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Abstract. Let I =[— g, a] for some positive real number ¢ and
let £ be a continuous odd function in C°(Z, I). A periodic orbit is called
symmetric if it is symmetric with respect to the origin. A periodic
orbit which is not symmetric is called asymmetric. Assume that, for
some integer #>2, f has a symmetric periodic orbit of least period 2z
or an asymmetric periodic orbit of least period 2z — 1. In this paper, we .
compute the best possible lower bounds on the topological entropy and
on the number of symmetric and asymmetric periodic orbits of other
periods for this function f. We also study the C° and C*-perturbation
'phenomena of f when fis in C}(Z, I). In particular, we show shat,
as far as continuous odd functions and the periods of symmetric
periodic orbits are concerned, the Ctl-perturbation phenomenon is quite
“different from that of C°-perturbation. '

1. Introduction. Let I denote a compact real interval of the
form [— @, @] for some positive real number e and let f be a
continuous function from 7 into itself. For any positive integer #,
we define the #nth iterate of f by letting f'=f and f*= fo f*1
for n>1. If xz, € I, we call {fi(x)| =0} the orbit of x, under
f. If f™(xe) = xo for some positive integer s, we call xo a periodic
point of f and call the orbit of z, under f a periodic orbit of 7.
We also call the smallest such positive integer m the least period
of z, and of the orbit of x, under f. Assume that f has a periodic
orbit of least period m for some positive integer me, it is natural
to ask the following question: Must f also have periodic points
of other periods? In 1964, Sharkovskii [13] (see also [2], [6], [7],
[9]1, [10], [12-15]) had given a complete answer to this question.
For brevity we say property P(#) holds for f if f has a periodic
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point of least period z. Sharkovskii’s result can -be stated as
follows:

TuEorREM A. For any continuous fum‘tioﬂ in C(I, I), P(3)
=SPB)=>P(7)= - -=P(2:3)=>P(2:5)=>P2-7)=---=P(2¢:3)
= P(285)=>P(2%7)=---= P(2?) = P(2?) = P(2) = P(1).

Now if we also assume that f is odd, i.e., f(—2) = — f(x)
for all x# € I, then there are some special types of periodic orbits
of f which are worth studying. These are the orbits which are
symmetric with  respect to the origin. If 0s=x, I satisfies
f™(xo) = — xy for some positive integer m, then since f is odd,
f“’”‘(wo)'= Zo. ‘He‘hce,’ xo is a periodic point of f and the orbit of
xo under f is symmetric with respect to the origin. In this case,
we call the orbit of x, under f a symmetric periodic orbit of f
and it is clear that the least period of xo under f is twice the
smallest positive integer m such that f”(x,) = — 2. Consequently,
any symmetric periodic orbit has even period. A periodic orbit which
is not symmetric is called asymmetric. Any asymmetric periodic
orbit {x;, xs,---, x.} has a twin orbit {— 2, — 23,---, — 2.} of the
same period since f is odd. Note that under our terminology, the
origin is an asymmetric fixed point of f. For simplicity, we say
property S(2n) holds for f if f has a symmetric periodic orbit of
least period 2z and property A(z) holds for f if f has an
asymmetric periodic orbit of least period . We also say property
ANP(#) holds for f if f has an asymmetric periodic orbit of least
period # which cdhtains both negative and positive elements. Using
this terminology, it follows easily from the proof of Sharkovskii’s
theorém in e.g. [2] or in [9] that Theorem A can be rephrased
as follows: k ‘ “ "

THEOREM A’. For amy comtinuous odd fumction in C°(I, I),
AB)=>AB)=2 A= ---=A4(2:3)=A(2:-5)=A(2 NDN=--=
A2 3)=A2F5)= A2k T)=-- = A(2*) = A(22) = A(2)= A().

Now assume that f has a symmetric periodic orbit of least
period 2m for some positive integer m. We can also ask the
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following question which is similar to the above one:.  Must f
have symmetric or asymmetric periodic orbits of other perjods?

In 1985, Branner [5] gave a complete answer to the above
question for the class of all continuous odd functions in CMI, Ty
which have exactly two extreme points. That is, for any continuous
odd function ¢ in C%J, I') which has exactly two extreme points,
Branner shows that if ¢ is strictly increasing in a neighborhood
of the origin, then .

() S(4)=>8(6)=---=S2(x + 1))=80C=n+ 2)) =-
= A(3) =>A(5) == A0 + 1) =-
_==}A(2 3)=A2+:5)=- _=>A(2(2n + 1)) =---
é PR
= A(2"«3)=> A2t +5)=---=A2*2n + 1)) =---
=-.-=A(2%) = A(2*) = A(2) = AD).

On the other hand, if ¢ is strictly decreasing on a neighborhood
of the origin, then ' . /
(**) 8(4) = ANP(B) = S(S) == 8(4%) = ANP(Z% + 1
=SUn +4)=-
- =8502-:-3)=S2- 5) == 8222 + 1))
=S20C2n + 3))=--
= ANP(2-3)= ANP(Z 5)=s..-= ANP(2(21¢ + 1)) =

=5 s L
=>ANP(2” . 3) .=>ANP(2? . 5) =P = ANP(Z"(Z% _+ 1)) -
= =

=>...= ANP(2*) = ANP(22) = ANP(Z)

However, Branner’s result does not hold in general. In this ‘ﬁéper,
we will generalize Branner’s result to much . larger class of
continuous odd functions in C%(I, I') which may contain arbitrarily
many extreme points. In fact, we have shown much -more than
this. '

In Section 5, we show that, for any continuous odd function in
C°(I I) and any positive integer n, S(2n + 2)=S(2% + 6) and
S(47) =.S(4n + 2m) for all positive integers m. We also show that
S(4n) = A(@2#n + 1) and ANP(22 +1)= S(42 + 4). Based on these
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results, we call any symmetric periodic orbit of f of least. period
2n for some integer # > 2 minimal if f has no symmetric periodic
orbit of least period 27 — 4 (and so any symmetric periodic orbit
of least period 4 is minimal by our definition).

In Section 6, we determine the structures of all minimal
symmetric periodic orbits. We find that some of these structures are
fundamental. Let P={+ 2|1 <i<n} with 0< 2, <22 < +-< &
be a symmetric periodic orbit of f of least period 2# for some
integer # > 2. We call P a simple symmetric periodic orbit of f
of the first kind if F(x:;) =2ie1 for all 1<i<n—1 and
S (%) = — 2, and call P a simple symmetric periodic orbit of f of
the second kind if z isevenand f(x;) = — 2 foralll<i<zn-—1
and f(x,) = x1. We, also call P a simple symmetric periodic orbit
of f of the third kind with type “+” if #=2m+ 1 is odd,
S (Xmes—i) = — Xm+1+: and f(Zmi14i) = — Tmea—; forall 1< < m,
and f(x1) = — Zm+1. Finally we call P a simple symmetric periodic
orbit of f of the third kind with type “ —” if #=2m + 1 is odd,
S (Zwsi) = — Zpr1; and f(Xmi1-i) = — Tmers: for all 1< i< m,
and f(Zam+1) = — Tmsr1i. We then also show in this section that if
S has a symmetric periodic orbit of least period 2% for some
integer # > 2, then f miust also have a simple symmetric periodic
orbit of some kind. ' ’

"~ In Section 7, we study those continuous odd functions in
C%Z I) which have a symmetric periodic orbit of even period
>4 In particular, we computé the Best possible lower bounds on
the topological entropy and on the number of symmetric and
asymmetric periodic orbits of periods guafanteed ‘in Theorem 1
for these functions.

In Section 8, we study those continuous odd functions f in
C(I, I) with an asymmetric periodic orbit of least period 2 + 1
for some positive integer # which contains both negative and
positive elements. We find that some special types of such periodic
orbits are fundamental. Let @ be an asymmetric periodic orbit of f
with least period 2z + 1 for some positive integer # which contains
both negative and positive elements and let ¥ be the unique element
of @ which is closest to the origin. Then we call @ a simple
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ANP vperiodic orbit of f if 0<|fi'(pI< |fi(y)l for all
1 < i < 2u, and exactly one of the following holds:

(a) Ay <0<y < f#*(y) forall 1<k<m,
(b) » f"’k(y)<y<0<f2" 1(y) for all 1<k< n.

We show in this sect1on that these functions f must contain a
simple ANP. periodic orbit of least period 27z + 1. We also
compute the best possible lower bounds on the topological entropy
and on the number of symmefric and asymmetric periodic orbits
of periods guaranteed in Theorem 1 for these functions fo-

Finally, we study in Section 9 C°- and C'-perturbations of those
continuous odd functions which have a symmetric periodic orbit of
even period >4. In particular, we find that, as far as continuous
odd functions and the periods of symmetric periodic orbits are
concerned, the Cl-perturbation phenomenon is quite diffierent from
that of the C-perturbation.

For the proofs of our main results in Sections 5, 6, and 9, we
use the method of directed graphs ([2], [61, [9], [10], [13—15])
which is briefly reviewed in Section 3. For the proofs of our main
results in Sections 7 and 8, we use the method of symbolic
representation ([7], [8]) which is briefly reviewed in Section 4.
When we count the number of periodic orbits of various periods in
Sections 7 and 8, we use a well-known result which is included in
Section 2. ‘ '

2. Counting the number of symmetric and asymmetric periodic
orbits. Let ¢(m) be an integer-valued function defined on the set of
.all positive integers. If me = pi ph---pfr, where p;’s are distinct
prime numbers, » and k&’s are positive. integers, we define
0,(1, ¢) = ¢(1) and ’

Oy(m, ¢) = ¢(m) — Z o (m/b:) + Z ¢<m/(p,, £:))

s<1

- ¢(m/(1>., Biy D))+

<’2<'3

+ (= )6 (m/(Bs o=+ D),

where the summation X <ip<w<i; i8S taken over all -integers
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:£1; iz,' . Yy Z.j‘ With 1L il < Z.z <. '<ij <7.
If m=2%p}iph---pir, where p’s are distinct odd prime

numbers, and &k =0, 7, k’s =1 are integers, we define similarly

| oz<m, #)= ¢(m) — Z¢<m/p,>+2¢(m/<p,l p,2>>

11<12

Z o(m/(Ds, bi, 1))+ -+

fi<i<dy

+(— 1)' (m/(Pl ﬁz‘ . ‘Pr}}.

If m = 2%, where &2 > 0 isan integer, we define @;(m, ¢)=¢(m)— 1

On the other hand; if f is'a continuous odd function from 7
into. . itself, then every periodic. orbit (resp. symmetric periodic
iorbit) .of f with least period. m consists of exactly .m distinct points.
Since. it is obvious that distinct periodic orbits (resp. symmetric
periodic orbits) of f are pairwise disjoint, the number (if finite)
of distinct periodic points (resp. symmetric periodic points) of f
with least period m is divisible by # and ‘the quotient equals the
number of distinct.periodic orbits (resp. symmetric periodic orbits)
of .f with least period m.. . This observation, together with a
'standard  inclusion-exclusion argument, gives the following
-well-known result. .. . ’

~THEOREM B. Let f be a continuous odd function from I into
itself. Assume that, for every positive integer Mm, the . equation
M) =2 (f™(x)= —x resp.) has only finitely many distinct
‘solutions.. " Let  ¢(m)(y(m) resp.) denote the number of - these
solutions. - Then, for every positive integer m, the following hold.
(i) The number of periodic points of f with least period m is
‘O:(m, ¢). Consequently, ©:(m, ¢) =0 (mod ).
(ii) The number of symmetric periodic points of f with least
period 2m is Ox(m, V). . Consequently, O.(m, ¥) =0
© (mod 2m). S S
(iii) .The number of asymmetric peviodic points of f with least
period 2m is ©,(2m, 4) — Oy(m, V).

8. The method of directeﬁ graphs. In this section, we briefly
‘review the method of directed graphs which will be used later in
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the proofs of our main results. This method is based on the
following three easy lemmas and is useful in showing the
‘existence of symmetric and asymmetric periodic points of some
periods. -

From now on, for any closed submterval J =16 c] of I we
let — J denote the closed subinterval [— ¢; —b] of L

- - Lemma 1. Let f be a contmuous odd fzmctwn from I into ztself
Then the following hold.
(@) If J is a closed subinterval of I with f(J) o J, then
, there is a point Y & J suck that f(y) =
(11) If K is a closed subinterval of I with f (K ) D — K, tkm
“there is a poinmt z & K such that f(2)=—z and
f¥z) = 2. | |

LEMMA 2. Let f be a continuous 0dd function from I into ztself
and let ], L be closed subintervals of I with f(J ) o L. Then there
is a closed submtemal K of J such that f(K)=

LeMMA 3. Let f be a continuous odd. function from I into ztself
and let Jo, Ju:+* Jw 21, be closed subintervals of I such that
FUJ:) D Jis for all 0 <i<n— 1. Then the following hold..

