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THE DISTANCE REGULAR GRAPHS H,(% n)
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Abstract. The distance regular graph Hy(k, n)\ is defined on the
set Mrx#(GF{(g)) of all kxz matrices cver GF(g) such that two matrices
A and.B aré adjacent if and only if the rank of A =B is 1. It has
been shown that the maximum size of families & contained in
Mirxx(GF(g)) with the property that rank (4 —B)<k—7 for all
A, BEg is ¢*%-7 and those families & with size ¢"¥-7)  are
characterized .whenever #>=k% +1 and (%, g) # (k+ 1, 2), (Discrete
Mathematics, 64 (1987), 191-198).

The remaining cases (#,k,7,q) =k + Lk E—1,2), (R E-1g)
and {(4,3,1,2) are treated in this paper. Partial results for (k. ky7,q)
are also derived. )

1. Introduction.b Let X be a set with # elements, and
r<k<#n A family < ("Té ) is called a 7-intersecting family if
{AnNB| >7 holds for all 4, B < &. The first intersection theorem
was proved by Erdss, Ko, and Rado in the late 1930, however it
was not pubhshed until 1961

TaroreM [5, 6, 141. Let. n, k, v be integers with n >k >7r = 0,
and X be set of n elemenis. Suppose that &F < (}]f ) is a. r-intersecting
family. Then, for n=>m(k, 7)) =@+ L(E—7+ 1),

a) 191 (§2%) ana

by 1g1=(227) if and only if (ace A consisis of 7 elements.

A number of analogues of the E-K-R theorem have been obtained
for structures other than subsets of a set. For example, among
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the others, Hsieh [9], Frankl and Wilson [8] obtained analogues
for subspaces of a finite vector space, Frankl and Furedi [7],
Moon [11] for integer sequences, Stanton [13] for Chevalley groups.
Analogous results hold for matrices too. Let Mixs(GF(gq)) be the
set of all 2 x # matrices over GF(q).

TueoreM 1 [10]: Let & & Mixa(q), and rank(A—B)<k—7r
for all A, Be & where 0<r <k Assume that n=>k+ 1, and
(2, q¢) = (kB + 1, 2), then '

a) |Gl Lg%, and

b) | &F| = q**=7 if and only if, up to isomorphism,

F=1{A| A€ Mi.(q) with zero entries in the last r rows}.

ReEMARK. Using a different approach, Moon [12] proved
Theorem 1 under the conditions that 2> % + 1 and ¢ > 3. Moreover
ifn>7r+2 assume r < (g —1) g "3

In Section 2, we present some combinatorial structures on
Mpxs(GF(gq)) which will be used later. The remaining cases
(m k,v,qg)=(+1, 8 k—1,2),(k kB E—1,¢g) and (4, 3,1, 2) in
the above theorem are treated in Section 3 and Section 4
respectively through different approaches. Some partial results for
(%, &, 7, q) are derived in Section 5.

2. Some combinatorial structures on Mix.(GF(gq)). For the set
M« 2(GF(q)) of all Bx# matrices over GF(q), let R;={(A, B)|A, B
€ Mix.(GF(g)) with rank (A — B) =14}, 0<i<k (<#z). ‘Then
[R:10< i<k} forms a partition of Mix.(GF(q)), &R:= &R; for all
7, and furthermore, for (A4, B) € &R, the cardinality of the set
{C| C & Mun(GF(g)) with (4, C) € R; and (C, B) € &K} is a
function of 7, 4, and % only, independent of the choices of A and B.
In other words, (Mixs(GF(g)), &R:) forms a distance regular graph
of diameter %, denoted by H,(k, 2). Refer to [1] for more details
about distance regular graphs.

In addition to the structure of distance regulér graphs, there is
another interpretation for Mpx.(q), which we describe as following:

Let V be a & + # dimensional vector space over a finite field GF(q),
W< V be a fixed subspace of dimension #, and  {wi, ws,: -, Ws},
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{es, es,- -, er, w1, Ws,-+-, w,} be bases of W and V respectively. Let
and U = <{ey,"--, ey, and

FAr={A| ACSV is a k dimensional subspace with A n W = 0}.

