}} F\right) < r$, i.e., the above two theorems are proved simultaneously.

3. The cases (n, k, k-1, 2) where n = k, k+1. In this section, all possible (k-1)-intersecting families of \mathcal{A}_k are characterized, the conditions n = k, k+1 and q = 2 are not necessary. Suppose $\mathcal{G} \subseteq \mathcal{A}_k$ is a (k-1)-intersecting family, by the translation invariance of the rank function, we may assume that $U = \langle e_1, \dots, e_h \rangle \in \mathcal{G}$, which corresponds to the zero matrix in $M_{k \times n}(GF(q))$. For $A \in \mathcal{G}$, the direct sum of A and U is denoted by A + U.

LEMMA 3.1. If $\dim(A \cap U) = \dim(A \cap B) = \dim(B \cap U) = k-1$, then either $B \subseteq A + U$, or $A \cap U \subseteq B$.

Proof. Suppose $A \cap U \not\subseteq B$. Since $\dim(A \cap B \cap U) \leq k-2$ and $\dim(U \cap B) + \dim(A \cap B) \leq \dim((A+U) \cap B) + \dim(A \cap B \cap U)$, we have $\dim((A+U) \cap B) \geq k$. Therefore, $B \subseteq A + U$ as required.

LEMMA 3.2. Suppose that A, B, and U are in \mathcal{G} .

- (1) If $A \cap U \subseteq B$ but $B \nsubseteq A + U$, then $A \cap U \subseteq \bigcap_{F \in \mathcal{F}} F$.
- (2) If $B \subseteq A + U$ but $A \cap U \nsubseteq B$, then $\bigcup_{F \in \mathcal{S}} F \subseteq A + U$.

Proof. For (1), suppose that $A \cap U \nsubseteq F$ for some $F \in \mathcal{S}$. Then $F \subseteq A + U$ by Lemma 3.1. Since $B \cap F \subseteq B \cap (A + U)$ and $B \nsubseteq A + U$, we have $B \cap F = B \cap (A + U)$ by compairing their

dimensions. On the other hand, $A \cap U \subseteq B \cap (A + U)$, therefore we have $A \cap U \subseteq B \cap F \subseteq F$. This contradicts $A \cap U \nsubseteq F$ and (1) is proved. For (2), if there exists an element $F \in \mathcal{F}$ with $F \nsubseteq A + U$, then $A \cap U \subseteq F$ by Lemma 3.1, and $A \cap U \subseteq \bigcap_{F \in \mathcal{F}} F$ by (1). This contradicts $A \cap U \nsubseteq B$ and (2) is proved.

The previous two lemmas show that either

- (i) $A \cap U \subseteq \bigcap_{F \in \mathcal{S}} F$, or
- (ii) $\bigcup_{F \in \mathscr{G}} F \subseteq A + U$

for all $A \in \mathcal{G}$. Here, we note that $\dim(A \cap U) = k - 1$, and $\dim(A + U) = k + 1$. For a fixed A in \mathcal{G} , let

$$\mathcal{G}_1 = \{F \mid F \in \mathcal{G}_k \text{ with } A \cap U \subseteq F\},$$

and

$$\mathcal{G}_2 = \{F \mid F \in \mathcal{G}_k \text{ with } F \subseteq A + U\}.$$

Clearly, both \mathcal{G}_1 and \mathcal{G}_2 are maximal (k-1)-intersecting families of sizes q^n and q^k respectively. They are of equal size whenever n=k. The following theorem follows immediately.

THEOREM 3. Let $\mathcal{G} \subseteq \mathcal{F}_k$ be an extremal (k-1)-intersecting family with $U, A \in \mathcal{G}$, then either $\mathcal{G} = \{F \mid F \in \mathcal{G}_k \text{ with } A \cap U \subseteq F\}$, with $|\mathcal{G}| = q^n$, or

$$\mathcal{G} = \{F \mid F \in \mathcal{G}_k \text{ with } F \subseteq A + U\}, \text{ with } |\mathcal{G}| = q^k.$$

Both types are of equal size q^k whenever n = k.