G) If Ju=Jo then there is a point y < Jo such that f* (e
for all 0<i<n-—1, f*(y) =y, and the least ,penod of Y
divides n. : V v :

G If Ju=—Jo then - there -is a point. z € Jo such that
fi()eJ: for all 0<i <n—1, f*(2) = — 2, and the least
period of z is 2m with n/m > 1 and odd.

From now on, if Jo, Ju--+y Ju 21, are closed subintervals of
7 such that f(J;) D Jiss for all 0<i<zn—1, then we say that
there is a path of length # from Jo to J. and denote it by JoJi---Ja
A path of length # from J, to itself is also called a cycle of
length #. -

Let f be a continuous odd function from I into itself. Let o
be a symmetric periodic point of f with least period 2n# for some
~ positive integer # and let P denote the orbit of x, under f. Then
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‘the points in P divide the real! line into 22 — 1 finite intervals.
Label these finite intervals as L, L, -, Ls_;. A directed graph or
digraph in short, can then be formed by using vertices
corresponding to these intervals. The vertices are again labelled
hy, Iye--, BLyy. A directed arc is drawn from the vertex I; to the
vertex I; if f(I;) © I;. This directed graph is called a 2z-symmetric
periodic digraph of f or the 2s#-symmetric periodic digraph of P,
‘Sometimes, in order to obtain more detailed information on the
location of each point in some periodic orbif, we also use the 2z
finite intervals on the real line which are determined by the 2m-+1
points in the set P U {0} as vertices and apply the same rule of
drawing directed arcs from vertices to vertices as that just described
above. The'resultihg digraph is also called a 2%-symmetric periodic
digraph of f or, more precisely, the 2z-symmetric periodic digraph
of P U {0}.

Based oﬁ Lemma 3 above, in order to find a symmetric periédic
point of f in a 2z-symmetric digraph of f, it suffices to find a
vertex I; and a path of some length # from I to —I. For
example: If f is the continuous odd function from the interval
[—4, 4] onto itself such that f(1) = —3, f(2) = —4, f(3) = — 2,
f(4) =1, and f is linear on each component of the complement of
the set {0, + 1, £2, 3} in [—4, 4]. Then P= {1, —3, 2, — 4,
— 1,3, — 2, 4} is a symmetric periodic orbit of f of least period 8.
If L;=[i—1,4i] for all =1, 2, 3, 4, then the 8-symmetric periodic
‘digraph of P U {0} looks as in Fig. 1 below:

FiG. 1
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Therefore, to find a symmetric periodic point of least period 2m
for some odd integer m >1, we can apply Lemma 3 to the path
I(— L) L{ — L) E---(— L) L(— L) of length m. Similarly, to find
a symmetric periodic point of least period 2z for some even integer
# >4, we can apply Lemma 3 to the path: LIL(—L)L(— L)
I(— L) L(— L) of length n. As for an asymmetric periodic point
of least period‘2k for some integer k= 2, we can apply Lemma 3
to the cycle L(— L)L (— L) L(—L)---L(— L)L of length 2k.
Note. that this digraph of f also shows that f has no 'symmetri.c
periodic orbit of least period 4.

4 The method of symbollc representation. In this section,
we briefly review the method of symbolic representation which
will be used later in the proofs of our main results. This method
is useful in counting thé mumber: of symmetric and asymmetric
per1od1c orbits of some perlods (see also [7], [8D).

Let g be a continuous piecewise linear odd function from the
interval [— d, d] into itself. -We call the set {(x;, ¥:)1i=1,2,---, &}
a set of nodes for (the graph of) y = g(x) if the following three
conditions hold: - ’

(1) k=3 and .z',-\= 0 for some 1< j <k,
_ (2)..1:1:—-d,xk=d,x1<x2<---<xk,and  ,
(8) ¢ is linear on [&;, ®ia] forall 1<i<k—1 and ¥; = g(x:)
forall 1<i<k

.Forv‘any such set, we will use its y-coordinates' Y1, Ya,o ", Yr tO
:'represent' the graph of ¥ = g(x) and call ¥1¥:---¥» (in that order)
a (symbolic) representation for (the graph of) ¥ = g(x). For
1<i< j <k, we will call ¥; ¥i+1---¥; the representation for ¥ = g(x)
on [x;, x;] obtained by restricting ¥ ¥s---¥r to [x;, x;1.  For
convenience, we will also call every ¥; in %:1%:"--¥: a node. If
‘of; = Yi+y for some 7 (i.e, g is constant on [2:, xi:1]), we will
simply write ¥i---¥i¥i+s---Yr instead of Yoo YiYir1YireeYne
‘Therefore, every two ' consecutive nodes in a (symbolic)
' representatlon are distinct. ' I

Now assume: that {(z;, y,)lz =1, 2 ., B} is a set of nodes for
y=¢g(x) and a@ya:---a,is a representation for 7= g(x) with



10 BAU-SEN DU [March

{a, @z, @} © {Y1, Y2+, ¥Ys} and @; = @; ., for all 1<i<r—1.
If {1, Y2+, s} © {@1, 22+, 2x}, then there is an easy way to
obtain a representation for ¥ = ¢*(z) from the one aya::--a, for
9 = g(x). The procedure is as follows. First, for any two distinct
real numbers # and v, let [# : v] denote the closed interval with
endpoints # and ». Then, let 5;,,5;,.- -,-b,-,fz, be the representation
for y = g(x) on [a; : @;+1] which is obtained by restricting @ a:: - -a;
to [@; : @;+1]. We use the following notation to indicate this fact:
@ @i +10i,1 0520+ by, p, (under @) if @:<aiis, OF @i @ivr—>bis1, - +bis b
(under @) if @; > a;+1. The above representation on [a; : @;4.] exists
since {ai, @s, -, @,} C {21, X2,---, 2}. Finally, if a; <ai.i, let
2:, = bi,j foralll<j< t,'.A If a; >'d;+1, let 2:,; = bi,fi+:1;j for all
1<j<t. Itis easy to see tht Zi,8, = 2Ziyy,1 for all 1<i<y — 1
So, if we define z = 21,1 21,1, Za.2° 2, ty°* “Zrav *Zr,p, then it is
obvious that Z is a representatron for y = g2(x) It is also obvious
that the above procedure can be applied to the representatlon Z for
Y=g (x) to obtain one for ¥ = ¢*(x), and so on.

Since gis odd, the graph of y = g(w) is symmetnc W1th respect
to the origin. This special property of g can be used to simplify
a symbolic representation for = g(x). For example’ If
YiYe  Y;Vjr1Yjr2 Yjee - Yrisa symbolic representation for ¥ =‘g(x)
with yj.1 =0 and ;.1 =0, then 7/ ys---yj0 (— ¥;) - (— ¥2)(— 1)
is also a symbolic repreéerrtation for y = g(x). ' o

5. Ordering of the perlods In this section, we discuss the
ordering of the per10ds for general continuous odd functions.
Because of the follovvlng easy lemma [5], this ordering cannot
be as simple as the Sharkovskii’s ordermg stated in Theorem A in
Section 1 However, we will soon see that some part1a1 ordermgs
do exxst for arb1trary contmuous odd functlons '

LEMMA 4. Let f be a continuous odd functzon in C°(I I) and
let O+=x0 € I Then the following hold. '
(a). The points xo and — x, determine a pair of asymmetvic
periodic twins of least (0odd) period 2n + 1 for f if and
. only if xo determines.a symmetric periodic orbit of least
- period 2(2n + 1) for — f.
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The points x, and — xo determine a pair of asymmetric
periodic twins of least (even) perviod 2n for f if and only
if xo and — xy determine a pair of asymmetric periodic

“twins of the same least period 2n for — f.

The point x, delermines a symmetric periodic orbit of
least peviod 4n for f if and only if xo delermines a
symmetric periodic orbit of the same least period 4n for

._f.

Recall that for any continuous odd function f, we say property

\S(Zn) holds if f has a symmetric per1od1c orbit of least period 27

and property A(n) holds if f has an asymmetmc per1od1c orbit of

least period #. We also say property ANP(%) holds if f has an

asymmetric periodic orbit of least period # which ‘contains both

negative and ‘positive' elements. It is clear that ANP(%)=)A(%)

However, the - reverse implication need not hold The main result

of thrs Qectron is the followmg theorem

TuroreM 1. For any continuous odd functztm f in C°(I I ) and
any posztwe integer n, the following kold.

(D

~ (i)
G
)

D)

(vii)

(viiD)

(ix)

AB)=AB)= A(T) = -=A2:3)=A42:5)=A2-7)
= ee=> A(ZF - 3)=>A(2’*a5)=>A(2k 7)=> =>A(23):A(22)

= A02)=A(1).
(1)

S(4n) = S(4n + 2m) for ail positive“z‘ntegers m.
Stmy=AGn + 1. - |

S(4n) = ANP(m) for all mtegers m = 4n

ANP(2% +1)= S(4n + 4).

ANP(2% +1)= ANP(Zn + 3).

Let P be a pemodzc orbit of f of least pemod on + 1 wzth
Y= mrn{lxl |z € P} suckh t‘hat y e P and fk(y) <0 for
some 1<k<2n If [mmP — y] U [y, max PJ. com‘ams a
ﬁxed pomt of f then S(4m) kolds for f. . ‘

S@CCn + 1)) = S22 + 1) + 4m) for all posztwe mtegefs

S(Z(Zw + 1)):=% A(6)., :
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ReEMARK 1. In part (iii) of the above théorem, the number
2n + 1 is best possible in the sense that there exists (see
Theorem 4 in Section 7 below) a continuous odd function in
C°(I, I) with a symmetric periodic orbit of least period 4#, but
without periodic orbit of least period m for any odd integer m with
1<m<2n.

REMARK 2. In part (iv) of the above theorem, the number 4z
on the right-hand side is best possible in the sense that there exists
(see Theorem 3 in Section 7 below) a continuous odd function in
C°(Z, I) with a symmetric periodic orbit of least period 4#, but
without any periodic orbit of least period m with 1< m < 42 which
contains both negative and positive elements.

REMARK 3. In part (v) of the above theorem, the number
4n +4 is best possible in the sense that there exists (see Theorem 4
in Section 7 below) a continuous odd function in C%Z, I) with an
asymmetric periodic orbit of least period 2z + 1 which contains
both negative and positive elements, but without any symmetric
periodic orbit of least period 4.

Proof of Theorem 1. The proof of part (i) is similar to that
of Sharkovskii’s theorem in [2] or in [9] and is omitted.

We now prove parts (ii), (iii) and (iv). Let P={+x;, x5, --
+Zow} With 0 <z, <22 <---<< 2, be a symmetric periodic orbit of
S of least period 4n. Then since f*(y)= —y for every y € P,
there is a positive integer j <2z —1 such that f([z; zjw])
2 [=, 2] Since fI([— 21, 21]1) D [— Zjur, @j1] D — [, 25411,
we have fi*([x;, zj]) D —[xj, x,-ﬂ].‘ Hence there is a path
JoJiJz---Jr from [, 411 to — [z, ;.1] via [— 21, x,] such that

=7+ L h=1Ix; zjul, Ji = [—x, 2], Jr = — [z;, xj:1], and if
7>2, then J; = fi~Y([— x1, 7,]) for all 2<i<» — 1.

For any positive integer m, we consider the path K, Ki- - - Kopim
from [xj, 2j+1] to — [2j, ;1] with Ko = [xj, 2111, K = [—24, 2]
forall 1<i<2n+m+1—7 and Konsmiir =J; for all 2<i<
It follows from Lemma 3 that this path K, K- - -Ksmem produces a
symmetric periodic point of f of least period 2(2% + m) in
[xj, xj+1]. This completes the proof of part (ii).

3
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For the proof of part (iii), we note that f([ —&1, 2:1) 2 [—21, 1]
and fH[— z1, #1]1) D [— ®ss1, Xasa]  for all 1<k<L2z-—1
Therefore, fr([x;, #;+1]) D [— Tje1, Tje1l D [2j, 2j21] for all
integers mz>j + 1. Thus, f has a periodic point of least period
(22 + 1)/s for some odd integer 1 <s<2z -+ 1 and hence f has
a periodic orbit of least period 2z + 1 by Theorem A (Sharkovskii’s
theorem) which is obviously asymmetric. This completes the proof
of part (iii).

