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" Abstract. - Consider # -cells. into which balls are being dropped
independently in such a way that the cells are equiprobable and each
_ ball has probability p of falling through. "The experiment is stopped
‘until %- (unspecified) cells contain at least b balls: each. Tet Y; be:
~the number of balls in the ith cell, 1<i<m, and ¥Yy,+, be the number-
"of balls not hitting any cell when stopping. For two given arbitrary
-~funct10ns f and A, the "characteristic function of .the random
variable Z = Z}’;=1 YY) v r(Yy4q) is derived. The usefulness of this

representation is illustrated by two corollaries.

, 1. Introduction. In many statistical applications the underlying
probabilistic problem can be described in terms of the following
urn model (Johnson & Kotz (1977)): Consider # cells into which
balls are thrown independently of each other such that the
probability of hitting‘ and staying in each cell is (1 — p)/n. Each
ball has probability p» of falling through or leaking (hence not
being available to fill a cell), the balls are thrown until £ unspecified
cells contain at least & balls each, 6 >1. Let, for j=1,---, % Y;
be the content, i.e. the number of balls in cell j when this happens
and Y,,+1 is: the number of balls not hlttlng any cell. The random
varlablevof interest in this paper is Z = X7 f(Y;) + A(Yar1), where
f -and % are any given nonnegative functions. Owing to the
arbitrary functions f and %, the definition of Z will give us the
more g__eneral types of the Waiting time problems.
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The special case p=0 and b=1 is. the«.classical.sequeni:ial
occupancy problem. See, for example, Holst (1981). The case
0<p<1 is called the extended occupancy or the randomized
occupancy model. There are several papers concerned about the
randomized occupancy problems for the case of =1, see for
example, Samuel-Cahn (1974), also Anderson, Sobel and Ubppuluri
(1980). The most recent one is Prasad and Menon (1985). There
are no general results on the situation above seem to have been
given so far for the case 0 < p <1 and 5> 1. In this paper, we
concern 0< p<<1,6>1 and find a unified approach to solve many
different types of the waiting time problems on the randomized
sequential occupancy model.

Consider the conceptual “experiment” of throwing balls randomly
into # cells including the balls of falling through. We do not fix
in advance the number of balls but let the balls be placed one by
one as necessary for a prescribed situation to arise.

If the functions f(-) and %(-) are taken as f(.ﬁc) = nlx) =,
then the random variable Z represents the total number of balls
thrown until %2 cells contain at least & balls ‘each, i.e., Z is the
discrete waiting time for this experiment. This case is called
the birthday problem, the coupon-collectors problem, or the
randomized sequential occupancy problem.

In section 2, a representation of the characteristic function of
Z is obtained. This characteristic function can be used to derive
exact and asymptotic distributions of Z.  To illustrate its
applications, two corollaries are given in section 3.

2. The characteristic function of Z. Concerning with our urn
model, let T;= 3%.7T%,; for i=1, 2,---, #, where T%; is the
interarrival time between the (7 — 1) th ball and the jth ball in cell
i. Then T; is the waiting time until cell ¢ gets its #th ball. The
requirement for the experiment to terminate is that when % out of
the # cells contain at least & balls each. Let Y; be the number of
balls in the ith cell, 1<i<#, and Y,.: be the number of balls
not entering in any of the # cells when stopping.

We are assuming that the arrival processes {T},;}7: of the
balls in any of the # cells are independent Poisson processes with
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intensity one and thelarrival process for those balls leaking from
the # cells is also a Poisson process which is independent of the
previous # processes with 'intensity np/(1L — p). It is because that
the ratio of the intensities for the two independent Poisson
processes is equal to the ratio of probabilities of their occurrence,
then in our case, the intensity #p/{(1 — p) is got from the ratio of
p to (1 — p)/n. Under the equiprobable assumption, all the # cells
have the same chance (1 — p)/# of being hit or with probability p
of not hitting any cell on each throw. All the throws are
independent Poisson processes. So that T 1<i<# are i.i.d.
I, 1) random variables. Moreover, we find an interesting and
important fact that the waiting time until 2 unspecified cells
contain at least b balls each is just the order statistics Z%... Now
we derive the characteristic -function of Z in the following
theorem.

