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0. Imntroduction. By wusing “the method of multi-Hilbertian
space (see [6, p. 55-62]), one can introduce a Gaussian measure “
on a space E’ DLZ(R) and two E’-valued processes X(2), Y(t)
such that

(0.1) L“’(E’, u) = Z S Hn

(02) X (t) is an E’ -valued Wiener process, o is the dlstrlbutlon of

' X(1). :

(0.3) Y (¢) is an Ornstein-Uhlenbeck process w.r.t. (with respect

C to) X(&).

(04) H, is an elgenspace of the lnﬁnlte31mal generator assoc1ated
with Y (¢) for each > 0. '

(0.5) u is an invariant measure for Y(t)

Although P01sson measure can be introduced on- E’ (see [4 p. 148])
and even the Hlda calculus can be studied (see [7]) the relatlons
analogous to (0.2)-(0.5) are mlssmg The purpose of this note is
to introduce a different Poisson measure on E’ such that all the
relations analogous to (0.1)~(0.5) are retained.

In Section 1, a fundamental birth-death process is studied. A
Poisson measure will be introduced in Section 2. Processes X(2),
Y (#) will be studied in Section 3. Decomposition analogous to (0.1)
will be given in Section 4 and, finally, a converging phenomenon
will be given in the last section. -
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1. A BD-process. Let 1>0, S={s,=—2+#n: 2>0} and
let y(¢) be a birth-death process on S with birth rate o, = 1 and
death rate g, =n at each states sy With these &, Bn 72>0, y(2)
is a Markov process and’ has an ‘invariant  distribution (see
[1, Thm. 2, p. 324]) Tet A denote the infinitesimal generator of
y(2). Then

Af(2)=21f(z+1) — (2 +22) f(2)

(1.1) F (242 flz—1), zeNS.

LEMMA 1.1. Let v be the mean centered Poisson distribution
with - parameter 1 and let the Charlie- Pozsson polynommls {P,,} be
deﬁned by ‘ :

(12)  A+wite=3 1w P&, u>-1 zcR
Then {P,} are orthogonal and complete in L*(R, v). Furthermare,
(13) 2 P,,(g+1) (z+21 —n)P(z) + (z+ l)P,,(z-—l)—O
Proof. Let K,(2) =PJ(z—2), n 2 0. Then from. (1.2), the
generating function of (K.} is (1+#)*e™**. Hence {K,} are
orthogonal and complete in L?*(R, v*) where »* is the Poisson
dlstrlbutlon W1th parameter 1. (see [4, p.. 152] or [8, Thm. 4.3,
p. 3701). Therefore {P,} are orthogonal and complete- in LZ(R v).

This proves the first statement of Lemma L 1 For each n= 0 K,,
satisfies (see [8, Lemma 3.3, . 369])

D) K+ = (21— n) Ku(2) + zKi(z — 1) = 0.
(1 3) follows from (1. 4) and K,,(z) P,,(z - .
" COROLLARY 1.9. ’For each 7 >0, ‘AP,,(z) = — nP;,(z),"z eR._ | | , '_ :
THEOREM 13. - visan zm)zmcmt measure for y(t).:

Proof It suﬁices to check that .
(15) IS w, Ma=0

holds, where =, = e *(1, 2,---, */nl,--+) is thé row vector for v
and where M, is the infinitesimal matrix of A obtained from (1.1).
Let My = [m;;]. 1t is easy to see from (1.1) that
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!moo l! ym10=1) .
.lm,.l,,—x M= — (24 n), m,,+1,,—n+1 n>1

(1 6)

(1 5) follows from (1 6) by direct computation.

REMARK 14 Suppose that y(0) =s,= — 1. Let b(¢) and d(#)
denote-the numbers of births and deaths, respectively, of -y(z) up
to time ¢ Then b(¢) is a Poisson process with parameter.1;
Y()=0b6(1) —d(@)— 21 and 0< d(t) <b(t). Let x(2)=0b(2) — .
Then 2(¢) is a mean centered Poisson process. " S

2. Poisson measure. Let H be a separable Hilbert space Wlth
inmer product <+, +>, norm [+|| and an orthonormal basis {%.}. Let
ex*= hy/n, n > 1, and for each integer %, let

Ek={§:aﬂen:in2”a3>éo}.

n=] 2=1

Then E_, = H and E;., C E; fo‘r all k. Fach E; is a Hilbert space
with »inner product

<i a,,ke,,, i b, e;,> Z n*a, b

Rzl

For each >0, E_; Wlll be identified with the dual space E,, in
the sense that the pairing for elements &= Y7, Eies € E_ and
f= Z:=1fnen € Ey is ’ S

& Pe=3 afu

Let E = (2B and E' = Ui Es. Then E is a multi-Hilbertian
space (see [6, p. 4]) or a nuclear space (see [5, D 3(‘)1“]) and E' is
the dual of E. _ N

Lemma 2.1, Let the functional C on E be defined by
(21) €)= Hexp{ew o—1—i1rdf, en),  feE -

Then |C(f)l <<oo forall f € E and (i) C is posztzve deﬁmte, (11)’
C(0) =1, (iii) C(f)—1 as [ fllo—0.