On the other hand, since f¥*([xj, xj+1]) D — [&j, xj+1], there
is a path of length 2z from [z; x;+:] to — [xj, xj~] Since
FE[— 21, 211) D [— Zas1, Tosa] for all 1<E2<2n—1 and since
F(x [z, 2541]) D [— 21, 2] and Fi([— @1, 21]) D [— 24, 2] for all
positive integers i, we obtain that f*([x; xj+]1) 2 Lzj Zji1]
for all integers m > j + 2n + 1. Therefore, for every integer
m>j +2n+1, there is a cycle of length m from [xj xj+1] to
itself via [— xy, 1] and — [x;, 2;+1] which produces by Lemma 3
an asymmetric periodic orbit of f of least period m. It is clear
‘that this orbit contains both negative and positive elements. This
completes the proof of part (iv). ‘

As for parts (v) and (vi), let P be a periodic orbit of f with
least period 2z + 1 which contains both negative and positive
elements. Let ¥ be an element of P with |y| = min{|z||x € P}.
Without loss of generality, we may assume that y >0. We now
have two cases to consider.

If ¥ < f(9), then there is a smallest integer 2<j <22 such
that fi(y) <0< fi-'(y). By applying Lemma 3 to the path
JoJiJev - - Jan1(— Jo) with J; = [0, y] for ail 0 <4< 2% — j, Jans1+i-j
= fi([y, f(y)]) for all 0 <i< j— 2, we see that S(4m). holds for
7 for some integer 1 <m <=z + 1. By part (ii), S(4z + 4) holds
for f. On the other hand, by applying Lemma 3 to the path
K Ky Ko K1 Ky - - - Kon Ko with K= [0, y], K; = Filly, f(1) for all
1<i<j—1 and K; =[fi(y):0] for all j <i<2n (recall that,
for any real numbers # and v, [#:v] denotes the closed interval
with # and v as endpoints), we see that ANP(2z -+ 3) holds for f.

If f(¥) <0<y, then there is a smallest integer 2 < j < 27 + 1
such that fi-'(y) <0< fi(y). If j =3, we apply Lemma 3 to the
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path Jo Ji J:---J; or to the path J, Ji Jo---J;(— Jb) according as j is
even or odd, where Jo=[0, y1, i=[f(y), 01, Ji=/"*([f(%): A ()]
for all 2<i<j. Then S(4m) holds for f for some integer
1<m <2z + 1. By part (ii), S(4#n + 4) holds for f. On the other
hand, by applying Lemma 3 to the path Ky K, K- - Kins: Ko with
Ko =10, 9], Ki=[f(), 0] Ki.=7F"2*f(y:r A1 for all
2<i<j—1,and K;=[—9, y] forall j <i<2n+ 2, we see that
ANP(2n + 3) holds for f. If j =2, then f(y) <y < f*(y) and we
have two subcases to consider:

(a) There is a smallest integer 2 < & < 2% such that f*(y)>0

and f#(y)>0. So, f¥'(y) <0. By applying Lemma 3
to the path JoJiJz-- - Jes1 or to the path JoJiJo- - Jer1(—=Jo)
according. as %2 is odd or even, where J,=1[0, 9],
Ji=L1f®), 01, Ji = fi=*(ly, f*(x)]) for all 2<i <k, and
- Jeri =[— v, ], and by part (ii), we see that S(4z + 4)
holds for f. On the other hand, by applying Lemma 3
‘to the path KK K- Koz Ko with Ky =10, ], K
=[f(y), 0}, K = fi-¥ly, fA(y)]) for all 2<i<4k,
Ki=[—v 9] for all 2+1<i<2n+ 2, we see that
ANP(2n + 3) holds for f.
(b) There is a smallest integer 3<%k < 2% — 1 such that
C SfHy) <0 and f*+'(y) <0. In this subcase, the proofs
of parts (v) and (vi) are similar to (a) above and are
omitted.
This completes the proofs of parts (v) and (vi).

To prove part (vii), we let y be the unique element in P which
is nearest to the origin. Without loss of generality, we may assume
that v > 0. _

If fiY([—y, y]) D P, then let z be a fixed point of f in
[y, max P] U [y, — min P] and let # be a point in P such that
Yy <#u and f(u)<<0. Let J = [#:2z] be the closed. interval . with #
and z as endpoints. Then it is clear that f(J) o> [— 9, ¥]. Since
Y I—v,91) o P, we see that f*'([—y,y]) 2 [min P, — min P]
U [— max P, max P]. Consequently, f**(J) > — J. So, there is a
path of length 2% from J to -- J via [~ ¥, ¥]. . By Lemma 3 and
part (ii), S(4z) holds for f. :
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L3

If f-Y([—v, y]) P, then it is clear that 0<y < [f# (¥l
< |fi+i(g)] for all 1 <i< 22 —1. Let z be a fixed point of f in
(y, 1*()]). We now have four cases to consider.

(a) If f*(y) <0, then f**([y, 21) o [f**(), 21> — ¥, 2]

k' (b)) If fz”(y)>y and f%*(y) <O for some 1 <% <n-—1, then
o o= *#([— f**(y) : 2]) 2 [= (), 21> —[- fz”(y) 4]
(¢) If y<f2‘(y) for all 1<i<#n and if z is a fixed

point of f in (|f(@)], (), let k be an
integer such that 1 <k<n and f#*-(y)<O. “Then
L% y) 12D > - !f(y)! lFID 2 [-= (),
Fouy)] o = [Ff*-2(y) : 2]
(d) If y<f¥(y) forall 1<i<nm and if z is a fixed point
- of f in (9, If(y)l), then ‘'we have two subcases to
" consider. ’
~ If f(¥) <0, then F, z]) S f(Lf@), 21) 2 F Ly, 2D
o), 21> — [, 2.
If f(y)>0, then since f?+!(y)<<0 for some 1<k<n—1,
‘we have f*([z, JODE [r+4(y), 212 — [z, f(¥)].

In each of the four cases (a), (b), (c), and (d) above, we’ “have
shown that. there exist a closed submterval J of [y, | f(y)|] and
an integer 1 < % < # such that f**(J) > — J. So, by Lemma 3 and
part (ii), S(4n) holds for f. This proves part (vii).

For the proof of part (viii), we will apply Lemma 4 to part
(i). Let zo be a symmetric per10d1c po1nt of f of least period
202n + 1). Then, by Lemma 4, xo is an asymmetnc per10d1c point
of — f of least period 2z + 1. "By “Theorem A (Sharkovskii’s
theorem), — f has, for every positive integer m, an asymmetric
per1od1c point ¥ of least period 22 + 1 + 2m. By Lemma 4, Yn i
a symmetric perlodlc pomt of f of Ieast perlod 2(2n + 1) + 4dm.
This proves part (viii). :

The proof ‘of part (ix) is: s1m11ar to that of part (viil) - and is
omitted.

The proof of Theorem 1 is now complete.

6. The structure of minimal symmetric periodic eorbits. - In
this section, we will use the method of directed graphs as described
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in Section 3 to determine the structure of all minimal symmetric
periodic orbits of any continuous odd function in C°(J, I). These
results are contained in the following theorem. :

‘T»HEOREM 2. Let f be a continuous odd function in C°(I, I)
whick has a minimal symmetric periodic orbit P = {+ x;|1 < i < n}
with 0 <x: <z <---<x, of least period 2n for some mteger
n2>2. Then the followmg hold.

(1) If f(x1) >0, then exactly one of the following Fkolds.
) fe)=xinforall 1<i<n—1, and f(x,) = — 21.
() f(@:) = Tiss for all 1 Si<n—3, f(Hn-2)= T, [(Xa)= Tp-s,
and f(2,-3) = — . | | ' |
G f(@e) = ZTaens [(The2) = Ter, [(Tor1) = Zrss  JOr  some
| 1<k<n—3, f(2:) =24y for all 1<i<k—1 and dail
, E+3<i<n-—1, and f(x,) = — x1.
(V) f(@) = 21, f(@:) = 2o, F(2:) = 2141 fOr all 3<i<n—1,
and f(x,) = — Lo ‘

Furthermore, if (i) holds, then for every integer m >n, f has
a simple symmetric periodic orbit of the first kind with least period
2m. If (ii), (iii), or (iv) kolds, then for every integer m >n — 1, f
has a simple symmetric perzodzc orbit of the first kind with least
period 2m.

(2) If f(x) <0 and n is even, then exactly one of the following
holds.

(1) f(@)=—@is for all L<i<n—1, and f(z,) = 21
(i) f(@)=—@for all 1<i<n—3, f(2es)=— 2
S(Zw) = — Zu_y, and f(24-1) = 1.
(iii) f(xs) = — Tr+2, S (Zriz) = — Ziay, f($k+1v)= — Zres  Jor
. some 1<k<mn—3, f(&:) = — @i for all 1<i<k—1
and all k+3<i<n—1, andf(x,,)—xl
(iv) flxe) = —xy, (1) = — 25, f(2:) = — xisy Sor all - 3 <i
<n-—1, and f(x,) = x5 ,

Furthermore, for every evem integer m>mn, f has a simple
symmetric periodic orbit of the second Fkind with least period 2m
and if (ii), (iii), or (iv) holds, then f also has a pair of asymmelric
periodic orbits of least peviod n — 1.
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- (3) If f(%:) <0 and n is odd, then P is a simple symmetric.
perzodzc orbit of the third kind and, for every odd integer m 2> n,
f also has a simple symmetric periodic orbit of the third kind with
least period 2m and the same type as P.

_ Proof. First we assume that () >0. Then if'is clear that
there is a positive integer &<z — 1 such that f(zs) f(Zre1) <O
and, "consequén’tly, F[2n xse:]) D [— @1, 2] Let m denote the
smallest such positive integer %. Note that, since 7 is the smallest
positivé integer such that f(zs)f (Zm+1) <0 and since f(z:) >0,
we have f(a:,)>0 for all 1<z<m and f(Zme1) <O. ’
I m< n—3, then smce FUZm Zmsrd) 2 [— %1, 211 and;
(L= z, xll) 5 [~ Zmes, Tmes] D — [Tm Tmeal, there is a path of
length m + 1 < % — 2 from [@m, Lm+1] t0 — [Zm) Tme1] via [—21, 211
By Lemma 3 and Theorem 1, we see that S(2z — 4) holds for f.
This is a contradiction. So, m =% — 2 or # — 1. |
Assume that m=#n—2. If f**([— 2, 2:1) D [— Ta-1, Ta-1]
D — [@4-2, Tx-1], then there is a path of length z—2 {from
[Za-2, Zu1] to — [Zpz, La-s] via [— 21, 2:] and so S(2n — 4) holds
for f. This is a contradiction. Thus f**([— 1, 21]) D [— u-s,
#n_1]- Consequently, since f(x;) >0, we have f(x;) = x;+1 for all
1<i<n—3and, f(Ls2) = Ts-1 OF Tu I f(&u_2) = Tu_1, then

since f(#a-1) = f(Zms1) <0, we have f(&s1) = — 1 Or — s If
f(xn—1) = — x;, then — x; = f"(-%) = fz(-%‘n—1) = f(—x1)= — f(xl) .
This is a contradiction. If f(xs-1) = — & then f ([zn-2, x,,_l]_)»‘

D [— & Zasl. So, if Jo=Ji = [2Ls-2 Zs—1], then, by applying
Lemma 3 to the path J, Ji(— Ju) when # >3 or to the path Jo(— Jo)
when # =3, and by Theorem 1 when #>3, we obtain that
S(2n —4) holds for f. This is again a contradiction. Therefore,
F(&pz) = 2o But then since f(&n-2) f(Xs-1). <0, we must ~have
F(2a21) <0. Consequently, f(xs) = x,—1 and f (Zp-1) = — 25. This
shows that (i) of part (1) holds. o ;