The matrix representations of the above two types of maximal (k-1)-intersection families can be described as following:

$$\begin{bmatrix} a_{11} & a_{12} \cdots a_{1n} \\ 0 & 0 \cdots 0 \\ \vdots \\ 0 & 0 \cdots 0 \end{bmatrix}$$

for the first type, and

$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{11} & 0 & \cdots & 0 \end{bmatrix}$$

for the second type.

The following corollary provides some information of $M_{k\times n}(GF(q))$ of \mathcal{F}_k from the geometric view point if the extremal (k-1)-intersecting families are regarded as lines.

COROLLARY 3.4. (1) Each $A \in \mathcal{P}_{l_k}$ is contained in exactly $(q^k-1)/(q-1)$ (k-1)-intersecting families of size q^n , and is contained in exactly $(q^n-1)/(q-1)$ (k-1)-intersecting families of size q^k .

(2) In \mathcal{F} and $\mathcal{F}' \subseteq \mathcal{P}_k$ are two (k-1)-intersecting families with different sizes, then $|\mathcal{F} \cap \mathcal{F}'| = 0$ or q.

Proof. Straightforward from Theorem 3.

4. The case (n, k, r, q) = (4, 3, 1, 2). In the first half of this section, we provide some information for the more general case (k+1, k, 1, 2). Then we assume that k=3 and Theorem 4 follows. Let $\mathcal{F} \subseteq M_{k \times (k+1)}(GF(2))$ be an 1-intersecting family. Without loss of generality, we may assume that the zero matrix belongs to \mathcal{F} . Thus rank $(X) \leq k-1$ for all $X \in \mathcal{F}$. Let $X \in \mathcal{F}$ with row vectors X_1, \dots, X_k , then X_1, X_2, \dots, X_k are linear dependent, i.e., there exists a nonzero vector $(\alpha_1, \alpha_2, \dots, \alpha_k) \in (GF(2))^k$ such that $\sum_{1 \leq i \leq k} \alpha_i X_i = 0$, the zero vector. Let \vec{a}_i be the binary representation of $i, 1 \leq i \leq 2^k-1$, and

$$\mathcal{L}_i = \{X \in M_{k \times (k+1)}(GF(2)) \text{ with } \vec{a}_i X = 0\},$$

 $1 \le i \le 2^k - 1$, e.g.,

$$\mathcal{L}_1 = \left\{ egin{bmatrix} x_{11} & \cdots & x_{1,\,k+1} \ x_{21} & \cdots & x_{2,\,k+1} \ x_{n-1,\,1} & \cdots & x_{k-1,\,k+1} \ 0 & \cdots & 0 \end{array}
ight| x_{i\,j} \in GF(2)
ight\}$$

for $1 = [0, 0, \dots, 0, 1]$.

Some observations about $\{\mathcal{L}_i \mid 1 \leq i \leq 2^k - 1\}$ are as following:

LEMMA 4.1. (1) $|\mathcal{L}_i| = 2^{(k-1)(k+1)}$ for all $i \leq 2^k - 1$,

- (2) $\mathcal{L}_i \mathcal{L}_i \subseteq \mathcal{L}_i$, $1 \le i \le 2^k 1$,
- (3) $|\mathcal{L}_i \cap \mathcal{L}_j| = 2^{(k-2)(k+1)} \text{ if } i \neq j,$

- (4) $\operatorname{rank}(X Y) \leq k 1$ for all $X, Y \in \mathcal{L}_i$, $1 \leq i \leq 2^k 1$,
 - (5) $\mathcal{F} \subseteq \bigcup_{1 \leq i \leq 2^k-1} (\mathcal{F} \cap \mathcal{L}_i).$

Proof. Straightforward.