Proof. It is easily checked from (2.1) that

eCIDRING < [C(F)] < eWmPING,
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This implies |C(f)|<<co and (iii). Each factor in the product on
the right hand side of (2.1) is a characteristic function of-a mean
centered Poisson distribution and hence is positive definite,
Therefore C is positiVe definite. The assertion (ii) is obvious. o

THEOREM 2.2. There exists a probability measure ,u on E' such
that

@2 G = [ePdue), feE
Furthermore, supp. x C E_; = H. ‘

Proof. The existence of measure z on E’ such that (2.2) holds
follows from Lemma 2.1 and the Bochner-Minlos theorem. Let
0z = en/n, n=1. Then {g.} is an orthonormal basis of E;. And,

Z lgalls = Z 1/n* < co.

T =t

This means that the injection mapping from E; to E, is
Hilbert-Schmidt. Thus E:i=E.,=H is a -support for z (see
[6 Thm 2.6.1, p. 23] or [5, Thm 3.1, p. 121]).

REMARK 2.3 Since H is separable, the Borel algebra of H
coincides with the ¢-algebra generated by cylinder sets of the form
{eeH: & ip<aw 1<k<n}, a;,---, G, ER, #n>1, or equivalently,
of the form {é€ H : & bpe<br, L<Ek<m}, by,, bR, =1
The collection of latter cylinder sets will be denoted by £

LEMMA 24. " Let 2,(8) = £(es) = <&, eno, 7> 1, be a sequence of
Functionals on H. Then they arve i.i.d. w.r.t. p and have v as their
distribution. :

Proof. For each #, the characteristic function of z, is, by
(2.1) and Theorem 2.2, ‘

./;1 eit#n<® du(E)
(2.3) ‘ |
= [ et du(£) = Cltes) = explet* — 1 —iit}.

This is the characteristic function of the distribution y. Therefore,
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v is the distribution function of z,. To show the independence of
{z.}, let 72 >0 be an arb1trary 1nteger, he R, 1<k<m. Thenby
(2.1) and (2.3),

fH exp {z}i tkzk(f)} dn () = f exp {ZE(Z te zk)} dn(¢)

k=1

k=1

=1 H exp{elltk — 1 —_ ixtk} —_— H f e!fk Zk(f) dﬂ(E)
Therefore {z.} are 1ndependent w.r.t. u. “

REMARK 2.5. For t e H E = Zn—l <£9 hn) hﬂ Zn-—l <§7 eﬂ> €x
= Nn-12a(&) ep.

COROLLARY 2.6. Let Br e SB3(R), 1<k <L n Then

plee H: & etp €EBr, 1< kL 0} = II V(Bk)

k=1

3. Markov process. Let {[z:(2), (D)}, B>1, be independent;
copies of {x(2), y(#)} given in Section 1 and let

N=1

XD =3 aDen YD=TO) + D vuten 20
where Y(0) € H.

LeMMA 3.1. For eack ¢>0, X(2), Y(t) € H a.s. and p is the
distribution of X(1).

Proof. Since

EIX@®]F = lim E[

Z ze(2) en|
= UZ; W << oo,

it is seen that X(?) e H a.s. Form Remark 1.4, one has
A< yu(t) < 2.(¢) + 2. This fact together with X(¢) € H imply
that Y (@) —Y(0) € H a.s. Therefore, Y() e H a.s. since
Y (0) € H The characteristic functional of X(1) is :

= hmz Exi(t)

k=1
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| Bexow = E exofi 3 21, e,,>}
=limE exp{ Z 2.(1) LS, e,,)}

NBa=1

=711 exp{e’“f endy — ] — zl<f en> 1
= f ezf(f) du(e).

Therefore, x is the dlstrlbutlon of X(1).

Before we show that Y(t) is a Markov process, we note that
B ={ce H & by<a) isa Borel set for each z and ¢ € R. And,
{0:Y(s, o) € B} ={w:¥y(s, o) <<na}. This amounts to say. that
o(Y(s)) = a('y,,(s) ”n> 1) and (Y (), r<s) = o(yn(r) r<s, n> D.

~ LemmMA 32 Y(t) isa Maﬂeav process

Proof. Let 0<s<t1< <tm, s > 1 1<k<m BE(%(REI: ")
F = {(y;(#+), 1< j <m, 1<k <m) < B}. From the independence
and Markov property of ym(t), m > 1, one o‘btams that '

E{Iz|Y (), r<s)= {IFlyk(r) 7 <s, k>1}
= E{Irlyp(r), r < s, 1<k < m} _
= E{Ir|lye(s), L< k< m} = E{IFlyk(S), k > 1}
= E{Ir|Y(s)}.

