## DECOMPOSITION OF L<sup>2</sup>-FUNCTIONALS ON HILBERT SPACES WITH POISSON MEASURE

19. july 19. may 19. mg **BY** 

## T.F. LIN (林大風)

0. Introduction. By using the method of multi-Hilbertian space (see [6, p. 55–62]), one can introduce a Gaussian measure  $\mu$  on a space  $E' \supset L^2(R)$  and two E'-valued processes X(t), Y(t) such that

(0.1) 
$$L^2(E', \mu) = \sum_{n=0}^{\infty} \bigoplus H_n$$
.

- (0.2) X(t) is an E'-valued Wiener process,  $\mu$  is the distribution of X(1).
- (0.3) Y(t) is an Ornstein-Uhlenbeck process w.r.t. (with respect to) X(t).
- (0.4)  $H_n$  is an eigenspace of the infinitesimal generator associated with Y(t) for each  $n \ge 0$ .
- (0.5)  $\mu$  is an invariant measure for Y(t).

Although Poisson measure can be introduced on E' (see [4, p. 148]) and even the Hida calculus can be studied (see [7]), the relations analogous to (0.2)–(0.5) are missing. The purpose of this note is to introduce a different Poisson measure on E' such that all the relations analogous to (0.1)–(0.5) are retained.

In Section 1, a fundamental birth-death process is studied. A Poisson measure will be introduced in Section 2. Processes X(t), Y(t) will be studied in Section 3. Decomposition analogous to (0.1) will be given in Section 4 and, finally, a converging phenomenon will be given in the last section.

Received by the editors April 22, 1987.

A. M. S. Subject Classification: 60J27

1. A BD-process. Let  $\lambda > 0$ ,  $S = \{s_n = -\lambda + n : n \ge 0\}$  and let y(t) be a birth-death process on S with birth rate  $\alpha_n = \lambda$  and death rate  $\beta_n = n$  at each states  $s_n$ . With these  $\alpha_n$ ,  $\beta_n$ ,  $n \ge 0$ , y(t) is a Markov process and has an invariant distribution (see [1, Thm. 2, p. 324]). Let A denote the infinitesimal generator of y(t). Then

(1.1) 
$$Af(z) = \lambda f(z+1) - (z+2\lambda) f(z) + (z+\lambda) f(z-1), \quad z \in S.$$

LEMMA 1.1. Let  $\nu$  be the mean centered Poisson distribution with parameter  $\lambda$  and let the Charlie-Poisson polynomials  $\{P_n\}$  be defined by

$$(1.2) (1+u)^{\lambda+z} e^{-\lambda u} = \sum_{n=0}^{\infty} u^n P_n(z), u > -1, z \in R.$$

Then  $\{P_n\}$  are orthogonal and complete in  $L^2(R, \nu)$ . Furthermore,

$$(1.3) \quad \lambda \ P_n(z+1) - (z+2\lambda - n) P_n(z) + (z+\lambda) P_n(z-1) = 0.$$

**Proof.** Let  $K_n(z) = P_n(z - \lambda)$ ,  $n \ge 0$ . Then from (1.2), the generating function of  $\{K_n\}$  is  $(1 + u)^z e^{-\lambda u}$ . Hence  $\{K_n\}$  are orthogonal and complete in  $L^2(R, \nu^*)$  where  $\nu^*$  is the Poisson distribution with parameter  $\lambda$  (see [4, p. 152] or [8, Thm. 4.3, p. 370]). Therefore  $\{P_n\}$  are orthogonal and complete in  $L^2(R, \nu)$ . This proves the first statement of Lemma 1.1. For each  $n \ge 0$ ,  $K_n$  satisfies (see [8, Lemma 3.3, p. 369])

(1.4) 
$$\lambda K_n(z+1) - (z+\lambda - n) K_n(z) + z K_n(z-1) = 0.$$

(1.3) follows from (1.4) and  $K_n(z) = P_n(z - \lambda)$ .

COROLLARY 1.2. For each  $n \ge 0$ ,  $AP_n(z) = -nP_n(z)$ ,  $z \in R$ .