Let $\mathcal{F}_i = \mathcal{F} \cap \mathcal{L}_i$, $1 \leq i \leq 2^k - 1$. If $\mathcal{F}_i = \mathcal{F}$ for some i, then $\mathcal{F} \subseteq \mathcal{L}_i$, and thus \mathcal{F} can be enlarged to these intersecting families. Otherwise there are distinct i and j such that each of \mathcal{F}_i , \mathcal{F}_j , $\mathcal{F}_i - \mathcal{F}_j$, $\mathcal{F}_j - \mathcal{F}_i$ is nonempty. We assume that $i_0 \leq 2^k - 1$ is an index such that $|\mathcal{F}_{i_0}| \geq |\mathcal{F}_i|$ for all $i \leq 2^k - 1$.

LEMMA 4.2. If $\mathcal{X} \subseteq \mathcal{G}_i$ such that $\mathcal{X} + A_l \subseteq \mathcal{L}_{t_l}$ for $1 \leq l \leq r$, where $A_1, \dots, A_l \in \mathcal{G}_j$ and i, j, t_1, \dots, t_l are pairwise distinct. Then $|\mathcal{X}| \leq 2^{(k-r-1)(k+1)}$.

Proof. This is clear since each column of each member in \mathcal{K} contains at most r+1 independent entries.

We consider those values of j that each of \mathcal{G}_j , $\mathcal{G}_{i_0} - \mathcal{G}_j$ and $\mathcal{G}_j - \mathcal{G}_{i_0}$ is nonempty. For such j, let

$$\mathcal{Q}_{j} = \mathcal{G}_{i_0} - \mathcal{G}_{j}$$
, and $\mathcal{E}_{j} = \mathcal{G}_{j} - \mathcal{G}_{i_0}$.

Then both \mathcal{O}_j and \mathcal{E}_j are nonempty and $\mathcal{O}_j \cap \mathcal{E}_j$ is empty. Let

$$\{\mathcal{D}_{j_1}, \dots, \mathcal{D}_{j_s}\}$$
 and $\{\mathcal{E}_{j_1}, \dots, \mathcal{E}_{j_s}\}$

be partitions of \mathcal{Q}_j and \mathcal{E}_j respectively such that $\mathcal{Q}_{j_k} - \mathcal{E}_{j_l}$ is entirely contained in \mathcal{L}_l for some $l \leq 2^k - 1$.

A matrix $M_j = M(\mathcal{O}_j, \mathcal{E}_j)$ is introduced as a tool to estimate both $|\mathcal{F}_{i_0}|$ and $|\mathcal{F}_j|$. The matrix M_j is a $r \times s$ matrix in which the rows and columns are indexed by the above partitions of \mathcal{O}_j and \mathcal{E}_j respectively such that the (k, l)-entry of M_j is t whenever t is the smallest integer that $\mathcal{O}_{j_k} - \mathcal{E}_{j_l} \subseteq \mathcal{L}_t$. We assume those partitions of \mathcal{O}_j and \mathcal{E}_j are chosen such that no two rows (or columns) are identical.

The following lemmas provide some information about the matrix M_j , which enable us to approximate $|\mathcal{G}_{i_0}|$ and $|\mathcal{G}_j|$.

LEMMA 4.3. For the matrix $M_j = M(\mathcal{O}_j, \mathcal{E}_j)$,

(1) both i_0 and j do not appear as entries in M_j ,

(2) each line (either a row or a column) contains at most k-1 values.

Proof. For (1), suppose, by contradiction, that j appears in M_j as an entry, then $\mathcal{O}_{j_k} - \mathcal{E}_{j_t} \subseteq \mathcal{L}_j$ for some pair (h, t), and hence $\mathcal{O}_{j_t} \subseteq \mathcal{L}_j - \mathcal{L}_j \subseteq \mathcal{L}_j$. This contradicts the fact that $\mathcal{O}_j \cap \mathcal{L}_j$ is empty. Similarly, i_0 does not appear as entry in M_j either. (2) is clear from Lemma 4.2.