Assume that m =2 — 1. In this case, we have f(x;) >0 for
all1<i<n—1and f(x,) <0. I f([xu-1, s]) D[ — x3, 221, then
since f**([— xs, x3]) D [— % Za] @ — [Tu-1, ¥,], there is a path
of length # — 2 from [Zs-1, Za] to — [Za1, 4] via [— s, 23]. " So,
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(2’11“—’— 4) holds for f. This is a contradiction. Thus, f([Zs-1, Z4])
DL~ s, @], Now let f([Zs-1, Tal) D [— 22, 2] with f(2s-s) = 22
Cf(xn) = —xe. I f(x) =2 or f(z) =xise for some.
3<i<n—2 then we ~have " 2([Zn-1, Xxl) D [— ZTu» Tul
S — [#u_1, £4]. Thus, S(2#—4) holds for f. This IS again a
contradlc‘aon So, f(xl)-— xzs and f(x:) = xi+1 for all 3K i < n —2.
Since f(.r,,_l) >0 and f(x:) >0, we must have f(Zs—1) = x» and
f (xg) = 2,. This shows that (iv) of part (1) holds. On the other
hand, ‘let  f([Zp-1, Zu]) D [— &1, 211 with  f(@s1) =z or
F(#;) = — 21 But‘ then, an easy ‘argument will - show that
S(&u1) #=x1. So, let f(Lzs-1, 1) D [— 21, 2:] and f(xs) = — 21.
Since f(x1) >0, f(x;) = xj+; for some infegers i and j with
1<j<m—1land 1<i<n—j If 3<i then we easily see that
S(22 — 4) holds for f which is a contradiction. Thus, =1 or 2.
If f(x;) =4 for all 1< j<n—1, then (i) of part (1) holds.
If j=1 and =2, then since 0< f(x:) <&y, we must have
f(@3) = x. Thus, f(x:) = xis1 for all 3<i<#—1 and, since
flzs) <0, f(x,) = — x:. This shows that (iv) of part (1) holds.
If  >2and i =2, then since f(— x,) = x1, we have f(Lj+1) > Zjis.
Consequently, we obtain that f(&j+1) = Xjrs, F(Ljr2) = Tju1,
f(x:) =xiyy forall 1<i<n—1, and f(xs) = — x;. This shows
that (iii) of part (1) holds. As for the proofs of other statements
of part (1), we only give one as an example since all others are
similar. - We ‘assume that (iv) of part (1) holds for f. Let
Jo=1T10, 2.1, J: = [1, xs], and Ji = [@i41, Zise] forall 2<i< o — 2.
Then JoJi Jo--Jues(— Jo) is a path of length # — 1 which produces
a simple symmetric periodic orbit of the first kind with least period
2(s — 1) for f. On the other hand, for every integer m >, since
(0, 2:.1) 20, xs],, there are points ¥i, ¥s ", Ymene1 With
0< <Y <<+ <Ym-n+1 <21 such that f(¥;) =i+ for all
1<i<m—=n if m>n and f(Yn-uw1) =x. Let Jo=1[0, 111,
Ji=ly, yisal forall 1<i<m—nif m>n Jo-se1= [Yn-ni1, 211,
Jn-nre=[x1, 23], and Jp_wei = L2i, 2:i41] for all 3<i<n—1.
Then. L JiJe- - Ju-1(— Jo) is a path of length m which produces a
simple symmetric periodic orbit of the first kind with least period
2m for. f. ‘This shows that if (iv) of part (1) holds for f, then for
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every integer m ># — 1, f has a simple symmetric periodic orbit.
of the first kind with least period 2m. Other cases can be" proved
similarly. This completes the proof of the case f(x:) > 0.

‘Now assume that f(x) <<0. If % is even, then by applying
part (1) of the theorem to the function — f, we obtain part. (2)..
So, we assume that % >1 is odd. In the following, we first show
that, since S(2# — 4) does mnot hold for f, f(x:;) <0 for all’
1 <i<n For simplicity, let 2> 3 and let m denote the smallest’
positive integer such that = f(Zm) f(Zm+1) <O. Consequently,'
FLzm $m+1]) o) [ zy, 211 If m < #u— 3, then smce

e @1, 2:1) D [— Tasy Zaos] D — [Zm xmﬂj,

there is a path of length #—2 from [Zmw Zmi1]l to — [Zm ZTmail
via [— 21, £:]. By Lemma 3 and Theorem 1, S(22 — 4) holds for‘
f. This is a contradiction. So, m=#n—2or n—1. :

If m=n — 2, then it is clear that f(a;) <0 for all 1<i<n—2
and f(x,.1) > 0. Since m =n — 2 and S22 — 4) does not hold for
f, we have f([— @i, 2:]1) D [— Fiss, Tisa] for all 1<i<m—3
Consequently, f(x;) = — x;4; for all 1<i<zn—3, and f(Zs-2)
= — Zpy OF —Lp I f(@as) = — Tuo1, then — Zpy = f(Ta2)
= f**(x1). Thus, f(2s-1) =2, and f(x.) = 21 But then, S(2)
and S(6) hold for £ This is a contradiction. If f(Zas) = — &n,
then — &, = f(@ss) = " &:). S0, f(24) = Tn-y and f(Tu-1) = s
But then, S(2) and 8(6) hold for f. Th1s is agam a contradlctxon
So m % n—2. ,

M m=n-— 1, then since f(x1) <0, we have f(x,) <O for all
1<i<n—1, and f(x,) >0. If f(x,)-——x,, for some 1<] <n— 3
then f" 3= 2 ,21]) D [— Xny Zal D — [.7(:,,_1, Zal So, there is a
path of length # — 2 from‘[m,,_l,_x,,] to ——[x,,_1, z,] via [— - X1, z:]
which implies that S(2# — 4) holds for f. This is a centi'adié’cion
Thus, f(x;) = — Za for j = 7% — 2 or # — 1 f(.z-,,_1) = — x, then
let Jo=I[%a1, Zals J1 = [— Zu_1, — Tu_z]- By applying Lemma 3
to the paths Jo(— Jo) and JoJi Jo(— Jo), we see that S(Z) and S(6)
hold for f. Consequently; S(2z —4) holds for f. - This is a
contradiction. If f(xs-2) = — Z. then there is a positive integer
BE<#un—3 such that - 0< f(— 2s) < Zu_s.- Let Jo= [@s-2 #.] and
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Ji=I[—xu-2 —x:]. By applying Lemma 3 to the paths Ji( — J)
and JfoJiJo(—Jo), we see that S$(2) and S(6) hold for f. So,
S(2n — 4) holds for f. This is again a contradiction.

Therefore, there does not exist a positive integer # such that
J(xm) f(Zm+1) <0. Consequently, f(x;) <0 for all 1<i< % By
Lemma 4, {x;|1 <7< #n} is a periodic orbit of — f of least period
# and, since S(2%# — 4) does not hold for f, — f hds no periodic
orbit of least period # — 2. By a theorem of Stefan [14], if
n=2m+1, then we have (— f)"(Zm+i) = Tm+1 and, (@) Lmri-:
= (— ¥ Y &ms1) and Zms1-i = (— f)¥(Lms1) for all 1<i<m or
D®) Zmerei = (— ¥ Y Zmr1) and ZTmi1-i = (— )2 (Xmer) for all
1<i<m. Since f is odd, we have (— f)¥-!= — f2-1 ang
(— f)* = f? for all positive integers i. Consequently, we have

FE N Eps1) = — Tmer-i and F¥(Lme1) = Tme1s; Tor all 1 <7< m or,
FEHEme1) = — Tmer+i and P (Lpi1) = Lmer-; for all 1 <7< m.
This shows that P is a simple. symmetric periodic orbit of
f of the third kind with type “—” or type “ + ”. The proof of

other statement of part (3) is easy and omitted. This completes
the proof of the case f(x:) <0 and hence the proof of the
theorem.

The following result is an easy consequence of the above
theorem. '

COROLLARY 1. Let f be a continuous odd function from the
interval [ — 1, 1] into itself. Assume that there is a poz'ht cb with
0<e¢ <1 suck that f has no symmetric periodic orbit of least period
2 in (— ¢, ¢) and no symmetric periodic orbit of least peridd other
than 2 in [—1, —¢) U (¢, 11. Then |

SA)=806)=--=SC2x+1)=>S2#+ 2))=>---
= AB) S AB) > A + 1) = ee |
SA@2-3)=2AR25) == AC00 + 1) =
=5 .. , : .
= A(2* +3) = A(2F +5) =+ -=> A(2*(2m + 1)) =+ -
=3 eee v
== A(2) = A(Z) = A(2) = AQD).
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Note that the above corollary extends the result of Branmer
(Theorem 2.1) in [5]. (See also Section 1.

7. Continuous odd functions which have a symmetric periodic
orbit. In this section, we use the method of symbolic representation
as described in Section 4 to compute the best possible lower bounds
on the number of symmetric and asymmetric periodic orbits of
periods guaranteed in Theorem 1 in Section 5 for those continuous
odd functions which have a symmetric periodic orbit of least period
92 for some integer # > 2. We have also found the best possible
lower bound on the topological entropy of such continuous odd
functions.

We first define some sequences of nonnegative integers.

Fix any integer # >2. TFor all integers 4, j, and %, with
1< i|<n 1< 1jl <n and 2> 1, we define bz.i,j.» recursively as
follows: ‘

(1 forall i=j=+1 2 £

bi,ijom = .
BRSTT 10 otherwise,

brit,ivten = Oriviun + Bris—nn + Otjivmns ‘
Britsisjom = Okirjt,n + Orimn  forall 27 <,
britiiimton = Obiiv—t,2 + Dbivenun + Oriivmms

Birtis—jou = bris—jiton + Bhi,—ma forall 2< 7 <n
We also define cs,» and ds,» by letting
Cr,n = bk,l,lm + bk,l,—n,n + bk,l,n,n + Z (bk.i,z'—l,n + bk,i.mn) '
i=2 |

+ br, 1, —t.n + Bt 1, —non + Db, —t.mn
+ > Brciymistin H 00 —irenn) — L,
i=Z

dk,n = bk,ly-—l,n + bk,l,—n,n + bk,l,kn,n + Z (bk,i,—i+1,gz + bk,i'-—nm)
=2 .
+ bk,~1,1,n + bk,—l,—'-ﬂ,n + bk,-—lyn,n‘ ‘
+ >, (Bry—ivioton + Bhis o) + L.
i=2 .

It is easy to see that these sequences (Bt iwds {Chnpy and {@r,np
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‘have the following eight properties. Some of these will be used
in the proof of Theorem 3 below. " ‘

(1)

| ~‘<Vii>~

(i)

(iv)

(v)

For all integers i, j, 2 with 1 < i<, 1 <j<n and

k=1, br—iviin= bai,—jon and Br i, ljon = Okiyeme

For all integers 1< 7| <#n, 1< j<#n the sequence
{bt.i,j,u) 1is increasing. For all integers 1 <7< 27 and
B>, briin = beien =2 Btyivmn a0d Dpgi_1,0 = b, 2.0
>+ bp i —mm Furthermore, for all positive integers &,
btomtn = Oiyn, 1,0 a0 Bp,1,1,0 — Bry1, 1,0 = (— )BT -

If n>2 then for all integers 4, j; and s  with

2<i<n—1,1<|jl<mand 1<s<n+1—4,

o b i j=1ts—1
"2 0, otherwise.

»Fur_»thef_mpr,e, yfo‘r all integers i, j, and k with 2:£z <n-—1,

1<ijl<n k=21,
Duisbisjon = Obinjonr
Ouivri,mjin = Dtur—j,ne
For every integer B> % — 1, ¢s,» can also be obtained by

the- followmg formulas:-

=2 Z (bk—s+1m B—iyn + bk—-z+1,n.nm)

ful

+ 2<bk,1.1,u + bk,l.—.f_mi + bk,l.p,»n) -1
n~1
= 2 Z bk+2-—s'm.n+1—-:'m + _2bk+1,1,1,z - 1 .
f=1 - .

These identities also hold for all integers £ with
1<k nv—— 2 provided we define by, =0 for all
3—n<k<O0and 1<j<=n _

For every integer 2> % — 1, dr,» can also be obtained by

. the following ’formulas:

7n—-1

dk,n =2 Z (bk—;+1.n,—n,n +bk—z+1,n,s n,n)

f=1

+ z(bk.lw-lm + bk t,—mn T+ bk,l,mn) + 1

= 2 Z bk+2 ie9s t—n—-l.n + 2bk+1,1.-—1 # + 1

i=1
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~These identities also hold for all integers E with
1<k<n—2 provided we define bp,n—j.n = 0 for all
«—n<k<0and 1<j<n e
(v1) For all integers £ with 1 < k< 22— 1 Chon = 2"+1 L
(vii) Since, for all positive integers &,
2n—3

bk+2n 12 %s 98 n - 3bk+2n—2 tonns T E : bk+z Mt 0

278

(bk+ﬁn—1.n,—n n 3bk+2n—-2 ty ot T Z bk+z By =% N ~

. 1=0

=0 resp.),
‘there exist 92 — 1 nonzero constants «;’s (@-j’s fesp.)
such that V ~
2n—1 '
bk.nn 5= Z 27 x5 (bk e— 2ttt Z“—ij resp)
j= =1

for all positive integers k, where {x,ll <j< 2n -1} is
the set of all zeros (including complex zeros) . of the
polynomial (&** - 421 + 422 — 1)/ (2 — D).
(viii) Since, for all pbsitive integers k&, '
an-3

14+ bk+2n-—l Ln - 3bk+2n-—2 1,88 + Z bk+= 1 P 0

! tnl
2n—-3

(_ 1 + bk+2n—1,1.-—nm 3bk+2ﬂ—*2¢1:"”aﬂ + Z blH-nl,—mn

i=1

=0 resp.)

