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Abstract., Assume X = (X,..., Xp)’ has a p-variate density w.r.t.
Lebesgue measure,

1

fi) = | (r)PE DS e~ E-H1g T et -0 gF(6)

where ¥ is a known positive definite matrix, F' is any known c.d.f. on
(0, ) and p >3. For estimating ¢ under an arbitrary known quadratic
loss function £g(e, §) = (§ — 9)’ @(6 — 6), @ a positive definite matrix,
classes of minimax estimators ‘based on order statistics are found.

1. Introduction. Since Stein (1955) first showed that the
inadmissibility of the usual estimator for the mean of a multivariate
normal distribution of dimension three or more, there has been
considerable interest in the problem of multiparameter estimation
for exponential families. Suppose X is a p-dimensional normal
with identity covariance matrix, James and Stein (1961) showed
that under sequared error loss, estimators of the form

_s _(1_ @

X = (1= ) %
where 0<a <<2(p —2) have lower risk than the usual estimator
X, which is also the maximum likelihood estimator, the best
unbiased estimator, and minimax. Furthermore, various improved
normal means estimators have been shown to dominate the
usual estimator wuniformly under arbitrary quadratic losses.
These results can be found in Berger (1974), Chou (1985).
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Strawderman (1974) and Berger (1974, 1975) extended things in
different directions. Strawderman considered the estimating problem
for location parameters of certain spherically symmetric distribution,
and Berger for the mean of a p-dimensijonal normal mixture X with
density of the form "~ b e

(11) f(x)‘———f (2@”’2:];”}1]!1/2 e~ /D =0T G-0) GF ()

under the loss funcfion’,"‘v.v‘iyth Q a :know:o ooSitive P % p definite
matrix, S . )

(12) £o(0, @) = (a—0) Q(a—6).

With some regularities on the density (1.1), Berger‘: (1975) found
estimators. given by - o ,

13 X)) = (11— 7( X' X1 Q*X*X)Q

(18) @ = (1- Py )X

where #7(-) satisfies (i) #(<) is nondecreasing in - (ii) 7(:)/- is

nonincreasing in - (111) 0 <7< 2B (1/X’ X' X), are minimax
estimators, provided p = 3. Here Ey denotes the expectation under
the mean vector ¢ = 0.

_ In this paper we do further extension of the problem consuiered
by,Ber,ger (1975). .All thevdens,ltles and losses considered in this
paper ‘have vthe form (1.1), '(1.2.) respectively. Besides estimatofs
given in (1.3), much more other | minimax estimators, which are
Stein-type estimators‘(Stein'1981), are found here. There are
(1.4) 3(X) =X+ B g((B) LX),
where B is a matrix such that B'B = Q, BYB' = A a diagonal

matrix and the ith component of ¢(2) is given by, with (@Ad)
‘=min(a, b), ' o

' ’
-7 ("2_;123 AN W?k)) o ¢ l l - .
o = : Ziy 1T 2] S ww
(15) g:(z) = DA why ' | ’ |
PV =7 (BN why)
225 N why

way sign (2:), i |z > wa

where w; = 2], way < Wy <+ << W, k>3, and #(-) is
nondecreasing in <, 7(+)/- nonincreasing  in + and 07
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< 2(k—-2)/Es~2. Note that minimax estimators proposed by
Berger (1974) are exactly special cases of (14) for k= p.

It is easy to check that if Es® and Es-® are finite, then the
usual estimator 8%(X) = X is an equalizer and extended Bayes rule.
Hence ¢° is a minimax estimator, and an estimator ¢ is thus
minimax if A;(0) = R(8% 6) — R(s, 6) >0 for all 4. The tecnmque,
finding ¢ such that A;(0) >0 for all 4, is used in thlS paper to
construct minimax estimators. We know that minimax estimartors
been constructed in this way are at least as good as &9 and
estimators ¢ for which the above inequality holds and with str1ct
mequahty for some 6 improve upon §°.

2. Minimax estimators of the mean vector of a multivariate
normal mixture. For notation, let ||-| denote the Euclidean norm,
and V, z= (z1,---, 2,)’ be the vector differential operator of first
partial derivative with ith component R

0
0z;

Vi =

We define a real valued function 7(2), z € R?, is almost differentiable
if it is an indefinite integral of Ohr/dz; for all i=1,---, p.

LeMMA 1. Let Z = (Z,,---, Z,) be a vandom vector in R? with
density, with respect to Lebesgue measure, f(z) = er2~Mw-K@ J.(z),
E an open connected set in R K (2) differentiable. If f(z)
approaches zero monotonically as =z approaches the boundary of E
alone the coordinate axes, then the identity

E(V.K(Z) — n) g(Z) = EV.9(Z)
holds for any almost di fferem‘ml real wluea} Sunction g(-) satisfying
EIVg(Z)] < «, and E(V:K(Z) - ) 9(Z)| < if p>1.
Proof. Chou (1985).

LemMA 2. Let X have a p-variai‘e normal distribution with
mear vector 0 and known covariance matvix X, and let
9="1(9102"-", 0,) be such that ¢; almost differentiable” and
E109;/0X;| < oo, E(X — 0)g;]| < o for all i and j. Then ‘
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E[(X—0)QX—0)—(X+9g—06) QX +g—0)]
= E[ —2v.- Bg — (Bg9) Bgl

where B B=Q,Z=(B)*Y X and V.- By = X1.0(Bg)i/0z:,
(Bg): the ith component of Bg.

Proof.

El(X—-0)QX—-0)—(X+g—06) QX +g—0)]
= E[ — 2(BX — B6) Bg — (Bg) (Bg)].

By using the identity in Lemma 1 with Z=(B)tY 11X, the
Lemma follows.