THEOREM 1.3.  $\nu$  is an invariant measure for y(t).

Proof. It suffices to check that

$$\pi_{\nu} M_A = 0$$

holds, where  $\pi_{\nu} = e^{-\lambda}(1, \lambda, \dots, \lambda^{n}/n!, \dots)$  is the row vector for  $\nu$  and where  $M_{A}$  is the infinitesimal matrix of A obtained from (1.1). Let  $M_{A} = [m_{ij}]$ . It is easy to see from (1.1) that

(1.6) 
$$\begin{cases} m_{00} = -\lambda, & m_{10} = 1, \\ m_{n-1,n} = \lambda, & m_{nn} = -(\lambda + n), & m_{n+1,n} = n + 1, & n \ge 1. \end{cases}$$

(1.5) follows from (1.6) by direct computation.

REMARK 1.4. Suppose that  $y(0) = s_0 = -\lambda$ . Let b(t) and d(t) denote the numbers of births and deaths, respectively, of y(t) up to time t. Then b(t) is a Poisson process with parameter  $\lambda$ ,  $y(t) = b(t) - d(t) - \lambda$  and  $0 \le d(t) \le b(t)$ . Let  $x(t) = b(t) - \lambda t$ . Then x(t) is a mean centered Poisson process.

2. Poisson measure. Let H be a separable Hilbert space with inner product  $\langle \cdot, \cdot \rangle$ , norm  $\| \cdot \|$  and an orthonormal basis  $\{h_n\}$ . Let  $e_n = h_n/n$ ,  $n \ge 1$ , and for each integer k, let

$$E_k = \Big\{ \sum_{n=1}^{\infty} a_n e_n : \sum_{n=1}^{\infty} n^{2k} a_n^2 > \infty \Big\}.$$

Then  $E_{-1} = H$  and  $E_{k+1} \subset E_k$  for all k. Each  $E_k$  is a Hilbert space with inner product

$$\left\langle \sum_{n=1}^{\infty} a_n e_n, \sum_{n=1}^{\infty} b_n e_n \right\rangle_k = \sum_{n=1}^{\infty} n^{2k} a_n b_n.$$

For each  $k \geq 0$ ,  $E_{-k}$  will be identified with the dual space  $E'_k$  in the sense that the pairing for elements  $\xi = \sum_{n=1}^{\infty} \xi_n e_n \in E_{-k}$  and  $f = \sum_{n=1}^{\infty} f_n e_n \in E_k$  is

$$(\xi, f)_k = \sum_{n=1}^{\infty} \xi_n f_n.$$

Let  $E = \bigcap_{k=1}^{\infty} E_k$  and  $E' = \bigcup_{k=1}^{\infty} E_{-k}$ . Then E is a multi-Hilbertian space (see [6, p. 4]) or a nuclear space (see [5, p. 301]) and E' is the dual of E.

LEMMA 2.1. Let the functional C on E be defined by

(2.1) 
$$C(f) = \prod_{n=1}^{\infty} \exp\{e^{i\lambda\langle f, e_n\rangle_0} - 1 - i\lambda\langle f, e_n\rangle_0\}, \quad f \in E.$$

Then  $|C(f)| < \infty$  for all  $f \in E$  and (i) C is positive definite, (ii) C(0) = 1, (iii)  $C(f) \rightarrow 1$  as  $||f||_0 \rightarrow 0$ .

**Proof.** It is easily checked from (2.1) that

$$e^{(-1/2)\lambda^2 \|f\|_0^2} \le |C(f)| \le e^{(1/2)\lambda^2 \|f\|_0^2}$$

This implies  $|C(f)| < \infty$  and (iii). Each factor in the product on the right hand side of (2.1) is a characteristic function of a mean centered Poisson distribution and hence is positive definite. Therefore C is positive definite. The assertion (ii) is obvious.

THEOREM 2.2. There exists a probability measure  $\mu$  on E' such that

(2.2) 
$$C(f) = \int_{E'} e^{i\xi(f)} d\mu(\xi), \quad f \in E.$$

*Furthermore*, supp.  $\mu \subset E_{-1} = H$ .