_there exist 2z — 1 nonzero constants £j’s (B-;’s resp.)
-such that

bh”—}:,ﬂ,x, (bm _”—Zﬂ- x5 reSP)

" for all positive integers k, where {z;11<j<2n— 1} is
" defined as in (vii) above. _ '

For all positive integers k&, m, and #n w1th 7> 2, we let
ban(E) = Cow and b5.,(FB) = din and let Oua(m) = O:i(m, 41, ») and
O, 4(1m) = Do(M, G2,4), Where Oy, Op are defined as in Sectlon 2. Now
we can state the following theorem. SRR
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THEOREM 3. Let f be a continuous odd function in C°(I, I)
which has a simple symmetric periodic orbit of the first kind with
least period 2n for some integer n > 2. Then the following hold.

(1) For every integer m > n, f has a simple symmelvic periodic
orbit of the first kind wilh least period 2m.

(2) For every positive integer k, A(E) and ANP(2n + k—1)
hold for f. '

(8) For every positive integer k, the equation f*(x) =z has at
least ¢, (Sharp) distinct solutions and the equation
f¥(x) = — x has at least @i, (sharp) distinct solutions.

(4)  For every positive integer m, f has at least ©i,,(m)/m

* (sharp) distinct perz'odz'é orbits of least period m, at least
Go,u(m)/(2m) (sharp) distinct symmetric periodic orbits of
least period 2m, and at least D1,n(2m) /(2m) — 05, ,(m)/(2m)
(sharp) distinct asymmetric periodic orbits of least period
. 2mv_ oo

(5) lim (log [01,4(m)/m])/m = log A,

lim (log [0s,s(m)/(2m)1)/(2m) = (log 24)/2,
and ; o
tim (log [04,,(2m)/(2m) — 0s,,(m)/(2m) 1/ (2m)

- = (log (24)/2, ‘ ’

where 1, is the (unique) positive (and the largest in absolute
value) zero of the polynomial x" — 2x"~* — 1.

(6) The topological entropy of f is greater than or equal to
log 1x (skarp), where 2, is defined as in (5) above.

REMARK 4. For every inf:egerv n2>2, let f:[—n n]l>[—n, =]
be the continuous odd function defined by (i) f,(2) =% + 1 for all
integers 1< k<% —1; (ii) fu(n) = —1; and (iii) f, is linear on
the interval [%, & + 1] for every integer % with —#n <k <% — 1.
Then {+ 4|1 <7< n} is a symmeétric periodic orbit of f, with least
period 2z. However it is easy to see that no periodic orbit of f,
of least period m with 1 <<# <2u can contain both negative and
positive elements.
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REMARK 5. When # = 2, the sequences lcnsy and {dssy can
also be obtained by the following formulas: Let @ =a; =1 and
@ire = 2ass1 + a5 — 1 for all positive integers. Then cr,2 = 4241 — 1
and des=crs — 2 for all positive integers £&. Consequently,
O1,:(m)/m = Oy,2(m)/m for all odd integers m > 1.

REMARK 6. Table 1 lists the first 25 values of O, () f (2m2)
for 2<n < 6. It seems that, for all positive integers m = n = 2, we
have: Oz, ;(m)/(2m) = 27~ for n < m < 3n, and 0s,,(m)/(2m) > 2"
for m > 3n. On the other hand, if, for all integers #z > 1 and 7 > 2,
we let A= Os,0(m)/ (2m) and define sequences {Bum,»z> by letting

Bpyw1 = Am-l—?.u,n,-"' 2Am+an-1,» and Bugr= Buiznmb-1 — Bm+2n,n+1,k—1

- TaBLE 1

Do | 8,,,(m)/(2m) | @,5(m)/(2m) | &, (m)/(2m) | @,s(m)/(2m) &y,6(m)/(2m)
1 0 0 0 0 0
2 1 0 0 0 0
3 - 2 1 0 0 0
4 4 2 1 0 0
5 '8 4 2 1 0
6 16 8 4 2 1
7 34 - 16 8 4 2
8 12y 82 16 8 4
9 154 64 32 16 8
10 336 130 ' 64 32 16
1 738 264 128 64 32
12 1,632 538 ' 256 | 128" 64
13 3,640 1,104 514 256 128
1 8,160 2,272 1,032 | ‘512 256
15 18,384 4,692 2,074 : 1,024 ' 512
16 41,616 9,730 4,176 2,050 1,024
17 94,560 . |-~ 20,236 ~ 8,416 4,104 2,048
18 215,600 | - 42,208 | - 16,980 - 8,218 4,096
19 493,122 | . 88,288 | . 34,304 16,464 8,194
20 1,130,976 | 185,126 | 69,376 | 32,992 16,392
21 2,600,388 389,072 | 140,458 66,132 32,794
22 - 5,092,560 | - 819,458 - 284,684 132,608 | 65,616
23 13,838,306 1,729,296 577,592 265,984 131,296
24 32 016,576 | 3,655,936 | 1,173,040 | 533,672 962,740
25 74,203,112 7,742,124 2,384,678 1,071,104 525,824




26 'BAUSEN DU [March

for 2>1, then more extensive numerical computations seem to
show that, for all positive integers k2, we have (i) Bi,um= 2 for
all # =2, (i) Base= 4k for all # > 2, (iii) Bs,sms and By, are
constants depending only on % and (iv) for all 1< m < 2,
By, ut = Bu,jp for all j > n.

Proof of Theorem 3. First we prove part (1). Let & >0 be
a simple’ symmetrlc periodic point of f of the first kmd with least
period 27 and let Ziq = fi(z) for all 1<i< #n—1.. Then
O<m<azs<<---<axs Since F([0, :1) 2 [0, z.] D [0, z:1],- there
is ‘a point ¥ € (0, ;) such that f(y)——m1 C Let Jo=1[0, %],
=Ty, 2], and J; = [xi_y, ;] for all 2<i<#n By applying
Lemma 3 to JoJiJe---Ju(—Jo), we .obtain a simple symmetric
periodic point of f of the first kind with least period 2z + 2. The
general case follows by inductive argument. This proves part (1).

The proof of part (2) is easy and omitted.

As for the proofs of parts (3), (4), and (5), we use the method
of symbolic representation as described in Section 4. It suffices to
consider, for every fixed integer n > 2, the continuous odd function
f\ f—n n]l->[—n n] vdeﬁned by (i) fa(k) =k + 1 for all intégers
1<k<n-—1; (i) fa(n) = —1; and (iii) f, is linear on the 1nterval
[&, &+ 1] for every integer 2 with —n <k<2n-—1.

The followmg lemma is easy.

LemMA b. Under f., we have

02—023, 20— 320
n(—1) = (— 1) %0z — 1)(n — 2)- - -320(— 2),
(—Dn—>(—2)0284-(n—Dn(—1),
(—Dun-o>n(—1), nx-1)->(-1=,
0(—2)—>0(—2)(—3), (—2)0->(—3)(—2)0,
(=) 1->1(—n)( — 2+ 1)(— 2+ 2)---(—3)(—2) 02,
1(—n) > 20(—2)(—3)(—4)-- - (— 2 + 1)(— a)1. |
(—n+1)(—2) > (—2)l, (—#u)(—2+1)—>1(—n).

If}zz4, we dlso kave, for all integers 2<i<n— 2,

A+ DS EFDES2), EHDISE+2DE+ 1,
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e (=i =) (i =1 (—E - 2),
‘ (=i—1D(=8) = (—i—=2)(—i=1.

In the following, when we say the representetion for y= f,".(x);
we mean the representation obtained, - following ‘the procedure as
descrlbed 1n Sectlon 4 by applymg Lemma 5 to the representatlon

1(-—%)(——n+1)(—— n+2)-- : :
(— 4)(— 3)(—— 2)0234---(n — 2)(% —Dn(-1)

for y = f,,(x) successively until we get to the one for ¥ = f¥x).

For every positive integer %2 and all integers i, j with
1<l <=, 1< 11 < m, let be:,;» denote the number of uv’s and
puw’s in the representation for ¥ = fli(x) ~whose corresponding
o-.coordinates ‘are in [# —1, 4] if £>0 or in [{,-¢+ 1] if £<0,
where wv =02 if j=1, uv=0(—2) if j=—1, w=jG+1 if
12<]<n—1 uv—(])(j—l) if —n+1<j<—2 uw=n(—1)if
j=n and uv ( 7)1 if j= —n It is obvmus that bl,,, =1
‘for all’ 1ntegers Z Wlth 1 < lzl < 2 and by.i. ;e = 0 elsewhere From
Lemma 5, we easily see ‘that the sequences <bk i n> are exactly the
same as those defined above.

Smce -

Ctn = br1,1,0 +- br,1,—nn + Drtimn Tt Z (bk fii=tin T bk,smm)

+ bk.-—l.—-l,n + bk,—l.—a.n + bk.—l.u n 4
+ Z (bk,—-:,—z+1,u + bk,—-s,—n n)
=2 : .
it is clear that ¢i. is the number of intersection points of the
graph of ¥ = f,,(w) with the dlagonal Y= x. On ‘the other hand,
smce : : :
A dk,n—‘bkl—!n"l"bkl—nn+bk1mﬂ

+ Z (bk fr—it1sn + bk £y =1, n)

+ bk,-—l 1,2 + bk ~1,—mn T bk 111

+ Z (bk —isf—1s8 + bk,z,—-n.n) + 1

i=2 -

it is clear that dr.» is the number of ‘intersection pomts -of- the
graph of y = fi(x) with:the diagonal ¥ = — . :This proves.part
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(3). Part (4) follows from the standard inclusion—exclusion
argument. As for part (5), we note that there exist 2% — 1 nonzero
constants «;’s (o;. i's resp.) such that

2n—1

bk”n—Zw,x, (bk,,, ,,,,—5—‘05* xk resp)

for all positive integers &, where {z;]1<j<2n—1} is the
set of all zeros (including complex zeros) of the polynomial
(22" — 4z 1 + 4?2 — 1)/(x —1). Since ¢z and @i, can also be

expressed as

n—1t ) ‘
Ch,p = 2§ : bk+2~i,n,n+1—~i,~ﬂ + 2bk+1,1,1,n -1
i=1

din =2 Z bk+2—$,n fmn—1,2 T 2bk+1 1,~1,s + 1

in WhICh b;,+1,,,,,,,,, and bri1,n, —nn are the dommant terms and since
the _Iargest (in  absolute value) zero of the polynqual
T — Agt 4 At — 1 = (2" — 22" — 1) - (2" — 221 + 1) is the
same as that of the polynomial z" — 2zt —1, part (5) follows.
This completes the proofs of parts (3), (4), and (5).

Part (6) can also be proved by the method of symbohc
representation as described in Section 4. We omit the (easy but
very technical) details. (See [9] for example).. .

The proof of Theorem 3 is now complete.

We now consider those continuous odd functions f in C(I I)
which have a simple symmetric periodic orbit of the second kind
with least period 2x#. We will find the best possible lower bounds
on the topological entropy and on the number of symmetric and
asymmetric periodic orbits of periods guaranteed in Theorem .1 in
Section 5 for such continuous -odd functions.f. We note that since
S/ has a simple symmetric periodic orbit of the second kind with
least period 2%, #>2 is even and - f has a simple symmetric
periodic orbit of the first kind with least period 27 Hence, most
of the statements in the followmg theorem (Theorem 4) can also
be obtained by applymg Lemma 4 to Theorem 3 above. However,
since the method of symbolic representation is simple and can give
more direct enumeration (which is also interesting from the number
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theoretic point of view) of these best possible lower bounds, we
will give a proof Theorem 4 which is based on this method.

