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ABSTRACT VOLTERRA TYPE INTEGRAL EQUATIONS
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Abstract, The aim of the present paper is to study some
properties of an abstract nonlinear analogue of Volterra equation.
Sufficient conditions have been obtained guaranteing the existence of
solutions in the homogeneous and nonhomogeneous case.

The main results are due to some ideas from [1].

The present paper studies an abstract nonliner. analogue of the
Volterra equation. The main results are due to some ideas of [1].:

Let  be a metric space with metric o and Borel measure o
while ¢ :  — M, is a map associating every element x € Q with a;
closed subset M, of Q. ; I

We say that the conditions (A) hold when the following  set
of suppositions is fulfilled: )

Al. The set Q is compaét. .

A2. For any >0 and ze  there exists 'a number:
0 =20(e, ) >0 such that for every element % € Q for Wthh
olz, y) <39, ‘

2({M\M,} U {M\M,}) <e.

A3. (transitivity) For any ze€{) and y< M, one has
M, < M. . , ‘

A4, For every choise of e >0 and x = () there exists a number
& >0 such that for every element v € Q for which olxy y) <o
the inclusion M, € U(e, M, ») holds, where Ul(e, M. ) denotes the
e-neighbourhood of the set M,. L

A5. There exists a point x, € Q for which ,u(]llxo). =0.
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Let B be a Banach space with norm [z and let Cc(Q, B)
denote the linear space of all continuous maps f:Q—B.

- ReMARK 1. The space C({}, B) is a Banach space with norm

71l = supseal f (@) |5

Let us denote by w the measure of { and let U be the family
of all sets M., z € . ,

We say that the operator 4 :  x C(L, B) —» C(Q, B) fulfilles
the conditions (B) when:

B1l. . The operator A is continuous.

B2. For every function f € C({, B) and for every x € ) the
following inequality holds

1Az, I <QU) - Ifll,

where the function Q(f) is bounded over every bounded subset of
C(Q’ B)-

Consider the equation
(D ' f+Kf=2p,

where f, p € C(Q, B) and the operator K is defined by mean of
the equation

2) (KN (@) = [, A, @) du,y.
Since Bl holds, the integral in (2) exists, see e.g. [2].

ReEMARK 2. The condition A3 allows for every point @ € Q to
consider the restriction K,:C(M., B)— C(M., B) where the
operator K, is defined by (2) and C(M,, B) is the space of the
continuous functions from M, to B. In this case the restiction
fin, of the solution of the equation f + Kf = p, f € C(L), B) is a
solution of the equation ¢ + K. = piu, ¢ € C(Ma, B). ‘

Levia 1. Let the conditions Al, A2 and Bl hold. Then the
operator K defined by ihe equality (2) maps continuously C(, B)
into C(Q, B).

Proof. Let zo € Q be an arbitrary element and let {24}m- be
a sequence of points convergent to Zo. Then, if f e C(, B) is
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an arbitrary fixed element we have

ICEF) () = (KS) (o)l
S, Aan D@ duy = [, Alan ) @) dzy

B
-| f;u,,ﬂnM,,o LAz 1)) — Alzo £)@)1 88
+ [ o Alaw D@ sy

(]

(3) — fM w Az, )W) duy

L

= fM‘n"Mxo 1A(xa )W) — A(zo, F)(W)ndey
+ S, 1AGon D Dlndiy

+ foo\M‘" Az o./) (WD) s dry.

Let ¢ > 0 be an arbitrary number. Condition Bl implies that a
number 2, = #7,(¢, X0, f) exists so that for 27 >, and y € M., the
following inequality holds

— _—_e—————
(4) 1Az, FY) — Alzo, FYWNDI<< 3,u(Mxo) '

* On the other hand, the condition A2 yields that there exists a
number 8 = (e, Zo) >0 so that for any x from the ball p(x, L0)<<é
one has

(5) p({M\M:} U {MAM:,}) < 3}

where A = sups, ,eallA(x, 1YWz
Besides, there exists a number #; = 2,(e) such that for # =,
it holds p(&,,.20) < 8. Then, if # = max(sn, 7,) from (5) we get

[, 1A@s H@lnds
2, \Mz,
(6)

+ foo\Mxn”A(xo, D Dlede, << 236 )

For # > max(, %) using (5), (4) and (6) we finally obtain

ICES) () — (KF) (o) lla < e
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We will prove that the operator K is continuous. Let {f,}7-: be a
convergent sequence from C(Q, B) and let f, be its limit. For
e>0, in view of Bl, it follows that there exists a number
72 =‘m(e;’fo‘) such that for n >, the following inequality holds

1Az, f) — Ale, fOl <5, @<= Q.

