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Abstract, Let X, be i.i.d.,, S, =X, 4-... + X, S} = max;<,|S;|
~and X?* = maXj<y|X;|. Let G(#) = P(|X;|>¢) and I = S:o(G—l—H,’P(t)
+log(l -+ #))G(¥)dt. Then for p>1, Yn -2 EXt < oo if and only
if Iy<<oo and for 2>p>1, Za-1-Y? ES* <co if and only if Iy < co.

Some applications are given.

1. Imtroduction. Let X, X, X,,--- be independent, {dentically
distributed, S, = X71X;, X5 =max;<|X;] and 1<p<w. The
moment convergence has been studied by Pickands (1968) for
X:; and by Brown (1970) and Pyke and Root (1968) for S, The
work of Baum and Katz (1965), Gut (1983), and Tomkins (1986)
are devoted to the rate of convergence to 8, and X, respectively,
in the sense of complete convergence of Hsu and Robbins (1947).
Recently, Lai (1976) and Hall (1982) have given some results on
the rate of moment covergence of S, in terms of series of moments
of [S.].

In this paper, we are interested in the rate of moment
convergence of S, and X, in terms of some series of E|S.|, E{S.|?
and EX,. The results are presented in Section 2. Our resuits
on S, are mainly for the cases E|X|[?<<oo, 1< p<<2, and can be
considered as a complement of those of Lai (1978) and Hall (1982).
We do not assume special distributions for results on X., as
assumed in the work of Pickands (1968) and Tomkins (1986).
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The main results are Theorem 2.1 and 2.2, which establish that
for EX =0 and 1<<p<2, the covergence of X #~'"¥? E|S,| and
f PUr(|X| >1t)dt are equivalent; and for p>1, the convergence
of Yau t-Y2EX: and f P X| >1t)dt are equivalent. As
applications, we extend a result of Athreya and Karlin (1967) for
p=1to 1<p<2 in Theorem 24 and give a rate of convergence
result in renewal theorems in Theorem 2.6. Theorem 2.5 and 2.7

strengthen some results of Baum and Katz (1965) and Gut (1983)
respectively.

2. Main results. Let X be a fixed, nonnegative random
variables with distribution F@)=1-G@#)=PX<t?) and
(X, #>=1) be a sequence of independent random variables, with
S, = 21X;. Let (Fn £=1) be a sequence of increasing o-algebras
such that §z D o(Xy,---, X») and §» and o(Xs.1) are independent
for each 2 > 1. '

For p =1, denote

I(X) = EXlog*X, p=1,

2.1 = [Cerwa,  p>1,

and for any sequence of real numbers (@, # = 1), put

(2.2) @n = max|ae;|,  a = max|g;l,
: ji=n i<ny,

where (#.,, m > 1) is a subsequence of 7.

TuroreMm 21. Let (X, >=1) be independent, EX,=0,
PXu] >0 <G@) for n>1 and (T, m=1) be Fu-stopping times
suck that ETn = O(m) as m— oo,

D) FIL<o for some 1 < p<<2, then
@3 S w12 BSE < oo,

(i) If for 1<p<2,

24) EX?logtX << oo,
then

(23)’ S nPESPP <o,
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(iii) Conversely, assume further that P(|X,| >1) = G{@) for
n>1 and t>0, p=1, and for some positive o with

%m = [am],

(25) lim P(T < m) = 0.
If either

(26) | St B|S,| < oo
(174

(2.7) > w1 EISr | < . ,\

then I, << co; and if either |
(26)’ S EIS,|? < oo
‘ or
@n S uE| Sy |? < oo,
z‘hen_ (24) holds.

Theorem 2.1 can be considered as some results on the rate of
moment convergence for S,/z#. The cases for 2 < p <4 have been
treated by Lai (1976) and Hall (1982).

THEOREM 2.2. Let (X, Xu n>1) be independent, identically
distributed and (T, m > 1) be finite Fu-stopping times.
@) For p=1, I, <o iff (if and only if)

(28) | S m iV X <oo.
(ii) If for some positive « with on = [am] and for some
p=1
(2.9) Hm P(Tp < am)=0, > n "2 EXy < oo,
then I, << oo.

(iii) For p>1 and q>p—1,if
2.10) EX?(logT X)? << oo,
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then I, < co. Comversely, if I,<<oo for some p>1, then
EX? < oo,

Part (i) of Theorem 2.2 follows from Theorem 2.1 (i) when
1< p<2. However, for p > 2 we need a separate proof.