‘As in Theorem 3, we need to define some sequences of
nonnegative integers first. . ,

Fix any integer # >2. For all integers i, j, and &k, with
1<li|<n 1< [j1< #, and B >1, we define P, j,» recursively as
follows: | o

S I8 if i=—j=1,2,---, 1,
Privin = {O, otherwise. -
For 1<li|<» k>1 and j= 1,
Disviiviin = Dhir—ma + Divmn + Dhii—jine
For1<li|l<un, k=1, and 1<j<n—1,
Privi,—j—tin = Prijin + DPrium
Previijitin = DPriv—jon + Dhi—nne )
We also. define g¢r,, and #:,, by letting
rtn = Pritin t DPrtimn + Drti—nn
Lot Z;: (DPrivi-tin + Driivmn)
+ Db -ti-ta t Pr-tyenn T Dr~t.mn
+ ?:, (Pr=ir—ittin + Dbiv—mn)
and
oo = Drt—tin + Dhtionn + Dhtimn
+ g,(ﬁk,i,‘—-i+1,h + Driis—nn)
+ Pr-t.1.at Pr—tnn T Db-tsomn
+ Z:: (Ptoriviotn + Dby—timn)e
It is easy ‘to-see that these sequences {psi.j.n); <qrn>, and <™
have the following seven properties. Some of these will be used
in the proof of Theorem 4 below. ‘
(i) For all integers 7, j, B with 1<i<#n 1< j<#n and
E=1, Pr-ijon= Phi—jin 3DA Pr_i,—jin = Dhii.june
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© (i)~ For  all integers 1<|i|<#%, 1< j<n the sequence
LDk iy IS increasing For all integers 1<i<# and
<k>1 pk;1n>pk12ﬁ >pkznnandpkz—1n>.pkz—-2n
> 2 Pri,—ma Furthermore, for all positive  integers
By Dot = DPronmi-1.s 304 Pr11,0 — Prt—1,s= (— DE
(iil) * Tf 9 > 2, then for all integers 4, j, and ‘s with 2§'i£nf1;
1<ljl€<mand 1<s<#n+1—1, '
L, i = (=1 +s — 1),
ps.i,j,n = . o
0, otherwise.
Furthermore, for all integers 7, j', and % with 2<i Sﬂ—l,
1<|jl<# and k21,

Du—ivrri iy jam = Prou (-1 —i;
CDn—ivkiii—jon = Phon 1", 0

(iv) For every integer k=2 — 1, gr» can also be obtained by
the following formula: ’

qr,u = 2 {pkfl.l. —~1,z
[n/2]—~1

4 Z (2Pr-sjrrimnrri=zjn + Dh-sjt2.nmn)

=1

L (- 1>n]/2><m~,,+2 L "1
(= DR
where [#/2] is the largest integer < #/2. This identity
also holds for all integers 2 with 1 <% < # — 2 provided
we define Prnj.=0forall 3—n<k<O0and 1<j<
(v) For every integer k> — 1, 7. can also be obtained by
the following formula:

Vb = 2‘{pk+1,1 L.n.-
I[nf2l—1

) -+ Z (2pk 2j+2,m2j—-n—1,n + pk—2]+2 n,—n,n)

T=1

+ ([1 + (_' 1)”]/2)(?k%n+2,n,—1,n +:ﬁk;n+2,n,~n,n)}
+ ("f‘ 1)F, » :
.where [#/2] is the largest integer < #/2.. The identity
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(vi)

(vii)

For
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also holds for all integers & with 1<% <% — 2 provided
we deﬁne p;,,,_,,,,-O forall 3—2<k<0 and 1< j <.
For all integers £ with 1 < k<2 — 1, paea= 2%+ — L
Since, for all integers k> #, we have :

DProarn — 21’1:-—1,'”,1;‘” - p‘ki—-’n;‘n,l.n ='0
and .

Pk,;,l,;s - lzﬁk—-l,l,»l,n Pk —mllm = ( 1)k
‘it is easy to see that

hm (log (pk,ﬂ 1,n)/k = 11m (Iog pk,l 1, n)/k 10g Ans

i Wh,ere 2, is the largest (in absolute value_) zero of the
polynomial z* — 2z** —1. Note that (z"— 2zt — 1) .
(z* — 22"t 4+ 1) = 2 — 4o’ + 4™ 2 — 1 and 2, is also
the largest (in absolute value) zero of the polynomial
2% — 41 + 42%*-? — 1 which is the same as that defined

sin Theorem 3. '

all positive integers k, m, and 2 with =2, we let

$a,x(B) = @rn and ¢un(R) = 724 and let Os,(m) = ®y(m, $3,2) and
@4, 5(m) = Ds(m, ¢1..), Where 0y, @, are deﬁned as in Section 2.
Now we can state the following theorem. .

THEOREM 4. Let f be a comtinuous odd ) function in CXI, I)
such that —f has a simple symmetric periodic orbit of the first
kind with least period 2x for some integer n>2. Then the following

kold.
€))

(2)

3)

For every imteger m=>un, — f kas a sz"mple symmelvic
periodic orbit of the first kind with least period 2m.

For every positive integer k, the equation f*(x) =z has at
least qu.. (sharp) distinct. solutions and the equation
fE(x) = — x has at least 7p,q (skarp) distinct _solutions.

For every positive integer m, f has at least Dg,o(m)/m

, (sharp) dzstmct periodic orbits of least perzod m, at least

Dy, 4(m)/(2m) (sharp) d‘is'tz'nct‘ symmet‘ric periodic orbits of
least period 2m, and at least Os,,(2m)/(2m) — @, x(m)/(2m)
(sharp) distinct asymmelric periodic orbits of least period
I, o
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&) lim (log [0s,x(m)/m])/m = log 1,
 lim (logl0u.u(m)/(2m) 1)/ @m) = (log 1)/2,

and _ . .
lim (log [@s,4(2m)/(2m) — Dus,u(m)/(2m) 1)/ (2m)

= (log 2.)/2,
where 2, is the (unique) positive (and the largest in absolute
value) zevo of the polynomial x* — 22" ' —1 whick is the
same as tkat defined in Theorem 3.

(5) Tke topolog‘zcal entropy of f is greater thanr or equal to
- log 24 (sharp), where 2, is defined as in (4)- above.

REMARK 7. Because of Lemma 4, the collection {<bs.1,5. 0
Bty i)l <1< n} of sequences and the collection {<p#,1,j.2
{Pr.minll <1j| < n} of sequences can be said to be conjugate to
each other. By counting the number of symmetric and asymmetric
orbits of appropriate periods for f, and ¢, defined respectively in
the proofs of Theorem 3 above and Theorem 4 below, we have, for
every positive integer s, the following 1dent1t1es '

(i) o, ,,(2m + 1) = 04,.(2m + 1),
(ii) 03,4(2m + 1) = 05,,(2m + 1),
(Hi)  O1,4(4m) = Oy, a(4m),
(V) 02,a(2m) = Ou,u(2m),
(V) 04,.0202m + 1)) — 05,,(2m + 1)
= 0g,4(2(2m + 1)) — G4, ,(2m + 1).

In the above theorem, we assume that — f has a simple
symmetric periodic orbit of the first kind with least. perlod 222,
This condition is equivalent to the followmg

(i) If # is even, then f has a SImpIe symmetnc perlodm
orbit of the second kmd with least perlod 2n;

(ii) If # is odd, then f ‘has a 31mple ANP perlodlc orbit
(see Section 1 for deﬁn1t10n) of least penod.n.

‘Consequently, from part (1) of the above theorem, we easily obtain
the following result.
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COROLLARY 2. Let f be a continuous odd function in C(I, I).
Then the following hold.

(a) If f has a simple symmetric peviodic orbit of the second
- Bind with least period 2n for some even integer n > 2, then
Sfor every even integer m >=n, f has a simple symmelric
periodic orbit of the second Fkind with least period 2m
and a simple ANP periodic orbit of least period m + 1.
(b) If f kas a simpie ANP periodic orbit of least period n
Jor some odd integer n >3, then for every odd integer
m=mn f has a simple symmetvic periodic orbit of the
second kind with least period 2m + 2 and a simple ANP
periodic orbit of least period m.

Proof of Theorem 4. Part (1) follows from Theorem 3. As
for the proofs (2), (3), and (4), we use the method of symbolic
representation as described in Section 4. It suffices to consider,
for every fixed integer #>2, the continuous odd funciton
9e:[—n n]—>[—n, n] defined by () ¢.(3)=—(E+1) for all
integers 1< k<% —1; (i) ¢.,(#) =1; and (iii) ¢, is linear on the
interval [k, &2 + 1] for every integer 2 with — <k <#n— 1.

The following lemma is easy.

LEMMA 6. Under g, we have
02—0(—2)(— 3), 20— (—3)(—2)0,
n(—1)—>W—n)(—n+1)---(—3)(—2) 02,
(=D#—>20(—2)(—=3)---(—n+1)(—n)1,
#—Dr>(—n)1, #nr—1)->1(—=n),
0(— 2) —> 023, (— 2)0— 320,
(—»)1->(—1)n(—1)---320(— 2),
1(—2)—>(—2)023---(z— 1) n(— 1),
(—n+1)(—n)>n(—1), (=) (—n+1)—>(—1)n.
If m> 4, we also have, for all integers 2 < i <un — 2,
iG+1) > (—i—1)(—i—2),
G+Di>(—i—-2)(—i—1),
(i (—i—1D>G+DE+2),
(—i—D(—)—>E+2)E+1).
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_ In the following, when we say the representation for ¥ = ga(x),
we mean the representation obtained, following the procedure as
described in Section 4, by applying Lemma 6 to the representation
(=D nn—1)(m—2)-320(—2)(—3)-(—n+2)(—n+ D(—nw)1
for 9 = ¢.(x) successively until we get to the one for ¥ = ¢i(x).

For every positive integer % and all integers ¢, j with
1<li|<n 1<|jl<nm, let pri,j.» denote the number of uv’s and
vw’s in the representation for ¥ = gi(x) whose corresponding
p-coordinates are in [£—1,4] if £>0 or in [7, # +1] if £<<0,

where v =02 if j=1, ww=0(—2) if j=—1 ww=4+1) if
2<ji<n—1, ww=73(—1) if —n+1<ji< -2, ww=n(—1) if
j=mu,and ww=(—n)1 if j=—n It is obvious: that P ia=1

for all integers 7 with 1 <[7|<# and pi,i,j,» = 0 otherwise. From
Lemma 6, we easily see that the sequences {Pw:j.»» are exactly
the same as those defined above.

Since '

Qtin = Pr.1,1,8 + Priun T Pt —n.n

+ Z (ﬁk,i,x‘—-l,n + pk,i,u,n‘)

i=3

+ Pr 11,4+ j’k,—-l,—nm + Pr,~1.1.4

+ D (Pryismittin T Phimisomn)s

it is clear that g¢e. is the number of intersection points of the
graph of ¥ = ¢gi(x) with the diagonal y =z. On the other hand,
since

Tt,n = DPr1, 1.0 T Dot —mn T Phi,ma

+ Z (Phir—ittn + Phiiv—nn)

i=2 .

+ j’k,—l,l,n + pk,-—-l.n,n ;+ pk,—l,-nm

+ Z(Z”k,-—i,i—lm + pk.-—i.nm):
i=2

it is clear that 74, is the number of intersection poiﬁfs of the
graph of ¥ = ¢i with the diagonal ¥y = — . This proves part (2).
Part (3) follows from the standard inclusion-exclusion argument.
Part (4) follows easily from the properties of the sequences {pr.s, Gomp
listed above. This completes the proofs of parts. (2), (3), and (4).
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- Part (5) can also be proved by the method of symbolic
representation. We omit the (easy but very techmcal) details.
(see [9] for example).

The proof of Theorem 4 is now complete.

We now consider those continuous odd functions f in C°(I, I)
which have a simple symmetric periodic orbit of the third kind
with least period 2. We will find the best possible lower ‘bounds
on the topological entropy and on the number of symmetric periodic
orbits of periods guaranteed in Theorem 1 for such continuous odd
functions f. To find these best possible lower bounds, we use the
method of symbolic representation. Since the derivation of these
results is similar to that of Theorem 4, we will omit it. .

Let # be a fixed positive integer. For all integers 7 and j with
I1<Z]|<2nr and 1<|j|< 2%, we define segnences {Ut,i, ;.0 as
follows:

1,1, -n—1,2 = 1,

UL,i,~2n-2+i,8 = 1 if 2 SZ. < 72,

Ui ~an—1vi,n = 1 if +1<i< 2,
Us,i 5.2 = 0 elsewhere.