LEMMA 4.4. There do not exist any two rows (or two columns) which contain

$$\begin{bmatrix} t_1 t_2 \cdots t_{k-1} \\ t_1 t_2 \cdots t_{k-1} \end{bmatrix}$$

(or its transpose) as its submatrix.

Proof. If there are two such rows which are indexed by \mathcal{O}_{j_h} and \mathcal{O}_{j_t} , then $\mathcal{O}_{j_h} = \mathcal{O}_{j_t}$ is a singleton and and hence these two rows must be identical, a contradiction. Similar argument works for columns.

We assume k = 3 in the following:

If M_j is a column vector for some j, then $|\mathcal{E}_j| \leq 2^{(k-2)(k+1)} = 16$, and $|\mathcal{Q}_j| \leq 2^{(k-2)(k+1)+1} = 32$. Thus $|\mathcal{F}_{i_0} \cup \mathcal{F}_j| \leq 16 + 32 + 2^{(k-2)(k+1)} = 64$. If M_j is a row vector, similarly, we have $|\mathcal{F}_{i_0} \cup \mathcal{F}_j| \leq 64$.

On the other hand, we assume that M_j is neither a column vector nor a row vector. Let H be a submatrix of M_j which consists of two columns of M_j . For distinct h, $t \leq 2^k - 1$,

- 1. the pair (h, t) occurs at most once in H and there are at most 4 such pairs by Lemma 4.3 and Lemma 4.4.
 - 2. there is at most one form like (t, t) occurs in H. Lemma 4.2 shows that

$$|\mathcal{Q}_{j_k}| \leq 2^{(k-3)(k+1)}$$

= 1 if the \mathcal{D}_{i_k} —row of this submatrix H is (h, t), $\leq 2^{(k-2)(k+1)}$

= 16 if the \mathcal{O}_{i_k} —row of this submatrix H is (t, t).

If follows that

$$|\mathcal{Q}_j| \le 2^{(k-2)(k+1)} + 3 \cdot 2^{(k-3)(k+1)} = 2^4 + 3 = 19.$$

Similar arguments show that $|\mathcal{E}_j| \leq 19$ too. Hence $|\mathcal{F}_{i_0} \cup \mathcal{F}_j| \leq 19 + 19 + 2^{(k-2)(k+1)} = 54$. It follows, based on the above analysis, that

$$|\mathcal{F}| \le 64 + 32(2^{k} - 1 - 2)$$

= 224
< 256.

THEOREM 4. If $\mathcal{G} \subseteq M_{3\times 4}(GF(2))$ is an intersecting family with $|\mathcal{G}| = 256 (=2^8)$, then $\mathcal{G} = \mathcal{L}_i$ for some $i \leq 7$, in other words, $\dim (\bigcap_{F \in \mathcal{F}} F) = 1$.

Indeed, the argument above provides more information about the size $|\mathcal{F}|$ than what we need to conclude Theorem 4.

5. The case (n, k, r, q) = (k, k, r, q). As suggested in Theorem 3, for the case n = k, there are at least two types of maximum r-intersecting families (with size $q^{k(k-r)}$). If $\mathcal{F} \subseteq \mathcal{A}_k$ is a r-intersecting family such that either $\dim (\bigcap_{F \in \mathcal{F}} F) = r$ or $\dim (\langle \bigcup_{F \in \mathcal{F}} F \rangle) = 2k - r$, where $\langle \bigcup_{F \in \mathcal{F}} F \rangle$ denotes the subspace spanned by $\bigcup_{F \in \mathcal{F}} F$, then \mathcal{F} can be enlarged to be a r-intersecting family with maximum size $q^{k(k-r)}$. The following theorem provides some information for those r-intersecting families \mathcal{F} with $|\mathcal{F}| = q^{k(k-1)}$ but $\dim (\bigcap_{F \in \mathcal{F}} F) \leq r - 1$.

Let V, W, U and \mathcal{A}_k be as defined in Section 1. We assume that k = n in the rest of this note, i.e., V is a vector space of dimension 2k, U and W are subspaces of V of dimension k such that V is the direct sum of U and W.