Part (iii) of Theorem 2.2 gives some conditions for 7, being
finite. It says that I, << oo is slightly stronger than EX? < co. The
condition ¢ > p — 1 can not be improved to ¢ = p — 1. For example,
if for some p>1 and all £>10,

(2.11) G(t) =C - (tlogtlog log#)~2.
Then I, = o and by Lemma 3.1
EX(logT X))t 1< oo,

However, the proof of Theorem 2.2 (iii) is still valid (with some
modifications) if (2.10) is replaced by EX?(log® X)? '(log* log* X)¢
< oo for some g >p — 1.

From Theorems 2.1 and 2.2, immediately we have Corollary 2.1.

COROLLARY 2.1. Let (X, #>1) be independent, identically
distributed, EX: = 0 and (P|Xi| >1t)= G@). Then I, << < iff

(2.12) > w72 EX} > oo,
when p>1, and iff |
(2.13) | S nts BIS,| < oo
wher 1 < p<<2.

COROLLARY 2.2. For any sequence (X, n>1) of independent,
identically distvibuted random variables,

(2.14) | > n 2 E|S,] = oo,
Proof. Let (2.14) be false. The E|X:| <o, EX; =0, and by
Theorem 2.1 (iii) and Theorem 2.2 (iii), EX2?< co. Then
lima Y2 E|S,| >0,

yielding a contradiction.
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Corollary 2.2 is an immediate consequence of Klass (1980). He
proves that if EX; = 0, then

(2.15) A K, < E|S,| < AK,
for some 0 < A << o, where
(2.16) 2 K: = E(XE A XK.

Hence 272 K, 1 and (2.14) follows by (2.15).

It seems also plausible to apply (2.15) in the derivation of
(2.13). However, there are some difficuities. Klass (1980) proves
that for some constants 1, = O(1), G( E|S:|) < 1/#. ‘

Let G(2) be the inverse function of G (see (3.1) for definition).
Then

(2.17) G(1/n) = O(E|S.|) = O(Ky).
By letting ¢ = G(1/g), for p>1, |
1= [T6n@at = — pt [T1G-1(t) dG @) -
= [Ty Gy ay.
Hence I, < o iff k
(2.18) S utvrG(/n) <o, p>1.
’Corollary 2.1 states that (2.18) implies i
(2.19) | S k,En-%-I/ﬁK,,<oo. -

If G@) =1 for ¢>1, then #~'K3— o and G*(1/n)/n=1. Hence
K,/G(1/#) —> o and therefore in general, K, and G(1/#) are not
of the same order. o :

In a related work, Tomkins (1986) gives some necessary and
sufficient conditions for the series
220) S wrPUX:/CU/m) 1> <o, p>1,
and proves that if {X:] is not bounded and (2.20):""holds for some

p>1, then it holds for all p>1. Hence the series (2.12) and
(2.20) are different in nature. '
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. Instead of considering the series, by just considering one term,

one obtains the following result.

TuEOREM 2.3. Lot (X, 2>=1) be ihdependent z'denticall&
distributed, EX, = 0, and P(|Xi| >1t) = G@) =1 —FQ@) for t > 0.
(i) For p>1, as 7%—>

(2.21) L w P EXy =0(1), -

iff as t— o

(222) C #em =0,
(i) For 1<p<2, (2.92) holds iff
(2.23) #? E|S,| = o(1).

The convergence of EX* has been discussed in Pickands (1968).
His results are different form ours. Pyke and Root (1968) prove
that # ' E|S,[2=0(1) for 1<p<2 iff E|Xi|?<<oco. Theorem 2.3
(ii) is a variation of their work.

As an application of Theorem 2.1, we will derive the following
theorem, which improves some results due to Athreya and Karlin
(1967) on split times. They show that for p =1, (2.25) holds iff
EXlog* X < co. Under the same conditions, (2.24) holds and (2.25)
converges absolutely a.s. - o

TuEOREM 24. Let (X #>1) be independent, idemtically
distributed, X, >0 a.s., EXi=1, P(|1X;i—1|>8)=G(), 0<p<1
and 1< p<2.

(i) Ip<oo iff
1 1 '

2.24 Sawg| 1 Lllce.
(224) % S. + 8 nl< ’

(ii) EX?log* X << oo iff

- 1 1 (2

2.24)" . 2p-2 —
(2.24) > .7 ‘E’S,, 7T < oo,

(iil) If E|Xi|? < oo for some 1<p <2, then

'(2.25)’ E ‘ Z nl-l/p (—S—l_i_—ﬁ—— — —;l;) converges a. s.
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The following theorem is suggested by the work of Baum and
Katz (1965) on the complete convergence for the law of large
numbers. It extends their results in connection with ES,.