For 1 <{ < 2% and all positive integers &,

Ubset,i  jon = Uk,iy—nr1y,m - Uk, i, —2nt -1, 1<j<n-1,
Ukr1,i,0,0 = Ur,i,~(n+1d,n + Ui, —nn ‘ o
Ubrt,i,n+1,0 = Ui, —1,m .

Ukit,iynriin = Bbi, ~nti—2,n T 2< i<,
Ukst,i,~j,n = Ukinet,n + Ubiensr=fon ~ 1< J<n0—1,"
Uks1,i,n,n = Ubyiynt1,n + Uk, i 0,0

Ur+1,i,— (1), = Uk, i,1,n,

Ukst,iy—nefdyn = Bkinsz—jom 2<j<n».

We also define sequences <ve»y and {wi,»y by letting #am,:, jon =0
1f m < 0, and

@

Ve = 2 (2 Z Uk+2-2j,1,5,2 + ”k,né-l,n,n) +1,

=1

W = 2 (2 Z U2 2171’—.1'” + Uk nr1, -, ),,+ 1.

i=1
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It is easy to see that the sequences <#s,i,j.»> and LUpyni1, 500
have the following three properties which will be used later in the
proof of Theorem 5 below.

(i) ak-1,i,j, = Ushi,-j.n =0 for all positive integers i, j, &
withi=loru+1,1<jij<2s and 2>1

S (i) #gra = 2¢*2 — 1 for all integers 1 < &k < 2z

' (iii) Since, for every integer k>2z+1, i=1 or =+ 1, and
1< 7<2n,

Usk,i,jon — AUor—2,i, 5,0 + Uar—1,i,j.n — Usk—(ans2).i,7.m

=0
and

Uskr1,iy—jon — YUak—1,i,—jun
4 Athop-3,i, - j.n— Usk+1—(Ant2)si, ~jin

=0,
we have

lim (log #zs,+.5.4)/F

k-0

= lim (log Usk+1,i,~j.n) /R = (log 64)/2,

k—co

where 60, is the largest (in absolute value) zero of the
polynomial x%+2 — 4x** + 4z**~2 — 1. Note that 0. is
also the (unique) positive zero of the polynomial
x2n+1 — 2x2n-—-1 — 1'

For all positive integers %, m, #, we let ¢54(B) = vs,, and
do.x(E) = We,n. We also let Osa(m) = O1(m, ¢s,4) and @e,.(m)
= Ou(m, de,x), Where @y, O, are defined as in Section 2. Now we
can state the following theorem whose proof is similar to that of
Theorem 4 and is omitted.

TurOREM 5. Let f be a comtinuous odd function in C°(I I).
Assume that, for some positive integer n, f has a simple symmetric
periodic orbit of least period 2(2w + 1) of the third kind with iype
© 4 ” (“—” yesp.). Then the following hold.

(1) For every integer m =n, f has a simple symmetric periodic

orbit of least period 2(2m + 1) of the third kind with
type <+ (“—7 resp.).
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(2) For every positive integer k, the equation *(x) = x has at
least vwn (sharp) distinct solutions and the equalion
f¥(x) = — x has at least wr,. (sharp) distinct solutions.

(8) For every positive integer m, f has at least ©s.(m)/m
(sharp) distinct periodic orbits of least period m, at least
Os,o(m)/(2m) (sharp) distinct symmeiric periodic orbils of
least period 2m, and at least ©s,.(2m)/(2m) — ¢, n(m)/(2m)
(sharp) distinct asymmetric periodic orbits of least period
2me.

(4) lim (log [@s,4(m)/m])/m = log 0,
}gg (log ([@6,4(m)/(2m) 1)/ (2m) = (log 6.)/2,
and _
E_r’g (log [0s,4(2m) /(2m) — @e,n(m)/(2m)])/(2m)

= (log 0.)/2,
where 0, is the (unique) positive (and the largest in absolute
value) zevo of the polymomial x**+' — 222"~ — 1.

(5) The topological entropy of f is greater than or equal lo
log 0. (sharp), where 0. is defined as in (4) above.

REMARK 8. For the same reason as in Remark 7, the collection
{otr,1, 5,00, {Unmi1.j.up]|1 < 7 < 2m} of sequences and the collection
{<br1, 5.1 Lbr,ne1.j.mp] 1 < § < 2:) of sequences defined in Theorem 2
of [7] can be said to be conjugate to each other. Similar identities
as those stated in Remark 7 also hold here for these two collections.

We can now use the the results obtained so far to find the best
possible lower bounds on the topological entropy and on the number
of symmetric and asymmetric periodic ‘orbits of periods guaranteed
in Theorem 1 for those continuous odd functions in C%I, I) which
have a symmetric periodic orbit of even period =>4. k

THEOREM 6. Let f be a continuwous odd function in C°(I I )
which has a symmetric periodic orbit of least period An for some
positive integer n. Then the topological enmtropy of f is greater
than or equal to log lsn (sharp), where iz is deﬁned; as in
Theorem 3. Furthermore, at least one of the following rolds.
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(A)  The following four statements nold.

Ly

C @

(3)

(4)

For every integer m>=2n, f has a simple symmetric periodic
orbit of the first kind wiltk least persod 2m. ’
For every positive integer k, A(k) and ANP(4n +Fk—1)

hold for f.

For every positive integer k, the equation f*(x) = x has at

- least cCuon (Sharp) distinct solutions and the equation

f¥x) = —x has at least dusn (sharp) distinct solutions,
where Ci,on and du,q2n ave defined as in Theorem 3.

For every positive integer m, | has at least @y z(m)/m
(sharp) distinct periodic orbits of least period m, at least
O, 2x(m)/(2m) (sharp) distinct symmetric periodic orbils of
least period 2m, and at least ©y,2,(2m)/(2m) — Og,2.(m)/(2m)
(sharp) distinct asymmetric periodic orbits of least perviod
2m, wheve Oy, and 02,2y are defined as in Theovem 3.

(B) The following four statements hold.

®
Ko
- 3)

(4)

- For every even integer m =>n, f has a simple symmetvic

periodic orbit of the second kind with least period 2m and
a simple ANP periodic orbit of least period m + 1.

For every positive integer k, ANP(2k) holds for f.

For every positive integer k, the equation f*(x) = x has at
least Dz (sharp) distinct solutions and the equation

f¥(x) = — x has at least qr2n (Sharp) distinct solutions:
For every positive integer m, f has at least ®s,zn(m)/m
(sharp) distinct periodic orbits of least period wm, at least

O, o0n(m)/(2m) (sharp) distinct symmetric periodic orbits of
least period 2m, and at least ©s,2n(20m)/(2m) —@u,2.(m)/(2m)
(sharp) distinct asymmelric periodic orbits of least period
o2m, where Os,ou, Du2n are defined as in Theorem 4. ‘

Proof. Without loss of generality, we may assume that f has
no symmeteric periodic orbit of least period 4(#z—1) >4. By
Theorem 2, we have two cases to consider. If part (1) of Theorem 2
hdlds,, then, by Theorem 3, vpart (A) follows. If part (2) of
‘Theorem 2 holds, then, by Theorem 4 and Corollary 2, part (B)
follo{évs.v This completes the proof. '

THEOREM 7. Let f be a continuous odd function in C°(I, I)
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which has a symmetric periodic orbit of least period 2(2n + 1) for
some positive integer n. Then at least one of the following holds.
(A) The following five statements hold.

D
(2)

(3)

(4)

(5)

For every integer m>2n+ 1, f has a simple symmetric
periodic orbit of the first kind wilh least period 2m.

For every positive integer k, A(k) and ANP (2(2n+1) +k—1)
hold for f.

For every positive integer k, the equation fHx)==x h’ds at
least Cuonei (sharp) distinct solutioms and the equation

) Fi(z) = — x has at least drznir (sharp) distinct solutions,
‘where chanei 04 Gr a1 ave defined as in Theorem 3.

For every positive integer m, | has at least Dy, onr1(m)/m
(sharp) distinct periodic orbits of least pericd m, at least
Oz, one1(m)/(2m) (sharp) distinct symmetric periodic orbits
of least period 2m, and at least @iz24+1(2m)/(2m)
— Ogonsi(m)/(2m) (sharp) distinct asymmetric . periodic
orbits of least peviod 2m, where ®y,zns1 aNd D 3n+1 ave defined
as inw Theorem 3.

The topological entvopy of f is greater tham or equal 1o
108 lznr1, Where leury is defined as in Theorem 3.

(B) The following five statements hold.

€Y

(2)
3

4

At least one of the following holds.

(a) For every integer m >n, f has a simple symmetric
periodic orbit of least period 2(2m + 1) of the third
Find with type = + ”.

: (b) For every integer m>=n, f kas a simple symmetric

periodic orbit of least period 2(2m + 1) of the third
: kind with type “— 7. - -
For every positive integer k, ANP(2k) holds for f.
For every positive imteger k, the equation f*(x)=x has

‘at least vin (Sharp) distinct solutions and the equation

f¥z) = —x has at least wwn (shavp) distinct solutions,

- where Vin and Wi are defined as in Theovem 5.

For every positive integer m, | has at least Os.(m)/m
(sharp) distinct periodic orbits of least period m, at’ least
Do, n(m8)/(2m) (sharp) distinct symmetric periodic orbits of
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least period 2m, and at least ®s,.(2m)/(2m) — G¢,.(m)/(2m)
(sharp) distinct asymmetyvic periodic orbits of least period
2m, where Ds,n, Oe,n are defined as in Theorem 5.

(5) The topological entropy of f is greater than or equal 1o
log 0., where 0, is defined as in Theorem 5.

Proof. Without loss of generality, we may assume that f has
no symmetric periodic orbit of least period 2(22—1) >6. By
Theorem 2, we have two cases to consider. If part (1) of
Theorem 2 holds, then, by Theorem 3, part (A) follows. If
part (3) of Theorem 2 holds, then, by Theorem 5, part (B) follows.
This completes the proof.

8. Continuous odd functions for which ANP(2%# + 1) holds.
Let f be a continuous odd function in C°(Z, I). Assume that f
has a periodic orbit of least period 2# + 1 for some positive
integer 7 which contains both negative and positive elements.
From part (v) of Theorem 1, we see that f has a symmetric
periodic orbit of least period 4z + 4. Consequently, we obtain, by
Theorem 6, lower bounds on the topological entropy and on the
number of symmetric and asymmetric periodic orbits of periods
guaranteed in Theorem 1 for such function f. However, these
lower bounds are not best possible. In this section, we will
use the results obtained in Sections 5, 6, and 7 to obtain the beast
possible lower bounds.

THEOREM 8. Let f be a continuous odd function in C*(I, I).
Assume that, for some positive integer n, f has a periodic orbit of
least period 2 + 1 whick contains both negative and positive
elements. Then at least one of the following holds.

(A) The following five statements hold.

(1) For every integer m > n, f has a simple symmetvic periodic

orbit of the first kind with least period 2m.

(2) For every positive integer k, A(k) and ANP(2n + k— 1)

hold for f. '

(3) For every positive integer k, the equation f*(x) =z has at

o least  Cpon (sharp)' distinct solutions and the equation
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f¥x)=—=x has at least dron (sharp) distinct solutions,
where Cr,on and di,2n are defined as in Theorem 3.

For every positive integer m, f has at least ©y,:.(m)/m
(sharp) distinct periodic orbits of least period m, at [least
Ds,2n(m)/(2m) (sharp) distinct symmetyic periodic orbits of
least period 2m, and at least ©1,2.(2m)/(2m) — ©s,2.(m)/(2m2)
(sharp) distinct asymmetric periodic orbits of least period
2me, where ©,,qn and Dz, ave defined as in Theorem 3.

The topological entropy of f is greater tham or equal 1o
log 2en (sharp), where izn is defined as in Theorem 3.

(B) The following five statements hold.

(1
(2)

(3

(4

- (5)

For every integer m > n, f has a simple symmelric periodic
orbit of the second kind with least period Am + 4 and a
simple ANP periodic orbit of least period 2m + 1.

For every positive integer k, ANP(2k) holds for f.

For every positive integer k, the equation f*(x)=x has
at least Gu,2nvs (Sharp) distinct solutions and the equation
f¥x) = —x has at least 7u,s0+1 (sharp) distinct solutions,
where qronct ARG ¥uonr1 ave defined as in Theorem 4.