_ TH‘EOREM.‘ Given the time inteyrval [0, t1, t =0, let the random
variables r: be Poisson () and ¢; be Poisson (H(np/(1— $))), ¥:
and ¢: are independent. Then the characteristic function for '

Z= z‘ AT + (Tasr)

is ‘
- ‘E(ei'ez) : . (Z: i) eiff
S (2 eoreo P<1/»;=y.j>")k_1
1) Fb

b—1

(X e Pare=p)" |

j=0

cP(pi=b—D(3 e P(c = ) dt.

=0 B

Proof. From the previous discussion, we have known that
Tw:a is the (continuous) waiting-time of the experiment and since
Z = 220 f(Y;) + B(Yye1) is a function of X27'Y; which is the
(discrete) waiting-time of the experiment, so we consider using the
conditional expectation ‘
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E(eiBZ) — E(E(eiGZI Tkm))

to derive the characteristic function of Z.
‘ ‘Let U: and V; have the truncated Poisson distributions

P(Ut—J)——P(%—]l‘#z<b—1),

(2.2) ]-—-0 1,---,6—1

anbd , -
<23> P(V:=j>=P<wt=jm>b>; j=b b+

For glven ﬁxed tlme t>0, the event Tk,, =1 says the followmg
three cases:
(i) By the time ¢, since

Tlm < sz <---< Tk-—l:n < Tk:n =1

and Ty 1<I<Ek—1 must be one of T}, 1 <i<#n Thus there

are exactly 2 — 1 cells have got at least & balls each by time £ Also

the corresponding contents of 2 — 1 cells are i.i.d. truncated (from

below by b) Poisson random variables, say Vi(1),---, Vi(k — 1),

where V; is defined as in equation (2.3). ‘ o
(ii) At time ¢, consider ‘

the given event T%..=1¢,

where T%., is one of the T;, 1 < ¢ < # which is different from the
previous T, 1 <1<k —1. Hence there is exactly one. cell gets
its bth ball at time ¢ and thus there is exactly one random
variable among {Yy, Y3+, Y,!} degenerates at b at time &

(iii) After time ¢, since

t= Tkm _<_ Tk+1m < - < Tnm-

There will be (2 —'%) remaining cells get their bdth ball each
later than #. Thus at time # the contents of these # — k& cells are
i.i.d. truncted (from above by b — 1) Poisson random variables,
say Ug(1)---, Us(n — k), where U; is deﬁned as in equatlon (2 2).

Combining all the discussions from above and by the fact that

d. \.
T: P r, 1) and v~ Poisson (), we get the two events,

{7T: <t} and {v; > b} are equivalent and the den51ty of Tkn IS -
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0 =n (§ 1) (P> By
| (P <b—=1))EP(yy=b — 1>

(’2.4);#

and by the time #., =1, the requirement for the experiment to
terminate is satlsﬁed also comsider cond1t10n1ng on Tra =1, since
all the 73, 1<i<m, are i.i.d. I'(s, 1) random variables, hence
given the condition 7%, =#, the order statistics Tim, 1<I<k—1
and Tjn B+ 1<j<mn and among themselves are independent.
Therefore We have the random var1ab1e

(Y1, Yoo v, Yl Thn = t}-— {Vt(l) Vt(z): , Vil — 1),
Ut(l) U:(2),- Ut(k) and one 1nteger I. V. degenerates at b}

where V,(z), 1 <i < k — 1, are i.i.d. truncated (from below by b) .,
P01sson I. v.

Ui(]), I<j<n ——k are i;i. d. truncated (from above by
~ b—1) Poisson r.v.

moreover, V:(z), U:(j) are independent. As for the leaking balls -

Yo 2z ¢+ ~ Poisson (intensity = %)

where C,‘\‘ish independent of V.(2), U:(j) for 1<i<k-—1 and
1<j<mn—k Thus for Z = N1 f(¥:) + B(Yaer)

B2 Ty = 1) = E exoi0( 3 (00 + 5(¥ord)| Tun =1}
‘ Lo =eiﬂf(b){E(eiofcvt))}k—l{E(eiof(Ut))}n—kE(eieh(f,)). 3
Bybe'quation (2.4), the characteristic equation of Z is |

E(eit7) = wa(eiBZl Toew = 1) gr, () dt

(Z - :11) 205D /‘;w (i e D Py, = j))k:_l

N7
’ (bz—l ezafcnp(,h_]))

- PGpe=b—D(3 &0 Pe= 1) dt:

j=0

Therefore, the theorem  is proved;e
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Note. Once the characteristic equation of Z is derived as in
equation (2.1), then the moment generating function of Z is
analogously obtained as

Mz(4) = E(e’?)

o n(;: %‘) esF j:” (i esf(j)P(%i — j))k-x

j=b
J =

(8 erw povi= )

cP(pi=b—1) (Z oD P((y = ,>)

for s € (— sy, so) Wlth So >0 and is fixed.