**Proof.** The existence of measure  $\mu$  on E' such that (2.2) holds follows from Lemma 2.1 and the Bochner-Minlos theorem. Let  $g_n = e_n/n$ ,  $n \ge 1$ . Then  $\{g_n\}$  is an orthonormal basis of  $E_1$ . And,

$$\sum_{n=1}^{\infty} \|g_n\|_0^2 = \sum_{n=1}^{\infty} 1/n^2 < \infty.$$

This means that the injection mapping from  $E_1$  to  $E_0$  is Hilbert-Schmidt. Thus  $E_1' = E_{-1} = H$  is a support for  $\mu$  (see [6, Thm. 2.6.1, p. 23] or [5, Thm. 3.1, p. 121]).

REMARK 2.3. Since H is separable, the Borel algebra of H coincides with the  $\sigma$ -algebra generated by cylinder sets of the form  $\{\xi \in H : \langle \xi, h_k \rangle < a_k, \ 1 \le k \le n\}, \ a_1, \cdots, \ a_n \in R, \ n \ge 1,$  or equivalently, of the form  $\{\xi \in H : \langle \xi, l_k \rangle_0 < b_k, \ 1 \le k \le n\}, \ b_1, \cdots, \ b_n \in R, \ n \ge 1.$  The collection of latter cylinder sets will be denoted by  $\mathcal{F}$ .

LEMMA 2.4. Let  $z_n(\xi) = \xi(e_n) = \langle \xi, e_n \rangle_0$ ,  $n \ge 1$ , be a sequence of functionals on H. Then they are i.i.d. w.r.t.  $\mu$  and have  $\nu$  as their distribution.

**Proof.** For each n, the characteristic function of  $z_n$  is, by (2.1) and Theorem 2.2,

(2.3) 
$$\int_{H} e^{itz_{n}(\xi)} d\mu(\xi)$$

$$= \int_{H} e^{i\xi(te_{n})} d\mu(\xi) = C(te_{n}) = \exp\{e^{i\lambda t} - 1 - i\lambda t\}.$$

This is the characteristic function of the distribution v. Therefore,

 $\nu$  is the distribution function of  $z_n$ . To show the independence of  $\{z_n\}$ , let m>0 be an arbitrary integer,  $t_k\in R$ ,  $1\leq k\leq m$ . Then by (2.1) and (2.3),

$$\int_{H} \exp\left\{i\sum_{k=1}^{m} t_{k} z_{k}(\xi)\right\} d\mu(\xi) = \int_{H} \exp\left\{i\xi\left(\sum_{k=1}^{m} t_{k} z_{k}\right)\right\} d\mu(\xi)$$

$$= \prod_{k=1}^{m} \exp\left\{e^{i\lambda t_{k}} - 1 - i\lambda t_{k}\right\} = \prod_{k=1}^{m} \int_{H} e^{it_{k} z_{k}(\xi)} d\mu(\xi).$$

Therefore,  $\{z_n\}$  are independent w. r. t.  $\mu$ .

REMARK 2.5. For  $\xi \in H$ ,  $\dot{\xi} = \sum_{n=1}^{\infty} \langle \xi, h_n \rangle h_n = \sum_{n=1}^{\infty} \langle \xi, e_n \rangle_0 e_n$ =  $\sum_{n=1}^{\infty} z_n(\xi) e_n$ .

COROLLARY 2.6. Let  $B_k \in \mathcal{B}(R)$ ,  $1 \le k \le n$ . Then

$$\mu\{\xi\in H: \langle \xi, e_k\rangle_0\in B_k, \ 1\leq k\leq n\}=\prod_{k=1}^n \nu(B_k).$$

3. Markov process. Let  $\{x_k(t), y_k(t)\}$ ,  $k \ge 1$ , be independent copies of  $\{x(t), y(t)\}$  given in Section 1 and let

$$X(t) = \sum_{n=1}^{\infty} x_n(t) e_n, \quad Y(t) = Y(0) + \sum_{n=1}^{\infty} y_n(t) e_n, \quad t \ge 0$$

where  $Y(0) \in H$ .