Then |Kf, — Kfoll < proVided 7> n. ‘
This completes the proof of Lemma 1.

LeMMA 2. Suppose that the condztzons Al, A2 and (B) be

Julfilled. Then the set K(B(0, R)) is equicomtinuous for every
central ball B(0, R).

Proof. Let B(0, R) be an arbitrary ball centered at zero with
radms R Then for g € B(0, R) and x, y e Q,

N (Kg)(x) — (B |
< from, VA @) = A, )@ nd

@ + fM o MA@, 9)(2)ln e

* fMy\Mx 1Ay, 0)(@)]5 8z

In view of Bl, for any fixed x = Q2 and ¢>0 ‘there exists a
number & = §(e, ) >0 such that for p(x, ¥) <é and z € ) the
following inequality holds -

(8) (A(x, 9)(z) — Ay, 9)(@D)|e < 2‘;
<~ Moreover, there exists a number 6* € (0, §) such that for
o(x, ¥) < &* we have

¢)) ﬂ({Mx\Mf} U {My\Mx

4QR

where @ = supezco.z) @(9).
Then, from (7), (8) and (9) we obtain that for o(x, v) <8*

I(Kg)(z) — (Eg)(¥)lls <e
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i.e. the set K(B(0, R)) is equicontinuous at any point x € ) which
is to be proved.

Observe that B2 implies that the set K(B(0, R)) is uniformly
bounded.

REMARK. The set K(B(0, R)) is relatively compact if and only
if the sets

2, ={,, Ao N ans = BO, B}

are relatively compact for, x, € Q see [3].

REMARK 4. Let the conditions of Lemma 2 hold supposing that
Q(f) in the condition B2 does not depend on f, and let wQ<1
Then the equation

(10) Kf=f

possesses the trivial solution ¥ = 0 only.
Remark 4 implies that the condition Qw > 1 is necessary for
(10) to possess a mnonzero solution. Moreover, this condition is

necessary for the existence of a nonzero element f € C(L, B)
with the property [[f] = |KF].

THEOREM 1. Suppose that the following conditions hold:

1. The conditions (A) and (B) hold.

2. The space ) is connected.

3. For every xo < Q) and f € C(Q, B) the following inequality
holds

sup 1Az, £YW)]a <, “’")féfv? Ifle xe M,

where Q.(f, xo) is continuous with respect to x, for fixed f.
Then the equation

(11) f=21Kf

possesses the trivial solution f = 0 only for 1 < C.

Proof. Let 1540, 2 € C be an arbitrary fixed complex number
and let f # 0 be a solution of the equation (11). Consider the set
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 Ne={zlzxeQ, f(¥)=0,9<c M}

We will prove that Ny=~ @. A5 implies that there exists a point
2o € Q with the property x(M.,) =0. Let us assume that M, + @
(The case M,,= @ is trivial). Then, in view of A3, it follows
that for any x € M., M. & M., and hence z(M;) = 0, whence, with
the help of (11) we obtain that f(x)=0. Thus, we proved that
Zo € Ny.

The set Ny is closed. Let {x.}7.. be any sequence of elements
of Ny and let z* = liMy.0 &» € £ be its limit. We will prove that
z* € Ny.

It is sufficient to consider the case x(M) 0 only, then,
infinitely many terms of the sequence {x,}s-1 exist for
which x#(M.,) 0. Let z € M,+ be an arbitrary fixed point, while
e>0 is a number. Then there exists a number 0; = 8:1(e) >0
such that for z € Q and p(x, 2) <& the following inequality
holds

[f(z) = fDla<e.

If we denote o(2, M:,) = infeenm,, o(z, @), n=1, 2,---, then for any

»n there exists an element 2z, € M, for which
o(z, M) + %‘— > (2, 2a).

Condition A4 implies that there exists a number 6; = §2(51) >0
such that if ¥ € Q and o(¥, x*) <. then M= € U(5:/2, M,). Let
the number #, be so large that the following (x4 2*) <5 holds
for #>n, Then M, S U(8:/2, M.,) and hence z € U(6:/2, M,,)
ie. o(z, M.) <<4:/2 whence we obtain & > p(2, M) +38/2>p
(2, 2,). Taking into account the continuity of f we get -

1/ (za) = F(D]e<e.