3. Limit theorems for twe special cases of Z. By the unique
existence of the characteristic function for every random variable
then the representation of the characteristic function of Z is very
useful both for obtaining exact and asymptotic distributions for
the random variable Z. For different choices of f and %, we get
different types of the waiting time problems. .

In this section we give two corollaries to 1llstrate the usefulnees
of the Theorem in section 2.

Under the same probabilistic structure as in the Introduction,
i.e.,, the experiment is continued as soon as k& unspecified cells
containing at least -5 balls each, we will consider two types of Z
in this section: , ,

(1) Z=3X11Y; i.e. Z is the total number of balls in the %
cells with those are leaking. As we have mentioned in the
Introduction. Z is the discrete waiting time for the experiment.

(2) Z = Z%.I(Y; = D), then Z represents the number of cells
with exactly & balls when the experiment is stopped. .This case is
called the randomized occupancy problem. |

We will study the limiting distribution of Z for each case
respectively in Corollary 1 and 2.

CoroLLARY 1. If Z = Z"“ Y,, then ((1— p)/n)Z —> Tew as n

is very large. Moreover, if
Q) let n, k> with n—k=m as a constant, then after
suitably normalized, Z is extyeme-valued distributed in the.limit, or .
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(i) if n—co withkfn—2 0<1<1, then Z is asymptotzcally
normally distridbuted. ‘

Proof. Referring to the Theorem, the corresponding functions
S and & should be taken as the identity function on the
case Z = X!'Y;. For convenience of derivation, we use
probability-generating function instead of the characterlstm functlon
of Z in the Theorem, then we get

CE(s7) =8 [T (B(s7))EH(E(s7) ) HE(s) g, (1) dt

i RV bR

b

b—1 . . _ _ o

sTe 't \nk_ ettt .

. p/(1—p))E(s—1)
(;o it ) TG-nr ¢ > at

00
— ‘/(; en(=t+ts+(Ep/(1—p))(s—1)) ng:n(ts) sdt

-1
= E {e("/(l—P)) (L—s )Tb n } .

Hence the moment-generating function of Z is
(3.1) E(e'?) = E{e®/t-mu-c"1, 1

where Ty, is the Zth order statistics of {7y, T%,---, Tu}, Ti's are
iind. I'(d, 1) r.v. We consider the general case #>1. The
asymptotic distribution of Z can be obtaind from the relation of
equation (3.1).

From equation (3.1), we get

VA d ” O IVE
1/% 0(1__p) (1 e )Tkm

for any 0+ [6|<1 and fixed large #. In particular, let =0 and
by Taylor’s expansion, we have

(3.2) l;;ﬁ‘pz ':“"’ Tk:m

as # is very large. Thus the first part of the .corollary follows.
This tells us that if the number of cells, z, is large but fixed, then
when the experiment is stopped, the ‘numbers of balls in any of
the # cells are 1dentlcally dlstrlbuted as the waiting time of the
experiment, T%.,.
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. ~The asymyptotic distribution of Z can be obtained by Stirling’s
formula and Taylor’s expansion. We consider two special «cases:
Case (i). Letn, k> oo withw—k=m as a constant and keep
b as a constant. By usmg the fact equat1on (3 2), we get that
IR : 2 _Z_) o

”n 1-

—.Tkm 0

as % is very large
Note that T%.. is the &th order statistics of w’s i i d T,~I‘(b 1)
random varlables “We- apply- the well known’ theorem  on the
asymptouc dlStI‘lbUthIl of Tt (Leadbetter Lindgren & Rootzen
(1983), p. 33, Theorem 222) ‘We denote this. reference as L-L-R
later. o ‘
The ¢df of T; is 7 _
1 £ , 2 ety
F{) = 7o) j; stte-sds = ; i
First, we have to find the asymptotic distribution of
Ty = max{Tiy, T+, Tul, say G(z), and normalizing constants
{@s ba}

L PledTu =) S 0) =6
i'ew o e PR,

ofo- __}_*

Let S
U,=— + bﬂ
L fa
By Theorem 1 5.1. of L~L R (1983) "we ‘may choose U, as
large as ‘possible 'so that there exists z, 0 < 7 << &, such that
(3.3) n(l — F(Un)) e

where ¢ is fixed and finite; and Sl (L

S /4!