THEOREM 5. Let $\mathcal{F} \subseteq \mathcal{F}_k$ be a r-intersecting family, i.e., $\dim (A \cap B) \ge r$ for all A, $B \in \mathcal{F}$, and $|\mathcal{F}| = q^{k(k-r)}$, where $0 \le r < k$ and $q \ge 3$. Then $\bigcap_{F \in \mathcal{F}} F \subseteq V$ is either a r-dimensional subspace or a trivial subspace.

Proof. Suppose, by contradiction, that $X = \bigcap_{F \in \mathcal{F}} F \subseteq V$ is a subspace of dimension t, $1 \le t \le r - 1$. Consider the quotient spaces V/X, its subspaces U/X and W/X ($\cong W$), and the family $\mathcal{G}/X = \{A/X \mid A \in \mathcal{F}\}$. Then

- (1) V/X, a vector space of dimension 2k-t over GF(q), is the direct sum of U/X and W/X,
- (2) each member A/X of \mathcal{G}/X is a k-t dimensional subspace of V/X with $A/X \cap W/X = 0$,
- (3) $A/X \cap B/X$ is a subspace of V/X with dimension at least r-t, and
 - (4) $|\mathcal{G}/X| = |\mathcal{G}| = q^{k(k-r)}$.

It follows, by Theorem 1, that each member of \mathcal{G}/X contains a fixed subspace E/X of V/X of dimension r-t and hence $E\subseteq V$ is a subspace of dimension r with the property that $E\subseteq \bigcap_{F\in\mathcal{F}} F$, a contradiction.

REFERENCES

- 1. E. Bannai and T. Ito, Algebraic Combinatorics I. Association Schemes, Benjamin/Cummings Lecture Note Series in Math. (1984).
- 2. P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips research reports supplement, No. 10 (1973).
- 3. P. Delsarte, Bilinear forms over a finite field with applications to coding theory, J. Combin. Theory, Ser. A25 (1978), 226-241.
- 4. M. Deza and P. Frankl, Erdös-Ko-Rado theorem-22 years later, SIAM J. Alg. Disc. Method, Vol. 4, No. 4 (1983), 419-431.
- 5. P. Erdős, Chao Ko and R. Rado, Intersection theorem for system of finite sets, Quart. J. Math. Oxford Ser. 2 (1961), 313-329.
- 6. P. Frankl, The Erdös-Ko-Rado theorem is true for n=ckt, Coll. Soc. Math. J. Bolyai. 18 (1978), 365-375.
- 7. P. Frankl and Z. Furedi, *The Erdös-Ko-Rado theorem for integer sequence*, SIAM J. Alg. Disc. Method, Vol. 1, No. 4 (1980), 376-381.
- 8. P. Frankl and R.M. Wilson, The Erdös-Ko-Rado theorem for vector spaces, J. Combi. Theory, Ser. A43 (1986), 228-236.
- 9. W.N. Hsieh, Intersection theorems for systems of finite vector spaces, Discrete Math., 12 (1975), 1-16.
- 10. T. Huang, An analogue of the EKR theorem for the distance regular graphs of biliner forms, Discrete Math., 64 (1987), 191-198.
- 11. A. Moon, An analog of the EKR theorem for the Hamming schemes H(n, q), J. Combi. Theory, Ser. A32 (1982), 386-390.
- 12. A. Moor, Some results in designs and association schemes, Ph. D. thesis, The Ohio State University (1981).
- 13. D. Stanton, Some Erdös-Ko-Rado Theorems for Chavalley group, SIAM J. Algebraic Discrete Meth., 1 (1980), 160-163.
- 14. R. Wilson, The exact bound in the Erdös-Ko-Rado theorem, Combinatorica, 4 (1984), 247-257.

Department of Applied Mathematics National Chiao-Tung University Hsinchu 30050, Taiwan Republic of China