LEMMA 3.1. For each  $t \ge 0$ , X(t),  $Y(t) \in H$  a.s. and  $\mu$  is the distribution of X(1).

**Proof.** Since

$$E\|X(t)\|^2 = \lim_{n\to\infty} E\left\|\sum_{k=1}^n x_k(t) e_n\right\|^2 = \lim_{n\to\infty} \sum_{k=1}^n \frac{1}{k^2} E x_k^2(t)$$

$$= \lambda t \sum_{n=1}^\infty \frac{1}{n^2} < \infty,$$

it is seen that  $X(t) \in H$  a.s.. Form Remark 1.4, one has  $\lambda \leq y_n(t) \leq x_n(t) + \lambda t$ . This fact together with  $X(t) \in H$  imply that  $Y(t) - Y(0) \in H$  a.s. Therefore,  $Y(t) \in H$  a.s. since  $Y(0) \in H$ . The characteristic functional of X(1) is

$$egin{aligned} Ee^{iX(1)\langle f
angle} &= E \, \exp\Bigl\{i\sum_{n=1}^{\infty} x_n(1)\langle f,\, e_n
angle_0\Bigr\} \ &= \lim_{m o \infty} E \, \exp\Bigl\{i\sum_{n=1}^{m} x_n(1)\langle f,\, e_n
angle_0\Bigr\} \ &= \prod_{n=1}^{\infty} \exp\{e^{i\lambda\langle f,\, e_n
angle_0} - 1 - i\lambda\langle f,\, e_n
angle_0\} \ &= \int_H e^{i\xi\langle f
angle} \, d\mu(\xi). \end{aligned}$$

Therefore,  $\mu$  is the distribution of X(1).

380

Before we show that Y(t) is a Markov process, we note that  $B = \{\xi \in H : \langle \xi, h_n \rangle < a\}$  is a Borel set for each n and  $a \in R$ . And,  $\{\omega : Y(s, \omega) \in B\} = \{\omega : y_n(s, \omega) < na\}$ . This amounts to say that  $\sigma(Y(s)) = \sigma(y_n(s), n \ge 1)$  and  $\sigma(Y(r), r \le s) = \sigma(y_n(r), r \le s, n \ge 1)$ .

LEMMA 3.2. Y(t) is a Markov process.

**Proof.** Let  $0 \le s < t_1 < \cdots < t_m$ ,  $n_k \ge 1$ ,  $1 \le k \le m$ ,  $B \in \mathcal{B}(R^{\sum_{k=1}^m n_k})$   $F = \{(y_j(t_k), 1 \le j \le n_k, 1 \le k \le m) \in B\}$ . From the independence and Markov property of  $y_m(t)$ ,  $m \ge 1$ , one obtains that

(3.1) 
$$E\{I_{F}|Y(r), r \leq s\} = E\{I_{F}|y_{k}(r), r \leq s, k \geq 1\}$$

$$= E\{I_{F}|y_{k}(r), r \leq s, 1 \leq k \leq m\}$$

$$= E\{I_{F}|y_{k}(s), 1 \leq k \leq m\} = E\{I_{F}|y_{k}(s), k \geq 1\}$$

$$= E\{I_{F}|Y_{k}(s)\}.$$

Since every indicator function of a measurable set in  $\sigma(Y(r), r \geq s)$  is the limit in probability (see the proof in [2, p. 309]) of a sequence of indicator functions of cylinder sets like F. (3.1) holds for every  $F \in \sigma(Y(t), t \geq s)$  by Dominated Convergence Theorem. This shows that Y(t) is a Markov process.

THEOREM 3.3.  $\mu$  is an invariant measure of the process Y(t).