. » - U R dbl ;
—eUn 1+U,, L SR, 4 T N
| ( PR (b—l)Y)
s TE

W{l + O(U”'I)}» o ‘v
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taking logarithm on relation (3.3), we get

lLan + 1,(1 — F(U,)) — s,
i.e. ' '

Lt = Uy + (b — 1) L(U) — 1s(6 — 1)1

(3.4)7 » + 1,{1 + O(U;-l)} — LT,

Dividing U, on both sides and let U, — oo, then

Lol Ln 1.(T,) I,(6 —1)! Inz
3. =140 - A
(35) = 1+@G-1 U, U, ' U,

Since r is finite and U, approximates to infinite, so the above
relation (3.5) is reduced to

L(”]:z— —1-—>0, and then % — 1.

Thus -

ile. U, is asj}mptotically equivalent to /, 2. *
By relation (3.4), we .get
Us 2 =Ly +lyn+ (b — 1) Lln) — 1,(b— 1)1

Comparing this with U, = (x/@,) + b, so take @, =1, 2= — I, 1,
by=1Ilyn+ (b—1)1,(L,n) —1,(b—1)!.
Then ‘

'
J

T=e% S0 G(.vé)"=/ e~
ie. |
(36) P(Tun— (am + (5~ D halam) = (b — D) S 1) o e=e=s,

So by Theorem 2.1.2 of L-L-R, we get the asymptotic distribution
of T as

P{Tea— (hn+ (b= D Lllan) =L (b— DD <2}
an . | e e

= 7!
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Since

Tk:n- :

So the asymptotic distribution of Z is

1
— — —-1ne L
I Upn+(b—1) (U, n)— 1. (B—1)1) 1 W

where W has the extreme value (type I) distribution (Galambos
(1978) with distribution function, :

(38) Z —
77

—x\j
Fu(z)=e" 3 L&D (e el
i=0
Case (ii). If #— oo with k/2— 2, 0 < 1<<1. Then by equation
(3.3), and by the well-known result about the asymptotic distribution
of order statistics (Wilks (1962)), we get the asymptotic distribution
of Ty is

a 23 -2
Trn N(T(n,) n{(1/(6— 1)) T} e Tw}? ),

where T is the ith quantile of T:. Thus,

. VA
lim P [—__ -V < ] o*
lim Pr e 1= Ton<z (x)
with &/n— 2, where 0*(z) is a normal distribution with mean = 0,
variance = 2(1 — D) {(b—1)1/((1—p) T%hie Tw)}% Thus, the waiting
time Z suitably normalized is in the limit, extrme-valued distributed
in case (i) and normally distributed in case (ii).

COROLLARY 2. If Z = X2, I(Y; = b), and we denote it by N, let
n, B~ oo with n— k= m as a constant, then after suitabl. 'y normalized,
N is asymptotically I'(m + 1, 1/b) distributed, i. e. '

N
{lam + 1,(b —1)1}°

_ _#{cells with exactly & balls} r | 1
ot + In(b — 1)1} 5 (m+1 )
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Proof. Referring to the Theorem in section 2, we take functlon
A f as the indicator function
f(:z:) I(z=5) = [1 if =0
.. 0. W.
and function Z=0. Then according to eq. (2.1),
(39) E(eiBN) — eio Angk:”(t) {E(ei”f(vf))}”‘l {E(eiﬂf('Ut))}n—k dt,

wher T%.. = the kth order statistic of {7}, Tb,---, T.}, T; are i.i.d.
I'(d, 1) random variables.