It is known that each element A in (4, has a base
{er + wi, -, er + w'} for uniquely chosen wi',<--, wy in W. Let
wi’ = Yi<i<e@i;w; and M(A) be the matrix

Q11 15" ** Qia
| @21 B3 Qo

Qr1@rz°° " CQpn

then the correspondence A-— M(A) defines a bijection from (%
onto Mix.(q). Moreover, dim (A N B) is # if and only if the rank
of M(A) —M(B) is BE—#. Hence, a subset & & Mixn(q) with
the property that rank(A—B)<2—#2 for all A Be &
corresponds to an analongue of 7.intersecting family in G4, i.e,
& € Gp such that dim (AN B)># for all 4, B &. With the
above correspondence, we shall make no difference . between
M« n(GF(g)) and (A in the rest of this note. For further -details,
refer to [10]. : E ,

An analogue of the Erdss-Ko-Rado theorem for the distance-
regular graphs of bilinear forms H,(k, #) is obtained by Delsarte
(implicitly) and Huang. A subset & € Mixs(GF(g)) with cardinality
1&] = ¢* and the property that rank (A — B) >k —7+1 for all
distinct A, B € & was constructed by Delsarte [3, p. 2371 Another
theorem of Delsarte [2, Theorem 3.9] shows that | & || & < g** for
each family & € Mix.(GF(g)) with the property that rank (C — D)
<k—y for alll C,De . The following theorem follows
immediately.

THEOREM. Let & S Mixa(GF(q)), and rank (A— B) < k—r for
all A, B € & then |F| < g"*-7.

The extremal families are characterized by Huang.

TuEOREM 2 [10]. Let G € Mixa(GF(q)), and rank(A—B)<L k—7r
Jor all A, Be &, where 0<r < k. Assume that >k + 1, and
(n,q) = (k+1,2), then
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|G| = g% if and only if, up to isomorphism,
G = [A|A € Mxa(q) with zero enitvies on the last v rows}.

In other words, dim (Nreg F) = 7.

Under the given conditions, based on the interpretation of
Mixo(GF{(q)) as (A together with the following inequali_j:y'\

N e

where [%]=(@ =1 (@ =9/~ D (@ —¢) is a
Gaussian coefficient, the above theorem is proved by showing that
|F| < g*® " whenever dim (NregF) <7, i.e., the above two
theorems are proved simultaneously. ‘ ;

3. The cases (, b k—1,2) where =25k 2+ 1. In this
section, all possible (& — 1)-intersecting families of (4, are
characterized, the conditions # =% k+1 and ¢=2 are not
necessary. Suppose & € #x is a (B — 1)-intersecting family, by the
translation invariance of the rank function, we may assume  that
U=<ey, -, ery € &, which corresponds to the zero matrix in
Mix:(GF(q)). For A e &, the direct sum of A and U is denoted
by A+ U. | |

LemmaA 31 If dim(AND) = dim(ANB) = dim(BnU) =k~ 1,
then either B A+ U, 0r AnUC B. ' ~ '

Proof. Suppose ANUE B. Since dim(ANBNU)<k—2
and dim(UNB)+dim(ANB)<dim((A+U)NB) +dim(ANBNU),
we have dim ((A+U)NnB)>=k  Therefore, BS A+ U as
required. c o

LeMMA 3.2. Suppose that A, B, and U ave z'n‘ g. »
() IfANUCBbut BELA+U, then ANUC Npeg F.
2) If BCA+Ubut ANULB, thew UpegF S A + UL

Proof. For (1), suppose that AN UZLF for some Fe g.
Then FC A+ U by Lemma3.1. Since BN FCBN(A+U)and
BZA+ U, we have BN F=Bn (A + U) by compairing their
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dimensions. On the other hand, AN U< B n (A + U), therefore
we have AN UC BN FCF. This contradicts ANUZLF and (1)
is proved. For (2), if there exists an element Fe & with
F& A+ U, then AnUCSF by Lemma 3.1, and ANUC Npeg F
by (1). This contradicts A N U< B and (2) is proved.

The previous two lemmas show that either
(1) A N Ug ﬂFEQFs or
: (11) ) UFEQFQA + U
for all Ae &. Here, we note that dim(ANnU)=%k—1 and
dim(A+U)=%k+1 For afixed 4 in &, let

Gi=(F|Fe # with An UC F},
and
G.={F|Fe@, with FC A + U}.