THEOREM 25. Let (Xu, n>1) be independent, identically
distributed, EX1 =0, p>1, & >1/2 and ap >1. Then for ¢ >0,

(2.26) > meman1 B(S] — ens)* < oo,
if |
(2.27) E(X: 2 +1 Xl logt X)) < oo,

As another application of Theorem 2.1, we have the following
results on the rate of convergence in renewal theorems.

THEOREM 2.6. Let (X» 2>=1) be independent, EX,= p,
O<pu<<oo, and P\ Xn— 2| >t) <G@)=P(X>1t) for =1 and
t>0. For t>0,let :

(2.28) r=inf{w>1:8,>1}.

. (i) Assume 1< p<2. If I, <o, then

(229) S w1-Y2 E(uN, — nm)* < oo,
and )

(2.30) - .Z #1Y2 E(Shpp — Sa)* < o0
If EX? log* X< oo, then

(2.29)" S ntE(uN, —n)*? < o,

. and
2300 P E(Swe — ST < oo,

(ii) Suppose further that (X, n=>1) are identically
distributed, P(|Xi— p|>t)=GQ®) and (= +---
+ ¢, where ¢V = Ny, (®,--- are copies of Ni. ﬁ

(@) If [ <oo for some 1< p< 2, then
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(2.31) > n Vs B(¢y — nEND* < oo,
(232) 3wtV BE(uNapy, — Ca)* < 09,
_and
(2.33) [T @ =) + P(Ni >t loghdt <o

(8) If EXtlog®™ X < oo for some 1 < p<<?2, then

(2.31) S a P E(ls — #EN)*? < oo,

(2:32)" 3 7 EuNog, — Cn)*? < o0,
and

(2.33) EN3log Ny << co.

(r) If fo;? some p > 1,
(2.34) - S Y2 E(uN, — 1)t < oo,

then I, << oo,

In the i.i.d. case, Theorem 2.6 states that for 1< p <2, (2.34)
holds if and only if I, < oo, Which is obviously equivalent to

[T @rx >0+ PUX] > 1) log ) dt < oo,

which is a two-sided conditions. Gut (1974A) proves that for
p=1 EN? <oo, if and only if E(Xj)?<<oo, a one-sided condition.
The following result gives some one-side conditions in the form of
I, when 1<p<<2. However, when p>2, we are not able to
prove it.

COROLLARY 23. Let (X, Xu 2 ‘1) be independent, identically
distyvibuted, EX = p € (0, ) and for t >0
Ni=inf {#>1:S.>1t}.
Then for any 0> u, ) | :
(2.35)  liminf P(N, > 9)/P(X~ > 0y) > 1.

J—®



1988] MOMENT CONVERGENCE OF SUMS AND EXTREMES 185

In particular, for 1 < p<<2

(2:36) f T (PY(X- > 1) + P(X- >1) logt) dt < oo
iff

(2.37) [T @ > 1) + P(No > 1) log t) di < oo; |
and

(2.36)’ BE(X)tlogt X- < oo

iff

@3 ENlegNi<o.

In (2.37) and (2.37)', N, can be replaced by N;, & > 0.
Proof. For y > 1, by conditioning X;,

P<M>y)=’fojp(1+Nf>y)dP<og —X<?).

Hence for & >0,

oagy =~ Fe>w = JTPN >y - 1)Ldp(g < _X<1

> P(N, >y — 1) P(X~ > ¢).

Since Niy/y — 6/n>1 a.s. for 6>, (2.35) holds by letting & =20y
in (2.38), and (2.36) is implied by (2.37). Now assume that (2.36)
is valid. By truncation, we can assume that P(X <¢)=1 for
some o >¢>0. Then by Theorem 26 (ii) (&), (2.37) holds.
Similarly for (2.36) and (2.37)". ' ‘

From (2.38), if P(X~ >¢) >0, then N, can be replaced by N;
in (237) and (237). If P(X >¢)=0, choose (>0 so that
P(X->¢)>0and s >¢&. Then ‘ '

P(N: > ) < P(Nae > ) < nP(N,>y/n).