TuroreM 1. Let X have a normal mixture with density of the
form (1.1), where p > 3. Assume Es* and Eo™® are finite. Let &
be of the form (1.4), then o is a minimax estimaloy of the mear
parameter 6 undey the quardratic loss function (1.2).

Proof. It is sufficient to prove that A;(8) = R(s% 6)
— R(5, 6) =0, for all 6. Here 0%(X) =X is a minimax estimator
of 6. Since #(¢) is monotonic, WLOG, we assume #(+) is
differentiable and let # denote its first derivative. By applying
Lemma 2, we have

2,0 = [z -0y Qz—10)
| — (z + B g((B) L'2) — 0)'
(21) - Q(z + B g((BN™ 57 @)
—0)1+f,(2) dz dF (o)
= [[(=2v:-g@1 e
— 9(2)’ 9(2)) f() dw dF (o)

where f,(z) is the density of a p-dimensional normal distribution
with mean 6 and covariance 6 3, Z = (B/)"* X' X. Since

(B — 2) r(Zz2] N\ win)

»
,Z_:,z?' A Why

vfmw=—[

i=1

. F4
+ 47 (Z z’; AN wik))]

and # is nonnegative, let s= %2,2} Awl,, and b denote supz(-),
then
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80 > ff[20e - 2) = TEL| L0 (@) dwdF (o)

(2.2)
> [f[2e-2)- ] 7)1 (%) dw dF (o).

Now we are going to prove k(o) = f(r(s)/(s/oz))f,(x) dxr is
nondecreasing in 0. LetY = Z/o = (1/o)(B)"* 1~ X,V:= |Y;| and
Vay < Viy<-++< Vs, and let di(-) denote the density of a normal
distribution with mean z;/s and variance 1/a;. Here u; is the Zth
element of u= (a1, ", ;) = (B')"1 X%, a; is the ith diagonal
element of A= B X B’. Then

(@A (2 Y A o) L
(o) "f S [];[ dc(y,>]dy

Define

~ '. 2 2 2 ?
ko1, -, Ui’) — f"((z O']Z/Sﬁ;?(/iv_l‘?‘/;%:)\ V(k))) [:!‘;Il: dﬁ'(y,)]d'y.

If for each 7, with o;’s j=*i fixed, JACTREE 6,) is nondecreasing
in o;, then k(o) is nondecreasing. Since other cases are similar it
is sufficient te provo that for fixed o3+, 0 %(o1) = 7;(61, G2y " 303)

is nondecreasing in o;. And %(e:) is nondecreasing if, with 6g,° -+, 0,
fixed.

s (o0 + 5 0it2) (S5 A Vi) & v

® YNV
is nondecreasing in o; for any fixed ¥s---, ¥,» WLOG we assume

a1 >0, since z4 <0, the argument is the same. For o> o1, since
#(+) is nondecreasing and d} (%)= dt; (2m —vy,)  where -

m =% ((z1/01) + (#s/01)), with 7 =1/p 2l 0

o (/D)o + 170 3 o)) (293 A V)
‘/:°° SUYINVin
(((1/17)01 + Z UJ/P) (ZYiNTY Ir)))
B f°° Z YNV

r(@ENE Y A V) (gt (4, —d,, (y1) dyx
zf_ B S (i, (yv) (y)) Y

ds, (y1) 4y

dt; (1) dys
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— -Ezf’”( (@O XY AV) _ rGE(ZHA ?%k))) ) .
oo (XY N Vi) DTNV

(@, (y1) — di{ (1)) 4y,
=0

where Z1=2m—yy, Gi=19;, i1, Vi= |3 and Vo<V
<o 17'(?). The last inequality follows from the facts- that
ds(y1) — d:(y) 20, g A Vi = 3 (43 A V3, for all 9, < m, and
7(+)/+ is nonincreasing in .. Hence %(s) is nondecreasing in o.

Using the nondecreasing properties of %(s) and 2(& — 2) — b/4?,
it follows from (2.1) that

As(0) > f(Z(k —9)— —g’?) (o) dF (o)

> f(z(k —2)- i) dF (o) [ 1(o) dF (o).

0.2
Since b=sup (), 0 <7 < 2(k — 2)/Es2, As(6) = 0.

RemMArRk 1. In Theorem 1, the requirement of >3 is
necessary for ¢ with the form (1.5) to satisfy the conditions in
Lemma 2. .

REMARK 2. For X with density (1.1) and P23 EX 1 tX
and Eo(1/X’' Y-'X) are finite is equivalent to Es® and Es-2
are finite. Precisely E X' X 'X = pEe® and Ey(1/X’' L-1X)
= (1/ (p-—2)) Es—2, Hence in Theorem 1 the condition, Es? and
Es~* are finite can be replaced by the others are finite.

We now give a couple of examples of the ‘appliéa.tion of
Theorem. :

Example 1. Let X be p-dimensional normal with mean ¢ and
known covariance X. Clearly X has a density of the form (1.1)
with F Bé’ihg’ degenerate at 1. When p >3, Theorem 1 applies.
Note that the class of minimax estimators thus defined by
Theorem 1 is essentially the class found in Chou (1985).
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Example 2. Consider the {following model for the px1
observation vector ¥,

y=0+u

where 6 = (6, -+, 6,) is a unknown parameter and #,x1~N(0, o* X)
with X a known p X p positive definite matrix and c>0 a
variable distributed according to a known c.d.f. F. For estimating
the mean vector 0 of Y, under the loss (1.2), classes of minimax
estimators are found by applying Theorem 1.

REMARK 3. Some other multivariate normal mixture
distributions, for example “double exponential” or the “Cauchy like”
distributions, were given by Berger (1975). And for estimating the
mean vector of these distributions under the loss (1.2), Theorem 1
applies.
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