**Proof.** Let  $T_t$  denote the semigroup of operators associated with the transition probability  $P_t(\xi, d\eta)$  of Y(t) and let  $T_t^*$  be the adjoint of  $T_t$ . For each n, let  $p_n$  denote the projection operator on the span of  $h_1, \dots, h_n(e_1, \dots, e_n)$ . Then, by independence of  $\{y_k(t)\}$ , Theorem 1.3 and Corollary 2.6, one has for  $F = \{\xi \in H : \langle \xi, e_k \rangle_0 \in B_k \in \mathcal{B}(R), 1 \le k \le n\} \in \mathcal{F}$ ,

$$egin{aligned} (m{T}_{t}^{*}\,\mu)(F) &= \int_{H} P_{t}(\xi,\,F)\,d\mu(\xi) \ &= \int_{H} d\mu(\xi)\,E_{\xi}\{y_{k}(t) \in B_{k},\,1 \leq k \leq n\} \ &= \int_{p_{n}H} d(\mu\,p_{n}^{-1})(\eta)\,E_{\eta}\{y_{k}(t) \in B_{k},\,1 \leq k \leq n\} \ &= \int_{p_{n}H} d(\mu\,p_{n}^{-1})(\eta)\,\prod_{k=1}^{n}\,E_{\eta_{k}}\{y_{k}(t) \in B_{k}\}, \ &\eta = \sum_{k=1}^{n}\,\eta_{k}\,e_{k}, \ &= \prod_{k=1}^{n}\,\int_{R}E_{\eta_{k}}\{y_{k}(t) \in B_{k}\}\,d
u(\eta_{k}) \end{aligned}$$

Therefore,  $T_t^* \mu$  agrees with  $\mu$  on  $\mathscr{T}$ . Since both  $T_t^* \mu$  on  $\mu$  are measures, Remark 2.3 implies that  $T_t^* \mu = \mu$ . Hence  $\mu$  is invariant for Y(t).

4. **Decomposition.** Let  $L = L^2(H, \mu)$  and let  $\mathcal{T}_n$  be the collection of all tame functionals  $F(\xi) = u(\langle \xi, e_1 \rangle_0, \cdots, \langle \xi, e_k \rangle_0)$   $= u(z_1(\xi), \cdots, z_n(\xi)), n \geq 1$ , where u is a tame function on  $R^n$ ,  $\mathcal{T} = \bigcup_{n=1}^{\infty} \mathcal{T}_n$ . To each  $n^* = (n_1, n_2, \cdots)$  with  $|n^*| = \sum_{k=1}^{\infty} n_k < \infty$ , let

(4.1) 
$$P_{n}^{*}(\xi) = \prod_{k=1}^{\infty} P_{n_{k}}(z_{k}(\xi)), \quad \xi \in H.$$

 $=\prod_{k=1}^n\nu(B_k)=\mu(F).$ 

Let  $H_0 = R$  and for each  $n \ge 1$ , let  $H_n =$  the closed span of  $P_{-*}^*$   $(\xi)$ ,  $|n^*| = n$ .

LEMMA 4.1.  $T_t$ ,  $t \ge 0$ , can be extended contractively to L.

**Proof.** Let  $F \in L$ . By Cauchy-Schwarz inequality and Theorem 3.3, one has

$$\|T_t F\|_L^2 = \int_H \left\{ \int_H P_t(\xi, d\eta) F(\eta) \right\}^2 d\mu(\xi)$$
  
 $\leq \int_H \int_H P_t(\xi, d\eta) F^2(\eta) d\mu(\xi)$ 
  
 $= \int_H F^2(\eta) d\mu(\eta) = \|F\|_L^2.$ 

Hence  $T_t$  can be extended contractively to L for each  $t \ge 0$ .

LEMMA 4.2. Let G be the infinitesimal generator of  $T_t$ . Then, for  $F \in \mathcal{F}_n$  or a polynomial of  $z_k(\xi)$ ,  $1 \le k \le n$ ,

(4.2) 
$$(GF)(\xi) = \sum_{k=1}^{n} A_k u(z_1(\xi), \dots, z_n(\xi)),$$

where  $F(\xi) = u(z_1(\xi), \dots, z_n(\xi))$  and where  $A_k$  is the operator A acting on the k-th variable.

**Proof.** This lemma follows from the fact that  $\{y_k(t)\}$  are independent copies of y(t) which has A as infinitesimal generator.

LEMMA 4.3. For each  $n \ge 0$ ,  $H_n$  is the eigenspace of G corresponding to the eigenvalue -n.