Hence the general case follows. The next theorem improves a
result of Gut (1983) on the rate of convergence for first passage
times when p > 1. -
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THEOREM 2.7. Let (X, X, n>1) be independent, identically
distributed, EX, = s 0<,a< o, p=1, oa>1/2 ap=1 and e>0
For t >0, let - , .

N; = mf{n>1 S, >1t}.

If p=1 and v v
(2.39)  E(IXI? + | X| log*| X]) < oo,
then
© pan X AT
(2.40) [ 1o 2E(’N, #l et) dit<oo.

3. Proof of Theorems 2.1-2.7. For 1— F(@)=G{#) = P(X> t)
for £ > 0 and G(t) 1 for t<0 define for 0<y <1,

(3.1) G(y) = sup{t > 0: G(t) >4}.
Then for 0<y<1land 2>0.

(3.2) G(2) <y iff > G@).

LEMMA 3.1. For e, 8 >0, the following velations are equivalent.

(3.3) EX?(log* X)f << oo,
(3.4) A= /I”zw G@) | log G(2)|? dt < =,
(35) f1 “12] log G(2)|? dF Q) < .

Proof. Assume (3.3). Then
B = Lwt“‘l G(¢) logfidt < co.
Put S={#>1:2¢*1G@) <1}. Then
A= [T116W) (e + 1) logt — log(t++ G |7 at
< 2(e + 1)? B + 2° fs 21 G(2) | log(#*1 G(2)) | dt
< 2%(a +1)# B + 2° sup yllog y|? f1°° 7% dt < oo,

0=y=<i

yielding (3.4).
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Assume (3.4). For F(K +) = F(K —) by integration by parts,
[ #1108 617 aF )
<o [ t1GWlog G| dt + 5 [ 14|log G(£) |1 dF ().
(1] [}]

As K— oo, (35) follows from (3.4).
Finally, assume (3.5). Then #*G() =0(1) as t—co and (3.3)
follows.

LeMMA 3.2. Let (X, 2>1) be independent and (Tw, m >1) be
finite Fa-stopping times such that for some positive integers cip,

(3.6) o lim P(T < aim) = 0.
(i) As n— oo, |

(87 EX}ye, < (1+ 0(1)EX:,.
(ii) Suppose that for eack n, EXy = 0 and

(3.8) ElSr,| < o, lim inff{T _ISal aP=0.

Then for p=>>1, as n— o
39 E|Sr,va,|? = (1+0(1)) E|Sr |2.

Proof. (i) We can assume that EX; <co. By independence
and (3.6),

E|Xi,ve, = Xi,l = 3 EIa,-»nl X3, — X7 1)

J<fl

< Z E(I{T 4-Jy Tax IX.D

< P(Tn << 05;;) EX* = O(EXT 2V, )9
yielding (3.7).
(ii) Put A = !STnV‘zn — ST,,'* Then

= 27 E(Lr,-!Sa, — Sj1)?

J<Il

= >, X(Ts = HE|S., — Sj|?

J<d

S P(Ty< oa,.)ElS., (2 = o(ElS,, ll’),
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by independence, martingale property and (3.6). By a result of
Doob (1953, p. 302), (3.8) implies that (S, , |Sz,va,l) is a two term
submartingale, and by Jensen inequality, '

E(1Sr,ve, 1#]184,1) = 1Se,[? a.s.,
E|S, |7 < E|Sr va,l?, Al = 0<”ST,,V¢,,“1>)‘-
Hence :

IS, va,lls < ISz [ + 1Al = [Sr s + oIS va I 5)
yielding (3.9).

REMARK. In Lemma 3.2 (ii), if in (3.8) and (39), [Sr, |, [Sal,
Sr,ve, and [Sr | are replaced by S7 , Sa, S7 v« and S7 respectively
the result is still valid by the same proof.

Proof of Theorem 2;1. (i) For each fixed > 1, let &, = é(l/n),

X;=(Xj Nla) NV (— ) — E{(X; N o) NV (— k) },
Gl xy—x,-x, Su=3.X, Si=8.—S5.
By the maximum inequality of Doob (1953, p. 317) and the Wald

equation for the second moment (cf. Chow-Teicher (1978),
p. 241).