Clearly, both &; and &: are maximal (k—l)-iniersectiﬁg families
of sizes g* and ¢* respectively. They are of equal size whenever
# = k. The following theorem follows immediately. '

TuroREM 3. Let & CFx be an extremal (k— 1)-intersecting
family with U, Ae &, then either &= |{F|Fec&: with
ANnUCF}, with |&| =q" or

G =1(F|Fe G with FC A+ U, with |J]=d"-

Both types are of equal size q* whenever = k.

The matrix representations of the above two types of maximal
(kB — 1)-intersection families can be described as following:

‘11 C12° * Cin

0 0---0
0 0.0
for the first type, and
@11 0 eee
g 0+ 0

a0 -+ 0
for the second type. '
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The following = corollary = provides some- information of
Mpxo(GF(g)) of i from the geometric view point if the extremal
(& — 1)-intersecting families are regarded as lines.

COROLLAR? 34. (1) Each A € (A is contamed in exacztly
(¢F—1D/(g—1) (k——l) mtersecz‘mg famiiies of size q*, and is
contained in exactly (¢*—1)/(g¢—1) (k 1) mtersectmg famzlzes of
size g*. - :

(2) In & and &F < (Fp are two (k—— 1)~mterseci‘m° famzlzes
with differemt sizes, then |F N &' | =0 or q.

Proof. Straig.htfovrward from Theor_em,B.‘

4. The case (%, &, 7, ¢) = (4, 3, 1, 2). In the first half of this
section, we provide some information for the more general case
(B+1, % 1,2). Then we assume that 2=3 and Theorem 4
follows. Let gc Mix +13(GF(2)) be an l-intersecting family;
Without loss of generality, we may assume ‘ that the zero matrix
belongs to & Thus rank(X) < & — 1 forall Xe & Let Xe g'
with row ' vectors Xi,---, Xj, then Xi, X,---, X are linear
dependent, i.e, there exists a nonzero vector (e, o, -*, &)
€(GF(2))* such that Yi<;<pa:; X; =0, the zero vector. Let 8; be
the binary representation of 7, 1 <4< 2% —1, and

Li={X € Mix a+(GF(2)) with Zi,j»X'# 0},
1<i<2¢—-1 e g,

11 MR 73 I X% I

21 S 2 2% N

£ = h zi; € GF(2)
Zp-1,1 cr Xe-1,k+1 {1
0 e 0

for 1=10, 0,---, 0, 1]. p _
Some observations about {_£; | 1<7< 2% — 1} are as following:

Lemma 41 (1) [.0:] =200+ fop gl §< 2% —1,
(2) Li— LS B 1<iK28—1
(3) 1.0: N _2;| =20-DCED §f § £,
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(4) rank (X—Y)<Ek~1 for all X YEOQ,,~1<Z<2k—-1
B) & < Uigizet-1 (& N0 _21).

Pmof Straightforward.

Let Q, gnoE,,1<z<2k—1 If g, 5}7 forsome £, then
g < _P; and thus & can be enlarged to these intersecting
families. Otherwise there are distinct 7. and j such that each of
i Fp Fi—F; Fi— i is nonempty. We assume that 4, < 2% — 1
is an index such that |G |=|&il for all i< 28 —1.

Levmma 4.2. If &6 C G such that & + A € Py, for 1<1<7,

where Ai,---, Ai€ F; and i, j, by, -+, b are pairwise distinct. Then
[&’] S 2(k—r—1)(k+1). . - - . - -

- Proof. This is clear since each column of each member in
& contains at most: # + 1 independent entries.

We consider those values of J that each of &;, &, — &; -and
&j — &i, is nonempty. For such j, let :
Dj=&Giy— i and &;=&; — i,
Then both (J; and &; are nonempty and (J; N &; is empty. Let .
: {@jly"" @] } and «{6}_1"..’ 6 }

be partltlons of @, and & respectlvely such that @, chl is
entirely contained in OE’, for some £ < 2k — 1. , o
. A matrix M;=M(Dj, &;) is introduced as a tool to estimate
both |&:,| and |&;l. The matrix M; is a # x s matrix in which
the rows and columns are indexed by the above partitions of (J);
and & ; respectively such that the (&, /)-entry of M, is ¢ whenever
¢ is the smallest integer that (J;, — &;, S P We assume those
partitions of (J; and &; are chosen such that no two rows (or
columns) are identical.

The following lemmas provide some information about the
matrix Mj, which enable us to approximate |&;,| and |[&;l.