Since 2z, M,, then f(z,)=0 and hence [f(2)[z<e ie

f(2) =0. Thus, we proved that x* € N, i.e. Ny is closed. We will
show that N; is an open set as well. Let @ be an element of Ny
and let ¢ >0 be a number satisfying the condition
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1
elal « @u(f, @) <
Condition A2 implies that there exists a number & = 6(¢, 2)>0
such that for z € Q and p(e, x) <& the following inequality holds
ﬂ({Mx\Ma} U {Ma\Mx}) <eg.
There exists a2 number o, € (0, §) such that for any & for which

o(a, ) < §; one has

~ 1
|Q.(f, a) — Q:([, )| < SIS

Let b€ (), p(a,‘b) < 5, and let ¢(x) denotes the restriction of
f(x) over M; i.e. o(x) = f(x)|m, Then from the conditions (A)

and from the condition 3 of Theorem 1 the following inequalities
are fulfilled

sup le(a)la = 1l sup | [ Az, 9)(@) duy

<lalsup [, 1AG@ ) W)ladey

< 121Qu(f; B) sup #(MAM.) sup llo(2) [z
5 b

< elal{@(f, @) + 1 sup [le(x) |z
41116 ZS M,

< 4 5up lo(@)ls

~ Hence ¢(2) =0 for x € M, i.e. f(z) =0 for x € M. Thus
we proved that & € Ny and hence Ny is open set.
Taking into account that £ is a connected set we conclude
that Ny = Q i.e. for every 1€ C the equation (11) possesses the
trivial solution only.

REMARK 5. We note that in the proof of the closeness of the
set N; the compactness of the space {2 is not used.

REMARK 6. It is not difficult to see that the assertion of
Theorem 1 remains valid replacing Al by the following condition
Al’. For z « Q the sets M, are compact, connecred, Uzreq M:= 2
and every set M, contains a point ¥ = y(x) for which w(M;) = 0.
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While proving the solvability of the equation (1) we will
employ the following theorem:

‘THEOREM 2 [4]. Let D be a bounded open subset of the
real Banack space _P and let K: D — _Q be a compact operator. If
the point p € D is such that | + tKf < p for f € 0D and t [0, 1]
then the equation f + Kf = p has at least one solution in D.

It will be assumed further that B is a real Banach space.
Let pe=C(Q, B), p50 and let fe=C({), B) be such an
element for which the inequality [|p — F I << lpl holds.

DrriniTiON 1. We say that the element f is well dislocated to
the ball B(p, R;), \

Rre (o — 7l Il) i for

any element ¢ € 8.B( b, ‘Rf) there exist a point = Z(f, ¢) € Q and
a number &= a(f, g9) € (0, u(Mz)) for which the following
inequality holds

max {sup [A(7, H)W)ls sup |42, 0)@ls,
WD sup |A@, H@) — AG, W) < EFE) — 0@,

DerINITION 2. The element pe C(Q, B), p#0 is called
regular for the operator A if there exist a radius R, € (0, ||p]l) and
a number ¢ € (0, [|pll — R) such that every element f € 8B(p, Ry)
is well dislocated with respect to some ball B(p, R;), where
Rre (R + ¢ [ 2ID-

TBEOREM 3. Let the conditions Al, A2 and (B) be fulfilled and
besides let the set K(B(p, |pll)) be welatively compact. Then for
every vegular point p=C(L), B) the equation (1) has at least one
solution f(x) = 0 in the ball B(p, |pl).

Proof. The condition B2 implies that f (x) =0 is not a solution
of the equation (1).

Let p be a regular point of the operator A and let {B( p, R},
R = (0, [p]) be a family of closed balls.. Assume that the condition
of Theorem 2 is violated on the boundary -of one of these balls.
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Then for every ball B(p, R) there exist a number #z = [0, 1]

and an element fz € B(p, R) for which the following equality
holds

(13) fr+trKfg=p.