Tn
E(S77)? = 0(1) E(S; )* = O(1) E > EX}

= O(ET) [ " 1G() dt,

ES;, = 06i) [ 1G(1) dt + EVH(X A .
Hence V |

0

> mis BSy

1
o) s i o :
— ~1/2-1/ * . 172 2
o(1) Zn » fo tG() dt » E-V2(X A )

=0 [T1G@) - Y, nvetr (XA B,

;.
t“>t
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When 7z, >, E(X AN ka)*2 E(X N2 22 G(t) and nG(#)>1 by
(3.2). Therefore for 1< p<2

Y ESy = O [ GA(tYdt e Y v
(3.11) Z - ( “£ nc;;» v :
—o([ e ar) <o

Now
Tﬂ Tﬂ
ES;* < EZ 1 X71< EZ E(|X;|— ha)*

=0 [ 6w &,

St ES;* = O(1) S v [ 6@ a

=0 [T6wary, u s,

t>h”

Since ¢ > %, implies that G(¢) < 1/% by (3.2),

Swvr=0(llog G®)]), p=1

§ >Iz“

= O(G'I’l’?(i‘)), p>1.
Hence o

o

S auESi = 0 [CE @ dt <o, p>1
(312) . 5 , ’

= 0(1) _/:DG(I,‘)] log G(2)| dt < oo, N =1,

by Lemma 3.1 when p=1.  (3.11) and (3.12) yield the proof of
(2.3). R o : , .
(ii) Put k.= nY? define X; X;, S, and S, by (3.10). For
1< p <2, by Doob inequality (1953, p. 317)-

ES7*= O(E|S7,|?)
and by Burkholder (1966) inequality
EIS;,|» = O(DE (}: x;)" = o EZ X512
= O(ET,) [ #-1Gt)at.

Similarly,
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. h”
E(Si)* = O(ETy) [ "16@) at.
Hence ‘ ’
0 A ‘
> wi Ve log nE(S;)} = O(1) 3 n~¥2 log m [ "1G(t) dt
=0 [T ewar’y, nirlogn
t nzti’
= O(1) jlmtﬁ‘l G(t) log tdt < o,

by (2.4), and by Hoélder inequality for 1<p<<2

3 2—p)/2
3wt By 12 < {5 n i Clog my-wr-p )

(3.11) . {Z n~1"%2 log nE(S;* )2}1”2
< oo,
S wrEISI =0 St [Tri e ar
(3.12)" =0 [(riGwyaty n

n<t?

=0(1) j1 “10-1 G(2) log tdt < oo,

yielding (2.3)’ by (3.11)". »

(iii) Since (X 7 > 1) are independent with P(|X,|> %)= G(2)
and ET. = O(»), (3.8) is satisfied by (2.7) or (2.7)’. By Lemma 3.2
(ii), (2.7) and (2.7)’ imply (2.6) and (2.6)’ respectively with S,
being replaced by S, where ox =[an]. Since (X, 27> 1) are
independent, by a theorem of Doob (1953, p. 337), R

(3.13) ES* <S8E|S.* p=1 n>1

Therefore (2.7) and (2.7)’ imply

(3.14) D, #i P ESE < oo
and
(3.14)’ S nPES: <o

respectively. Hence if (2.6) or (2.7) holds,
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(3.15) > #iV ESF < oo,

and if (2.6) or (2.7) holds, -

(3.15)" : S nPESP< oo

From the fact that

(3.6) XIS S+ Si.<os

(3.15) and (3.15)/ imply

(3.17) Z n "V EX, < oo and Z ntEX3? < o0

respectively. Hence I, < « and (24) hold respectively by Theorem
2.2 (ii).
In the following, we will use the notation

F(@) = 10)|g(2)
to denote that there exists 0 < A << oo such that

(3.18) AT < g < ALf@),  all 2.

Proof of Theorem 22. We can assume that X >0 a. s,
EX <o, F(t)>0 and G(¢) >0 for all. >0, where F(2) =1~ G(t)
= P(X<<?). Foran=>1,

(3.19) EX: =g fo'” tF*~1(2) dF(1). -

Hence (2.8) holds 1ff

(3.20) o, = f yvr dy j tF!(t) AF(t) < oo.
(i) Since |[log F(#)| = (1 +0(1)) G(2) as t— oo, ,

JreP@ay= [T v e ayllog B s

= [0(D]| G-1*V3(t), p>1
= |O@)} » [log G®@)|, p=1.

Therefore

Il = (0] [t llog G@)| dF (),
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and
IL, = (0| [ 1G=1v2(2) aF ()
=lowifenwa, p>1.