LeMMmA 4.3. For the matrix M; = M(Dj, & ;)
(1) both iy and j do not appear.as entries in M,
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(2) each line (either a row oy a column) contains al most
k — 1 values. .

Proof. For (1), suppose, by contradiction, that j appears in
M; as an entry, then (J); — &;, S £; for some pair (k, 1), and
hence (J;, € .L;— .£; < L This contradicts the ‘fact that
@; N L; is empty. Similarly, #, does not appear as entry in M;
either. (2) is clear from Lemma 4.2.

LemMA 4.4. There do not exist any two rows (0r two columns)
which contain
' [t1 is- 'tk—-l]
bidg- e tpt
(or its transpose) as its submalvix.

Proof. If there are two such rows which are indexed by
@;, and J;,, then J);, = (J;, is a singleton and and hence these
two rows must be identical, a contradiction. Similar argument
works for columns.

We assume %2 = 3 in the following:

If M; is a column vector for some j, then |[& ;| < 2¢-D&+D = 14,
and |();| <26-DG+0+i= 39 Thus |G, U &F;] <16+32+20- D60
=64. If M; is a row vector, similarly, we have [&:, U &;|< 64.

On the other hand, we assume that M; is neither a column
vector nor a row vector. Let H be a submatrix of M; which
consists of two columns of M;. For distinct &, # <28 —1,

1. the pair (&, ¢) occurs at most once in H and there are at
most 4 such pairs by Lemma 4.3 and Lemma 4.4. «

2. there is at most one form like (Z, #) occurs in H.

Lemma 4.2 shows that | ‘

[ @jk I S 2(k-—3)(k+1)

=1 if the (J;,—row of this submatrix H is (&, ?),
S 2(k—2)(k+1)

=16 if the (J;,—row of this submatrix H is (2, 2).
If follows that

|(D;]  2G-D®+D 4 gL 9G-0G+D =9t $ 3=19,
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Similar ‘arguments show thaf |61 £19 too. ‘Hence |&:) U &jl
< 19+ 19 + 2%-2+D = 54 It follows, based on the above analysis,
that

| F1< 64+ 32(2F —1— 2)
=224
< 256.

THEOREM 4. If & C Maxi(GF(2)) is an intersecting family with
[ | = 256(=28), them &F = _£; for some i<7, in other words,
dim (Nreg F) = L '

Indeed, the argument above provides more information about
the size |&| than what we need to conclude Theorem 4.

5. The case (s, k,7,9) = (& &k 7,q). As suggested in Theorem
3, for the case z = &, there are at least two types of maximum #-
intersecting families (with size ¢**-7). If FCSF; is a 7-intersecting
family such that either dim (NpegF) =2 or dim ((UpegF))
=2k — 7, where <{UregF) denotes the subspace spanned by
Ureg F;, then & can be enlarged. to be a y-intersecting family
with maximum size ¢*%-7", The following theorem provides some
information for those #-intersecting families & with |G| = ¢g*%-D
bht dim (Npeg F) <»r— 1.

Let V, W, U and (A be as deﬁned in Section 1. We assume
that 2= in the rest of this note, i.e., V is a vector space of
‘dimension 2&, U and W are subspaces of V¥V of dimension %2 such
that V is the direct sum of U and W.

THEOREM b. Let & C (Ar be a w-intersecting family, i.e.,
dim (ANB) =7 for dil A, B<d, and |G|=q"* ", where
0<r<kand ¢=3 Then NregF SV is either a r-dimensional
subspace or a trivial subspace.

Proof. Suppose, by contradiction, that X = NpegF SV is a
subspace of dimension 2, 1<t <#—1. Consider the quotient
spaces V/X, its subspaces U/X and W/X (= W), and the family
G/X=1{A/X| Ae &}. Then
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(1) V/X, a vector space of dimension Zk-— t over GF(q), is
the direct sum of U/X and W/X,

(2) each member A/X of &F/X is a k—t dimensional subspace
of V/X with A/Xn W/X=0,

(3) A/X N B/X is a subspace of V/X with dimension at least
7y — ¢, and

4) |F/X| = 15| =g .
It follows, by Theorem 1, that each member of /X contains a
fixed éubspacevE/X of V/X of dimension v —¢ and hence EC V is
a subspace of dimension 7 with the property that EC Nreg F, a
contradiction.
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