For every positive integer m, | has at least ©s onri(m)/m
(sharp) distinct periodic orbits of least period m, at least
Oy 20:1(m)/(2m) (sharp) distinct symmetric periodic orbils

of least period 2m, and at least (Ds,s4+1(2m)/(2m))

— (D, 2011(m)/(2m)) (sharp) distinct asymmetric periodic
orbits of least period 2m, where 03 snr1 and Dioni1 are
defined as in Theorem 4. , ;

The topological entrvopy of [ is greater tham or equal to
log lonv1, Where lounr1 is defined as in Theorem 3.

‘ Proof. Let P be a periodic orbit of f of least period 27+ 1

which

contains both negative and positive elements. Let

b=max{|x|lx € P} and let ¥ be the unique element in P which

is closest to the origin. Without loss of generality, we may assume
that ¥ >0, I =[— b, b}, and I has no asymmetric periodic orbit
of f of least period m with m odd and 1<m<2# + 1 which
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contains both negative and positive elements. We have two cases
to consider.

I [y, b] contains a fixed point of f, then by Theorem 1 (vi),
f has a symmetric periodic orbit of least period 4. By T heorem 6,
f has a simple symmetric periodic orbit @ of least period 4z of
the first kind or the second kind. If @ is of the first kind, then
part (A) follows. If @ is of the second kind, then part (B) follows.

If [y, b1 contains no fixed point of f, then we 'define a
continuous odd function % in C°I, I) as follows. If the interval
(0, ¥) contains mno fixed point of f, then let = f on I If the
interval (0, ¥) contains a fixed point of f, let z be the largest fixed
point of - f in (0, ¥) and let k(x)= f(x) on [— b, —2z] U [z b]
and %(z) =2 on [— 2, z]. By Theorem A (Sharkovskii’s theorem),
% has no periodic orbit of least period 2z —12>=3 whose elements
are all negative or all positive. Consequently,. by Lemma 4, — &
has no symmetric periodic orbit of least period 2(2# —1) =6. So,
by Lemma 4, P U {— x|x € P} is a minimal symmetric periodic
orbit of — & with least period 2(22 + 1). From the definition of
h, it is clear that P U{— zjx € P} is also a minimal symmetric
periodic orbit of —f. By Theorem 2, — f must have a simple
symmetric periodic orbit of the first kind with least period
2(2z# + 1). By Theorem 3, part (B) follows.

9. Perturbations of confinucus odd functions with symmetric
iseriodic orbits. In this section, we study perturbations of those
continuous odd functions f which have some ‘symmetric periodic
orbits of least period 22 >4. If f is in C"(I I) and # is even
(odd reﬁp) we show (Theorem 9) that there is a neighborhood V'
of f in C°(I, I) such that every continuous odd function in V' has

ymmetrlc periodic orht of least period 22 + 2k (2F + 4k resp.)
for every positive mteger k. On the other hand, it is easﬂy seen
that every neighborhood of f in C%Z I) (in particular, V above)
contains continuous odd functions with symmetric periodic orbits
of all even periods. This implies that although those
CO.perturbations of f which are also odd preserve the periods
following 22 in the ordering defined in (*) or in (#) in Section 1
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as the periods of some symmetric periodic orbits, certain
perturbations of f produce (possibly infinitely) many additional
periods.

However, if f is in CY(J, I) with the C' metric d defined by
d(g, k) = max {|g(z) — k(x)| + |¢'(x) — A (x)||lx eI} and if f
has no symmetric periodic orbit of least period 2m for some
positive integer m, then we show (Theorem 10) that there is a
neighborhood W of f in CY(I, I) such that every continuous odd
function in W has no symmetric periodic orbit of least period Zm.
Therefore, as far as continuous odd functions and the periods
of symmetric periodic orbits are concerned, the perturbation
phenomenon in C'(J, I) is quite different from that in C°(Z, I).

We first study CP-perturbations.

TerorEM 9. Let f be a conmtinuous odd fumction in C(I, I)
which has a symmetric periodic orbit P of least period Zn for some
integer > 2. Then theve is @ neighborhood V' of f in CI, I)
such that the following hold.

() If P is a simple symmetric periodic orbit of the first kind,

then for every integer m>mn and every continuous 04d
© function g in V, g has a simple symmetric perzadzc orbit
of the first kind with least period 2m.

(ii) If P is a simple symmetric periodic orbit of the second
kind, them n is even and, for every even imleger m>n
and every continuous odd function g in V, g has a simple
symmetric periodic orbit of the second kind witk least
period 2m and a szmple ANP pemodzc orbit of least

. period m — 1.
@Gii) If P is a simple symmetric perzodzc orbit of the third
Eind with type “+7 (type “—” resp.), then n is odd and,

for every odd integer m>>n and every continuous odd
Function ¢ in V, g has a simple symmetric periodic orbit
of the third kind with least period 2m and the same type
as P.

Proof. Llet P={+ z;[{1<i< 2} with 0<1<2:<---<a
be a simple symmetric periodic orbit of “f of the first kind ‘with
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least period 2#.  Then fi(xy) = ;41 for all 1<i<z—1, and
f*(x) = —xy. Since f([0, £.]) D [0, x:], there is a point
y € (0, z1) such that f(y) =x:. So, "I Y =—<—Y<0<y
< fly) < fiy) < ---< f*(y). Consequently, there is a neighborhood
V of f in C°(I, I) such that, for every continuous odd function ¢
mV, < —y<y<g@) <PWP<<---<g*(®). Let 1=[0,v],
Ji=TLg*(y), ¢/ (y)] for all 1<i<xn By applying Lemma 3 to
the path o Ji oo+ - Jo(— Jo) of length # + 1, we obtain that ¢ has a
simple symmetric periodic orbit of the first kind with least period
222 + 2. The general case follows from inductive argument. This
proves part (i). '

By applying Lemma 4 to part (i), we obtain part (ii). As for
part (iii), we can apply Lemma 4 to Theorem A in [4]. We omit
the details. This completes the proof of the theorem.

The following result is now an easy consequence of the above
theorem and Theorem 2. ‘

COROLLARY 3. Let f be a continuous odd function in C(I, I)
with a symmetvic periodic orbit of least period 2n for some integer
n>2. Then there is a neighborhood V of f in C*(I, I) suck that
if »n is even (odd resp.), then every comtinuous odd function in V
has a symmetric periodic orbit of least period 2n + 2k (25 + 4k vesp.)
for every positive integer k.

We now study C'-perturbations. The following easy lemma [3]
is needed.

LeMMA 7. Let f be a continuous odd function in C(I, I) and
let {+ p;||1L<i<E} be a symmetlric periodic orbit of f of least
period 2k with k>3 and 0< p; < p:<<---<< pr. Then there are
points y and z in the interval [— P, pr] with f'(y) >0 and
Jf'(2) £ — 1. Furthermore, if £>3 is odd and f(p;) <0 for ail
1<i< &, then there are points u and v in the interval [ p;, pr] such
that f'(u) <0 and f'(v) > 1.

THEOREM 10. Let f be a continuous odd function in C (I, I)
which has no symmetric periodic orbit of least period 2m for some
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positive integer m. Then there is a wneighborhood W of [ in
CUI I) such that every conmtinuwous odd function inm W has #0
symmetric periodic orbit of least period 2m.

ReEMARK 9. The above result shows that, as far as continuous
odd functions and the periods of symmetric periodic orbits are
concerned, the C!'-perturbation is better than the C°-perturbation in
the sense that we can more or less recover from the C'-perturbation
the periods of the symmetric periodic orbits of the original
unperturbed function while in the C°-perturbation we can not.

Proof of Theorem 10. Let ¢ and & be two positive numbers
with e << e such that (i) |f(z) — f'(¥)|< %+ whenever x, Yyl
and |z —¥|<e, and (i) |fi(x) — @) |<e/f4 for all 1 <7< 2m,
whenever z, y € I and |x — y|<<e. It is clear that there is an
open subset S of I containing the closed set E={zel|f(x)=—z}
such that the Lebesgue measure of the set S — FE is strictly less
than e/2 and each open component of S contains at least one
point of E. Choose a positive' number e with e << ¥ such that
every continuous odd function ¢ in CYZ I) with d(f, 9) <es
satisfies the following two conditions:

(a) |fi(zx) —gi(x)|<efd forall 1<i<2m and all x € L

(b) The graph of y = g”(x) has no intersection point in

I — S with the line y = — .

Let g be a continuous odd function in CY(Z I) with d(f, 9)<es.
Suppose that ¢ has a symmetric periodic orbit @ of least period
2m. From the choice of e, this orbit @ must be contained entirely
in S. If y € Q, then there is a point z in E such that ly—z|<es/2.
So, |fi(z) — (| < 1Fi@ — @I+ 17 @) —F@)I<eft + aft
= &/2 for all 1 < i< 2m. If z=0, then the orbit @ is contained
entirely in a subinterval J; of I with length strictly less than e1e
If z-~0, then since f(z) = — 2, each half (i.e, {r € Q|xr >0} and
{z € Qlz < 0}) of the orbit @ is contained entirely in a subinterval
J: of I with length strictly less than ¢. In any case, each half of
the orbit @ is contained entirely in a subinterval J of [ with
length strictly less than ¢;. But then, from the choice of &, we
have, for all x, vy € J;
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9" () —¢' (] < 1g'(x) — (2]
‘ s @) -l + lf’(y) —9 (:t/)l |

1 1
= 4 63<2

This contradicts Lemma 7. Therefore, every continuous odd
function ¢ in C'(I, I) with d(f, g) <es cannot have a symmetric
periodic orbit of least period 2m. This completes the proof .of the
theorem.

The following result is in contrast to the above theorem.

THEOREM 11. Thefe is @ continuous odd function f in Cl(I I)
whzch has the following two. properties:
- (a) f satisfies S(6), but not S(Am) or AG2m +'1) for any
, po.s-ztwe inleger m.
- (b) For every neighborhood W of f in CY (I, I), there is a
continuous 0dd function in W which has symmetric periodic
‘o‘rbzts of least perzod dm and asymmetrzc periodic orbits
of least period 2m + 1 for every sufficiently large positive
inleger m.

Proof. For simplicity, let T=[~—1,1]. Let & be a fixed
number with 0 <o < % and let f « C'(I, I) satisfy the following
six conditions: ‘ o

- D) fl—=x) = —f(z) forall —1<x< L
S G FUo, 1) =[—1, 0.

- (i) flx)>—z forall —s < 2<0.

(iv). f is strictly decreasing on [— ¢4, 0].

) (=) =1 : -

(vi) f(x)=1l+zforall —1<z<—1+2. |
Then it is clear that f has a symmetric periodic orbit of least
period 6, but no symmetric periodic orbit of least period 4m and
no asymmetric periodic orbit of odd period 2m + 1 for any positive
integer m. ‘ ; ‘

- For any positive real number ¢ <3, let g. be a continuous odd
function in CY(Z, I) defined by ¢.(x) = f(z) for —1+6<2<0
g.(x) = f(x) —e(x +1—208)* for —1<xz< -1+ Then ¢, is
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in the eneighborhood of f in CYI, I). However, for every
sufficiently large odd integer %, there is a point x, (depending on &)
which is close to the origin such that — 0% <<Zo <0< f(&0),
Filme) = (— 1) i) and |fiN@o) | < |fi(x)| <0 for all
1<i<k—3, and f*2(x) =o. Since ¢g.=f on [—1+9, 1], we
have

gt (z0) = G2 (g (x0)) = A=) |
= () = 0.(— 1) = — e® < 20 <0< F(0) = (o).

Let . Jo=[—1, — 381, Ji =[x, 01, Ju: = [— f*2(x0), f¥*(x)] and
Jeisr = [F¥(x0), — f¥ 4 (a0)] for all 1< i< (2—1)/2. By applying
Lemma 3 to JofiJer--Jo(—Jo), we obtain a simple symmetric
periodic orbit of f of the second kind with least period 2& + 2. It
then follows from Theorem 4 that f has symmetric periodic orbits
of least period 2& + 2 + 4j and asymmetric periodic orbits of least
period & + 2 + 2j for every positive integer j. This completes the
proof of- the theorem.

For continuous odd functions in C*(Z, I) for which ANP(22+1)
holds for some positive integer #z, we also have a similar result on
Cperturbation which is an easy consequence of Theorems 1, 8,
and 9.

COROLLARY 4. Let f be a continuous odd function in C°(I I).
Assume that f satisfies ANP(2n + 1) for some positive integer n.
Then there is a neighborhood S of f in C(I, I) such that, for
every continuous odd function g in S, g satisfies S((4n +4) + 4dm),
ANP(2xn + 1 + 2m), and A(2m) for all positive integers m.

For perturbations of continuous odd functions without any
symmetric periodic orbit, see [1], [3], and [11].
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