(31)

Since every 1nd1cator function of a measurable set in o(Y (7),7 = s)-
is the lmit in’ probabﬂlty (see the proof in [2 p. 309]) of a
sequence of indicator functions of cylinder sets like F. (3.1) ‘holds’
for every F € ¢(Y (¢), t > s) by Dominated Convergence Theorem
This shows that Y (¢) is a Markov process.

THEOREM 3.3.. .u;‘is .a}z invariant measure of the prdééss Y ().

Proof. Let T denote the semigroup of operators associated
with the transition probability P:(¢, dg) of Y (¢) and let T§ be the
adjoint of Ty For each #, let p, denote the projection operator on
the span of hy,---, .k, (ey,---, e,). Then, by independence of {y:(£)},
Theorem 1.3 and Corollary 2.6, .one has for F.= {EE H: (E, ep/o
e Bre GB(R), 1<kinle % S EE DU
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@ E) = [, P F)dﬂ(f) o
= f du(e) Ee{yku) By 1<k< n}

- f d(ﬂ.f’n’)(n) B, {ut) € Bk, 1<ksa)

_f d(up;‘)(n)]] {yk(t)EBk}s

77 = Z ﬂk}ek, .

[ %

k=1

= H f JYe(2) € B} dv(ze) -

= II v(Be) = u(F)

[ 25Y

Therefore, T n agrees w1th £ on ﬁ' Smce both T“u on p are

measures, Remark 2.3 implies that Z;ux = p. Hence p is 1nvar1ant
for Y (2). - '

4. Decomposition. Let L= L*H, p) and let 7, be the
collection of all tame functionals F (&) =u(<&, e, -+, <& ew,)
= u(2:1(E), -+, 24(€)), =1, where # is. a tame function on R
T = U1 T To each n* = (n, #5,---) with [#"| = L9 < oo,
let -
(a1 Pa@)= gpnkczk@)'), ¢ e H.
Let Hy=R and for each n#>1, let H,= the cIosed "s'pah" of
P* (&), |n*| =n

LemMa 41 Ty t = 0 can be extended contmctively to L.

~ Proof. Let FelL By Cauchy Schwarz inequal_ity and
Theorem 3.3, one has N

iz Fi= [, f Pi(e, dﬂ)F(ﬂ)} du(e)
< [ [ P an) Fx(n) duce)
=/ FZ(n)dum—uFu*

Hence T; can be extended contractwely to. L for each t> O.. L
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Lemma 4.2, Let G be the mﬁmteszmal ge;zemtor of T:. Then,
for F € %, 0ra polynomml of zk(f) 1 <E< n,
(4.2) (GF) (&) = ZAE u<z1<e>, -y z,,(e))

k=1

where F(E) = u(zl(f), -, 2,(&)) ami where A, is the operator A
acling on the kth varzable._.

Proof. This _Iemma follows from the fact that {y:(#)} are
independent copies of y(¢) which has A as infinitesimal generator.

LEMMA 4.3. For eack n>0, H, is the eigenspace of G
corresponding to the ez‘genvalue — .

Proof. This lemma follows from the deﬁmtlon of Hm (4 1),
(4 2) and Corollary 1.2. ’

LeMMA 4.4, For n* = (0, ns,---) #=m* = (my, Mms,-+-), -

f P2a(6) P1(€) du(e) = 0.

Proof Thls lemma follows from (4. 1) and Lemma 1.1.

Since every I € L can be approximated by tame functionals .in
< which, by Lemma 11, in turn can be approximated by
linear combination of elements in H, #>0, Lemma 43 ‘and
Lemma 4.4 imply

THEOREM 4.5. The space L*(H, 1) has decomposition

L(H u)=> OH,

n=0

where H, n>0, are eigenspaces of the inﬁnitesimal  generator
G of Y(t). Imdeed, — G is the number operator suck that
(—G)(F)=nF for F € H, n>0.

5. Comvergence. In the provious discussion, the process Y(t),
x(2) have jumps equal to + 1. If we consider jumps of =+ % and
let us, Xu(t), Y3(2), As, Gi, Tu(2) denote the corresponding x, X(2),
Y (¢), 4, G, T, respectively. Then
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A f(2) = 2(f(z + k) —2f(2)
+ f(z—h)) —2/h(f(2) — f(z — R)).

Therefore,

im Ay f(2) = %f”(z) — 2f'(2)

1=t " oo

for nice function f. This implies that

lim Gh u(zl(‘f)s' ° %y zk(é))

2,1

1=@rH " e
1 3 62—— . e
=g & pgr U(E(E), e, 2(8))
3 9
— ; 2:(&) ™ #(2:(8), -+, 2a(€)).

Then, by the Approximation Theorem in [3, p. 190],
lim Th(t)F = TtF
1=erH e
for each tame function F. This shows that, as 1= (2A%)-!— oo,
Y:.(t) converges weakly in H to an Ornstein-Uhlenbeck process
Yo(2) for which lim;. %10 #» is an invariant (Ganssian) measure,
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