Then (13) implies that £z =~0 for R>0. Moreover, one can
consider fp=%1 for every R since the opposite means that the
desired solution is found. ‘

Let R, (0, |pl) and & e (0, |p]| — Ro) be the radius and the
number from Definition 2 and let fo € 8B(p, Ry) #, = (0, 1) satisfy
(13). V

The regularity of p implies that we can find a ball B(p, Ry,),
R;, € (Ry + ¢ [Ip]) so that f, should be well dislocated with respect
to B(p, Rs,). Then, if for g* € 8 B(p, Rs,) and * & (0, 1) the
equality (13) holds, then there exist a point & = Z(fo, g*) €  and
a number @& = a&(fo, g*) € (0, 1/u(Mz)) such that (12) implies the
estimate

33135”“ A(E, f) @) — t*AE, )W < &fe(2) — 0*(B) |5

The above inequality and (13) yield

1f6(2) — 0*(&) |5 = [2(KSo)(Z) — t*(Kg*)(D)e
< ﬂ(Mi)i-}‘}:_)_ 20 A(Z, fo)(y) — t* A&, ") (W=

< [Ifo(@) — g*(@)lm

which is-a contradiction.
~ This completés the proof of Theorem 3. :
We given an example for an operator A:Q x C(L, B)
— C(Q, B) for which every element p € C(Q, B), p 50 is regular.
Suppose that the following conditions are fulfilled:
1. Az, 0)=0 for 2= Q. ,
2. For f, g C(Q, B) there exists a point Z=2(f, 9) € Q
so that the following inequality holds

fgﬂl}]l 'A(fv,‘ W —AGE, D < T, OIFE) —9(@)s

where T (f, 9) € (0, 1/20(Mz)).
Let p = C(Q, B) be an arbitrary element (p+ 0). For ‘all
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functions f, ¢ € C(Q, B) we set Z(f, g) = x* where z* is a point
for which |f — gl =[f(2*) — g(z*)]|s Choose R, so small that
T(f, 9) < e/|1] + 1/2u(M,+) for suitable choise of ¢, & (0, || p]—Ro).
Then the following inequality is fulfilled

,sup | A(z*, ()]s

ST olf(e)]e<< Hﬁll ey (Mz ) 1/ (®*) s

< & Ml er _ _eplf(x*) —glx®)e

- "i’” 2u( M) - (Mx*) ﬂ(Mz*)"f—g”
(Mx 17 (z*) — g(z*) |z

Analogically we get

ygﬂgg*llz‘l(w*, NNle< S M, 1 (2*) — g(x*) |5

It is not difficult to see that Remark 5 remains valid for
Theorem 3 as well if the equation (1) has unique solution for
every regular p € C(Q}, B).

We present two corollaries of Theorem 3 for the case when
the equation (1) has unique solution:

COROLLARY 1. Suppose that the following conditions are fulfilled:
1. The conditions of Theorem 3 hold where the condition Al is
replaced with Al’.

2. For x € &) there exists a number L(x) (0, 1/u(M.)), such
that -

sup 1Az, f)(y) — Alz, gl < L(x) sup £ (%) = 9(lm

Jor all f, g € C(Q, B).
Then for every regular element p < C(Q, B) the equation (1)
kas unique solution.

DrriniTiON 3. We say that the function p € C(Q, B) is weakly
regular if the restriction p| M, OVer every M., z € Q is regular

element in the sense of the Definition 2 for the Banach space
C(M;, B).
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COROLLARY 2. Suppose that the following conditions are fulfilled:
1. The conditions Al’', A2-A5, B hold.
2. There exists a sequence {M;}7.., Mo+ D M, such that
U::=1 Mx” = ).
3. There exists a continuous function L : 2 — [0, ) suck that
for x € Q and for f,9 € C(M,, B) the following inequality holds

1Az, f)(2) — Az, )@l < L@|f(2) —9@Dls 2z€ M
4. The sets K .(B(plu,lplul)) are relatively compact in
C(M., B), xr < Q.

Then the equation (1) has umique solution for every weakly
regular element p € C(Q2, B).

Proof. Let x € Q be arbitrary point. Then from Theorem 3
it follows that there exists f € C(M,, B) for which f + K. f= plu,.
Suppose that there exists another function g € C(M:, B) for which
g+ K:9= plu,. According to the condition 3 of Corollary 2 we
have

(@) —g@s < fM Lplf() —g@Dlsdrs Yy <€ M.
Comnsider the equation
s@) = [ L@ ¢ dus Y < M

where ¢ : M,— R.

Using Theorem 3 from [1] we conclude that for ¥ € M. the
following inequality holds

1 (@) — 9@z < ¢(9).

Taking into account Theorem 1 we get that

If@) —gWls=0, vye

which contradicts our supposition.

The assertion of Corollary 2 follows from the condition 2 of
Corollary 2, the condition Al and the proved uniqueness of the
equation f + Kz f = p.
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