By (3.20) and Lemma 3.1 (for p = 1), (2.8) holds iff I, < co,
(ii) Assume that (2.9) holds. By Lemma 3.2 (i),

(3.21) EX; < (1+0(1)) EX;,
as #— c. Hence (2.9) implies

Z ni-UP EXE < .
Since @ = [an],

Z n - EXn < oo,

By part (i), I, << oo.
(iii) Let ¢>p —1>0 and (2.10) hold. By Lemma 3.1,

(3.22) [T16@) log Gy 11dt <o
Since #G(2) = o(1) and ¢>p — 1, |
(3.23) Sl g 6@y - dt < oo
Put

A=1{t> 1 : Gllﬁ(t) L1 G() |log G(?) [e}.
Then : B ‘ o '

B=I[10)—A={t>1:GUs¢) <t-* |log G(#)|~/>-D},
By (3.22) and (3.23),
Joenwar< [ 116w log Gt) | at
+ [t llog G [ -Y gt < oo

Hence I, < o. Conversely, if I, < oo, then
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w>p [TGU at= [Ty Gy ay

= [T @Rt Gy ay.
| .
Since yG2(2y) < [ GV2(t) dt = o(1), EX? <.
k4

Proof of Theorem 2.3. (i) Assume (2.21). Then .

(3.24) n-YVr X, £ 0,
which is equivalent to
Fr(n'?) = p(Xa?<n) =1+ o(1),
i.e,
(3.25) #G(n't) = (1 4+ o(1) n |log F(n'?) | = o(1),

yielding (2.22). Now assume (2.22). By (3.25), (3.24) holds. To
prove (2.21), it is sufficient to establish that (w2 X, #>1) is
uniformly integrable. Let &> 0 and choose K>1 so that 22 G(¢)
<¢fort > K ‘Then for #>1,

fwP(n“”P X:>tdt<n j"’P(X> 10 ) di
K K
= @ . 1/n - e
meﬁ G (/" 1)t uzzse/Kt vdt.

Since for p>1and n>1,
KP(n Y2 X, > K) <nKP(X >#n'?K) < sup 1rG(1V¢),

t=gllP

(V2 X3, # > 1) is uniformly integrable.
(ii) Let (2.22) hold. For simplicity, we can assume that X's
are symmetric. For#=1,2,---'and j=1, 2,---, %, put

X;j=(X; nu?) v (—n'?), Xj=2X;—2X,
S; = Z X, S5 =85
Then | ,
EISY |<nf s G(t) dt=o(m) [, t+at — o(u®),

(3.26)
ES? = O(n) f " 16ty dt = o) f 117 dt = o(n¥'#),
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(3.27) E|S.|= o(n'?).

Hence (2.23) holds. Since (2.23) implies (2.21) by (3.13) and (3.16),
by part (ii) (2.22) is valid if (2.23) holds.

Proof of Theorem 2.4. (i) By Theorem 2.1, I, < co- iff
(3.28) W=D Vi E(n = S,)t <o,

Put
An,1= {Sn<n/2}, An,2= {Sn.>_”/2},

U;= i ﬂ—upEl (Su _Zij?gg(AnJ) ,

Wj = Z %—1-1/-? E(ﬂ —_ Sn)+ I(A-n,j)9 )

where I is the indicator. Since X > 0 and EX =1, by the Chernoff
(1952) exponential bounds, for every ¢> 0, there exist 6 =60,>0
and m = m, > 1 such that

(3.29) P& —n< —em) <e™, n= M.
Hence |

(330) ,Ul.S, BTE D mtY P(S, < n/2) < oo,
and

(331) Wi <> n Y P(S,<m/2) <oco.

| If (3.28) holds, then ‘
U: <2 02 E|S, — n + ﬁ;l <oo,
yielding (2.24) by . (3.30).
If (2.24) holds,
We =3 n~'"42 E(n — Sy — B)* I(Auz) + O(L)

=D a7V E(n — S, — 8)* Iin > 8, >n/2) + O(1)

<2 w B(n — Su— )"/ (Su+ £) + O (1) < oo.
Since W= Wi + Ws, by (3:31) PP < oo,
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(ii) By part (i), we can assume that 1 < p < 2. By Theorem
2.1, EX?log* Xi < oo iff

(3.28)" > w2 EIS, —nl? < oo
As in part (i), B
’ 2p~2 —_ -
B30 DB gy — | KS<a2) <o,
(3.31) D nE|S, — n]? (S, <#/2) < .
i B ; . h o

If (3.28)’ holds, then
2 1 ) :
E, n? El T ”, IS, = n/2)

=0 Y a2 E|S, —n + pl? < oo,

yielding (2.24)" by (3.30)". - .
Next, assume that (2.24)’ holds. For ¢> 0 by (2.24)’