**Proof.** This lemma follows from the definition of  $H_n$ , (4.1), (4.2) and Corollary 1.2.

LEMMA 4.4. For  $n^* = (n_1, n_2, \cdots) \neq m^* = (m_1, m_2, \cdots),$ 

$$\int_{H} P_{m^{*}}^{*}(\xi) P_{n^{*}}^{*}(\xi) d\mu(\xi) = 0.$$

**Proof.** This lemma follows from (4.1) and Lemma 1.1.

Since every  $F \in L$  can be approximated by tame functionals in  $\mathcal{F}$  which, by Lemma 1.1, in turn can be approximated by linear combination of elements in  $H_n$ ,  $n \geq 0$ , Lemma 4.3 and Lemma 4.4 imply

THEOREM 4.5. The space  $L^2(H, \mu)$  has decomposition

$$L^{2}(H, \mu) = \sum_{n=0}^{\infty} \bigoplus H_{n},$$

where  $H_n$ ,  $n \ge 0$ , are eigenspaces of the infinitesimal generator G of Y(t). Indeed, -G is the number operator such that (-G)(F) = nF for  $F \in H_n$ ,  $n \ge 0$ .

5. Convergence. In the provious discussion, the process y(t), x(t) have jumps equal to  $\pm 1$ . If we consider jumps of  $\pm h$  and let  $\mu_h$ ,  $X_h(t)$ ,  $Y_h(t)$ ,  $A_h$ ,  $G_h$ ,  $T_h(t)$  denote the corresponding  $\mu$ , X(t), Y(t), A, G,  $T_t$ , respectively. Then

$$A_h f(z) = \lambda (f(z+h) - 2f(z) + f(z-h)) - z/h(f(z) - f(z-h)).$$

Therefore,

$$\lim_{z=(z,h^2)^{-1}\to\infty} A_h f(z) = \frac{1}{2} f''(z) - z f'(z)$$

for nice function f. This implies that

$$\lim_{\lambda=(2h^2)^{-1}\to\infty} G_h u(z_1(\xi),\cdots,z_k(\xi))$$

$$= \frac{1}{2} \sum_{k=1}^n \frac{\partial^2}{\partial z_k^2} u(z_1(\xi),\cdots,z_n(\xi))$$

$$- \sum_{k=1}^n z_k(\xi) \frac{\partial}{\partial z_k} u(z_1(\xi),\cdots,z_n(\xi)).$$

Then, by the Approximation Theorem in [3, p. 190],

$$\lim_{\lambda=(2h^2)^{-1}\to\infty} T_h(t) F = T_t F$$

for each tame function F. This shows that, as  $\lambda = (2h^2)^{-1} \to \infty$ ,  $Y_h(t)$  converges weakly in H to an Ornstein-Uhlenbeck process  $Y_0(t)$  for which  $\lim_{\lambda=(2h^2)^{-1}\to\infty}\mu_h$  is an invariant (Ganssian) measure.

**Acknowledgement.** The author wishes to thank Dr. C. R. Hwang for his useful discussion during the preparation of this manuscript.

## REFERENCES

- 1. I.I. Gikhman and A.V. Skorokhod, Introduction to the theory of random processes, Saunders, Philadelphia (1969).
  - 2. \_\_\_\_\_, The theory of stochastic processes I, Springer, New York (1974).
- 3. J. Goldstein, Semigroup-theoretic proofs of the central limit theorem and other theorems of analysis, Semigroup Forum, 12 (1976), 189-206.
  - 4. T. Hida, Stationary stochastic process, Princeton Univ. Press (1970).
  - 5. \_\_\_\_\_, Brownian motion, Springer-Verlag, New York (1980).
- 6. K. Ito, Found, stoch. diff. equ. inf. dim. spaces, Soc. Indu. Appl. Math., Philadelphia. (1984).
- 7. Y. Ito, On a generalization of nonlinear Poissson functionals, Math. Rep. Toyama Univ., 3 (1980), 111-122.
- 8. T.F. Lin, Stochastic construction of new complete orthogonal polynomials, Proc. Amer. Math. Soc., 73 (1979), 365-370.

Department of Mathematics Soochow University Taipei, Taiwan, R.O.C.