U, V; are defined in equation (2.2), (2.3) respectively. Then in
equation (3.9)

E(eiVD) = 37 oitFD P(V, = j)

(3~10)H " 7= —t4b /1 50 __
1 _,§, e~itifj!
and
b—1
(311) = E(efrU») = Z erdD P(U; = j) =1,

by equation (24), the density of T%., is

7! 2. et e

=5

b_ .
1 et Va-k 1 bt e
{X:: 7l } @y e

let #, k— oo with # —k=m as a constant, then' the asymptotic
distribution of T%. is equation (3.7), hence the pdf of the
normalized variable

% = Thw — n? — (b_l)ln(ln”) - n(b_l)!
= Tk=nrlnn[1 + (b—1)M] — (b — )1
l.n

= Ton —lan[1 + (0 — 1)(Lan)] — 1,(6 — 1)!
2 Tk:u"'lnﬂ—l,.(b—l)!

becomes asymptotically as
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M (e—u)m .

(3.12) A ) ng:n_'In”_lﬂ(b_"1> ! (u) —e e—e-- m! ;

Insert equation (3.10), (3.11) into equatlon (3. 9) we have

(3.13) E(e'N) = eiﬂf ng:n(t) {1 + (e—ftb/bi)(e“" -1 \k ldt
b 1"‘23”’/1' :

using the transformation £=1u + lan +l,,(b D! ( u,,) »anc‘l\\
normalizing N by N/[l.#+1,(6—1)!11% Then equation (3.13)
becomes

E(ei/m+i, -1
= ez(ﬂ/[l 1I+l (b 1)!] ) f ng "—-l ﬂ-—l (b 1)!(”) )

(ems=ta-ia D1 4+ Lot (b — DN/BL )10
: (ex(G/El nil, (B—1)115) ) i

(314) {1+

dt.
1— 3 e*nul j! !
i=0 R

In equation (3.14), the denominator

b—1

1—2—6;]"!—”“——F(un)

where F(-) is the cdf of a I'(s1) random’ variable, then by
relation (3.3)

1-FU)e =27,
o n o on
Hence 1 — Nibetnul j! 21— (e~*/n).
In the numerator, the terms

(At Lem + 1, (b — 1)1)P (el (-D1ID 1)

¢an be épproximated by binomial and Tajrlor’s-expansions to the -

constant, £0. .
Also the term in the numerator

e~ (a1, (=D

"

e—t—laB-1,-D1

o

Insert all these approximation into the bfa"ckét' of equation
(3.14) and replace & by # — m, note ‘that mz’is ﬁmte Then the
contents in bracket become L
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—e”“/” Y AR
{1 + e=*/n((e~ "D /b if. __1)
: 1—e*/n } N -
i (EOO by et
,'{ N ’ 1 —_ efu/n 10} i -

R e e AV TR

(3‘_,15) L e M e e(‘e‘("-"-’n(”"",‘?/.6!,‘):'0.‘

e-—e

Refer back to- equation (3.14) and put the relatlons (3 12) (3. 15)
m equatlon (3.14).. Then

E(eza(N/[l,, 741, (b-1)1] b))

(316) fooe_“e_e_u (e—*)™ R G L VATV R
- ! . ) T

Change variable

w = e-‘—u—l'"'(b—-i)‘!
- b!

Then
e *=bw, du=——".--
Thus relation (3 16) becomes

f (bw)e-—bw (bw) oitw dw- -
. w

[ (b'"“ wm i) e d

ie.
B (@ 0N /T m 1, (=12 119)) _,,;./o"” et « f(w) dw,
where
m-1
f(w) ______wm —~bw

is the pdf of a I"(mﬁ-'l’,fl/b‘)‘ random variable. By the uniqueness
of the characteristic function; we get
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N d ( R |
. —I'{m + 1, —)
[lame + 1,(b—1)1]° ' b
as#, E—oo with u —k=m a coﬁStant and 5> 1 is fixed.
It means that when the process is stopped, the number of cells
with exactly b balls under the mnormalization [l,72 + 7,(b — 1)1]®
will be asymptotically distributed as a I'(# + 1, 1/b)) variable.

4. Conclusion and extension. From the above corollaries we
find the expression in the Theorem is very useful, it can solve
many different types of randomized sequential occupancy -problems.
Actually, on the same problem, we can consider the much more
general case that the probabilities of each ball staying in any of
the n cells are different or the case that when the ‘experiment is
stopped the % unspecified urns contain at least d’s balls, the &;'s,
1 < i <k, may be different (Yeh (1986)). -
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