3 w02 P(|S, — 7> en)
ind then EX}<<oo by Baum and Katz (1965). NoW

> ntEIS, — nl I(2 < 8, < o)

g <
— -2 | 22— S |?
O X w | %= ' > oo,
yielding with (3.31)’
(3.32) S B2 E|S, — |2 I(S, < 2n) < oo,

Forz=1, 2,---, and j=1,---, #, put
X=X IX;<2m), Si=>X;.
1
Then (3.32) implies

> a E|S: — | 2I(S,y < 22) < oo.
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Since EX? << o0, 2 — ES. = nEX: I(X:1 > 2n) = O(1) n*~? EX? and

> amin — ESP= O(1) 3, #tm# < oo,

(3.33) Z n- 2 E|S, — ES.|2I(S, < 2n) < 0.
Set « = p(4 — p)/4 and g = (2 — p)*/4. Then ¢ + f =1,

S n-tels B(S; — ESL)?

= 0(1) i n?3 EX; [(X: < 22) = O(EXY) < o,

Z w00 (S, > 20) = Z nd—2 P{(S,.‘—— 7) > n} << oo,
and by Hélder inequality

S #? E|S, — ES:|? I(S, > 2)

< fj =2 E¥3(S; — ESi)* Pe-9/X(S, > 2n) .
< S nsir B(S, — ES.*Y"
. {Z n~t#/E-» P(S, > 2n)}(27—1’)/2 < oo,
yielding with (3.33) | ' |
> nE|S, - S|t < oo
By (3.13) and (3.16), | |
S w2 Emax | X; I(X; < 2n) — EXi I(Xi < 22) |2 < o0

1<j<n

Hence

0o > Z 7~ Emax X I(X; < 2n)

1<j<n

21

=3 w2 [, 2271 Pl max X;I(X; < 2n) >t} at

” <j<n

27 .
>3 at [ P <X < 2m) PPUXLS D dt

Since EX? < o, P*(Xy < n'/?) —1 and therefore
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: : izl . T

(3:34) St [t PE<Xi<mmdt<oo.

Since

2n
>t PP > 2m) dt < eo,

25 L i
St [l k<,

yielding EX?logt Xj < co.

(iii) For 1<p <2, let E|X1|? <. By Marcinkiewicz and
Zygmund strong law of large numbers (c¢f. Chow-Teicher (1978),
p. 115)

(3.35) Z (Xz — 1) n~¥? converges a. s, S,, - n = o(ﬂ‘/P) a.s.

Hence
(836) 3 (Sa—m)n'-Y? converges a.s.
By (3.35),
1 __l__ #—Sa—8 _ (ﬂ—sn;ﬂ)2= ‘—‘s+2/p .’
S.+8 =» n? 7%(Sy + ) ol ) 2.5

vielding (2.25) by (3.36).

Proof of Theorem 2.5. We can assume that ap>1, ¢ = 1 and
E|[X:| >0. Since if ap=1, then p=1=a and (2.26) follows
Theorem 2.1 (i). For >0 and =1, 2,---, put

A=1{X;<?, S>2kt}.
Define

(W =inf{j>1:[S;| >}, Zo=0=13S,,

4’(”‘) = inf{jZ]_ : lsj"'{m— - S(m—1’>t} on i{m—l = OO!,

where (p= (W +---+ ™. Then (¢™, X, +1,---, X)), m=1,
are independent and identically distributed (cf. Chow-Teicher
(1978), p. 136). Then

CAc{a<nc )™ <n

m=1
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Assume that (2.27) holds and let g = max(1, p/2) By Marcinkiewicg
and Zygmund mequahty

Pty <n) K12 E|S:|?=0() t~2nf E| X2

Hence as ¢ — oo,

| PA=0Q1) t-* ¥,

(337) P(S} >1t) < P(X;: >1t/(2k)) + O(1) t~*?» n’.

Now,

=Y wee [T PORX: > 1) dt

<f PRI X:| >1) 3 mte=etdt

»9<t

=0 [ 1+ PRI >t dt >0 if p>1,
=0(1>f1°°10gtp(2kixll>t)dt<oo if p=1.

=3 meme? [~ 1242 @t = O(1) 3 mpe- 2+0P-29k < oo,

by choosing % large enough, since ap > 8.
Therefore by (3.37)

; i npe-a=2 [(S* — pa)*
=Y wremet [T PSI> 1) dt < T+ O(II) < oo

Proof of Theorem 2.6. (i) Since 0 <z << oo, by an elementary
renewal theorem of Chow and Robbins (1963),

(3.38) EN,/5n~> p-t.
Since C '
(3:39) #N, — Sy, < uN, —n

L |uNy— Sy, | + X5 <3(uNy— Sy )+ m

(2.29) and (2.29)/ follow from (2.3) and (2 3)/, respectlvely, by
(3.38). Since
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(3.40) Sw,, — Sy =Sy, — tNay + tNpy — np + 022 — S

(2.30) follows from (2.3) and (2.29), and (2.30)" from (2.3)’ and
(2.29)".

(ii) Put Y.=S,, — an-l for #>1 where ¢ =S, =0. Then
(¢c™, Y, #>1) are independent and identically distributed (cf.
Chow-Teicher (1978), p. 136) and Y >1 a.s. For it =1,

P(Y1>t)=ZP(N;=j, S;>1)

(3.41) < PWNi=j, X;>1—1)

<SP 24, X; >t —1) S ENG@E —1— ).

(e¢) Let I, <co. Since EY: = pENi <o and S; = X1Y; by
(3.41), Y satisfies the condition I, <<oo also. Hence by Theorem
2.1 (D,

(3.42) - S amt-V2 E(S, — pnEN)* < oo.

Because (¢n m2 > 1) is a sequence of (X,)-stopping times (cf. Chow-
Teicher (1978), p. 134) and E¢, = nEN;, we have by Theorem 2.1
(i) again, - ’ :

(343) STt B(S; — pga)* < oo,

vielding (2.31) by (3.42). (2.32) follows from (2.29) and (2.31). By
Theorem 2.1 (iii), (2.31) implies (2.33). Similarly we have (5).
() Assume that (2.34) holds. Then

S a Vs E(uN, — Sy )* < > n V2 E(uN, — m)* < oo,
By Wald equation, ESN" = u#EN, and hence

(344) S a2 E|uN, — Sy,| <oo.

Since N,/n— p~! a.s. and (3.28) holds, by Theorem 2.1 (iii), (3.44)
implies that I; << oo.

Proof of Theorem 2.7 TFor simplicity, ‘we can assume . that
g=1 and ¢e<<l. Put Wo=S,—n, W:= maXisjstl Wil, Ca= ¢
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R +é’(")’ ‘where C’(D = M’ C(Z),"' are COpies of M, Ciz":[t]; and
¢ = ENi. Then 6 > 1 and

- KN =t>9)
(3.45) =P(|N;—%| >v, N, < 36¢) + P(|N; —-t[>y, M>3et)
= I{t, y) + II(2, 2/), say.

Since

[Ny —#| < | Ne — Sy, | + |8y, — t| <3Wi, + 1,

for M > (2/¢)V* and ¢ = M,

346)  f° 1t pay < [, PO6Wi > y) dy = BO6Wi — et*)*.
Since § > 1 and N; < ¢o¢ for £>1,

ITt, y) < P(N: >1v, N; > 36t)

3.47
(847) < P(ler > Y, Lo > 301), t>1.

First, let ¢ <1. Then ap —a <p —1 and for ¢ > M, = < 308,

L °: I, y) dy

< (362 — e29) P(¢y: > 308) + j:; Pty >w) dy
< O(2) P(Car — 208 > 62) + E(9s — 308)*.
Hence be (3.45), (3.46) and (3.48)

(3.48)

f;m-“-z E(IN; = t]| — et®)* dt
— * adp—a—2 *
= [oremerar [° U, y) + G, v)) dy
< f;t”‘l’“““z{E( Wioe — et®) v+ E(L2s — 3ot)k+} at
o0
+ 0(1) fM tpe=a=1 P(¢yy — 26¢>01) dt.

By Theorem 25 (and Theorem 2.6 (i) (B), (2.33)/, when p=1)
the first integral is finite and by Baum and Katz (1965) so is the
second integral. Hence (2.40) holds when o < 1.

Now assume that «>1. Choose M so large that M* > 46M
>2. Then for ¢t > M, ¢t* > 46¢ and by (3.47)
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[ome pay< [T, Peu>y) dy = B(Ga — at)*

< E(&2 — 26t — &29/2)7.
Hence by (3.46), (3.49) and Theorem 2.5

(3.49)

f;tdﬁ-d-z E(IN, —t| — et%)* at

< f;w—w—z{E(W;;, — o)+
4+ E(¢os — 208 — 22/2)*} 4t < 0.
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