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0. Notation. We employed the following notations from [11:

1

ON THE ZETA FUNCTIONS ASSOCIATED
WITH THE TUBE DOMAIN
OF EXCEPTIONAL TYPE*

BY
MINKING EIE (£3c5)

Abstract. In this paper, we shall derive functional equations for
certain zeta functions arising from Selberg trace formula for the
vector space of cusp forms on a tube symmetric domain @¢ < C*,
equivalent to a bounded domain @ with Hol(@) a real form Ey_s
of the exceptional Lie group E, Contributions from conjugacy classes
represented by translations Pg: Z—>Z -+ B will be computed and
expressed in terms of special values of zeta functions defined.

@=@;: A Cayley algebra over a field f; it is an eight

dimensional vector space over | with basis e, €1, -

and internal law of composition given by the rules:
(1) zeo=eyxz =2 for all xe@
(2) et _-11 i= 1”':7’

( 3 ) €1 €2 84 = €383 85 =’e3 @418 = @4 85 8y = @561 = ¢€s€71 6,

=e;eie3 = — 1.

For x=xe0+ x101 +---+ 2,0, we let
Z=2xoe— (181 +---+ X7 7),
T(x)=2xy=2 + Z,

Nz =z2z=2+x +---+ zL.

“y €7

o: ring of integral Cayley number, o is generated by

the roots system of E; as follows:
w1=%(eo+e7)——%—(e1+eg+e3+e4+es+es)

G =€ T &1, =€ — e, s =@e — &,

» Received by the editors May 7, 1986 and in revised form March 16, 1987.
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Chma and Mathematisches Institut der Universitiit Gottlngen
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Qs = €3 — €2, g = 04— €3, O =€ —€n
Oz = €5 — €s.
3. For any ring f in C, we define -
o &1 -"1712’, 213 | '
Fi = | Z1z &2 X3
Fig Tas &3

[&1, &2, & in | and Xiz, Tus, Tos in @i |

For X, Y in ﬁ}f, we let
detX = £ Ez g5 — E£2 N(13) — E3 N (212) ;
— 51 N{(za3) + T((-’vn Z23) -1713)’
Tr(X)= 51 + &2 + &3,

(X Y)= —T(XY + YX),

XxX=X*-T(X)X + —(T(X)z—— T(X?))E.

4 Rs= (X € Jgl det X 40}, K3 square elements of &3,
ng {X SgldetX——O X x X 50},
‘ ' &Ry : square elements of Ra,
Ry = {XEgRldetX—O XXX—O X%O}

5. ¢( )= expl2ei( ).
1. Introduction. Let G¢ be the tube domain defined by
G = (Z=X+iY|Xe€Jr Y e K5}

and Cgr = Aut(9¢)/{ xid}. It is known that, under the Cayley

transform, G is the real form Fy-25 of Lie group of exceptional
type E7[1] Furthermore, Cris generated by

PB Z——->Z+B BESR
and ’
1 Z— — (Z)‘1

Let I' be the anthmetic group of $r generated by Pz with
BeS, and «. For re Gr and Z € &, we let ](7’, Z) ‘be the
factor of automorph determined by :
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(1 )‘» j(PB; Z) - 1: V B & 85’1

(2). j(y Z) =det(— 2),
(3) j(019: 2) = j(91, 0:(2)) j(0s Z).

A holomorphic function | f(Z) defined on &¥ is a cusp forn:i of
Weight % with respect to I' if f satisfied the following conditions:

(1) f((2)) =4, 2 f(Z), VreT,
(2) (detZz)#? f(Z) is bounded on &7.

Denote by S(k g{, r) be the vector space of holomorphlc cusp
forms of Welght % with respect to I,

In section 1, we shall derive the Selberg trace formula for the
dimension of S(%, &, I') when the weight % is sufficiently large.

THEOREM 1. Foy even integer k>36, we have
dim;S(k, &, T') ,
—C(k)f > (det(Y) - det[(Z—7(Z))/2%]" i, Z) de
TEI‘
with

2-30 ;=27 ['(k) I'(k — 4) I'(E — 8)
k)= Tk _0I(k—13) I'k—17)

In section 2 and 3, we shall define zeta functions &, &, &7, E;
as somated with various lattlces of Iz and obtam

THEOREN’ 2. Let £{(s) and &5 (s) be the zeta fumnctioms defined
below in §3, (A) and (B), respectwely Ther we have

- [‘fs 9 "3)

£7(9 — )] = 271:12(2n')'3? Ir(s) F(s —4)I(s—8)

. [cos 3zs/2 cos ns/z][fs" 1
J(s) g(s) L& (s)-
with
| ' { F(s) = 3 cos s/2,
9(s) = cos zs/2 « (3 — 4sin? zs/2).

THEOREM 3. Let &' (s) and &5 (s) be the zeta functions defined
below in §3, (C) and (D), respectively. Then we have
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| EESCOR I OPIEES taal b

In the final section, we shall compute the contributions from
conjugacy classes represented by Pp:Z —Z + B and write them
in terms of special values of zeta functions & and & at nonpositive
integers. ‘

THEOREM 4. The contributions from elements in I', which are
conjugate in ' to Pg:Z — Z + B, to the dimension formula is given
by |

rk)yrk—4)rE—238) 9-30,-27 yol (I'\G
TE—9Ork—1ra_in - = ° (N
+ (B—9) - 2371 o &5 (— 8) + 2% - £5(0).

From the functional equations for & and &, we also have

COROLLARY
£5(0) = 272 =1 1'(9) I'(5) vol(F . \&R3 ).

Functional equations for zeta functions had been discussed in
[9] in a more general context. However, the result is still far away
from an explicit form when the group is a Lie group of type FEe.
Here, we began with series arising from Selberg trace formula for an
exceptional tube domain and expressed them as linear conbinations
of zeta functions similar to those defined in [9]. Subsequently, we
obtained the functional equations as shown in Theorem 2 and 3.

The author wishes to thank Prof. W.L. Baily Jr. in University
of Chicago for providing the problem and useful references in 1981
and Prof. U. Christian in Universitit Gottingen for inviting him as
Sonderforchungsbereich during the perparation of this work.

2. Selberg trace formula. We need Lemmas which can be
proved by using the following well known formulae repeatedly.

) e az
- [(x — a)z + B JF
o _ re—1y2ra/2 . 1 '
R T0) et k=% 0>0.
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yt~tdy _ I(p)I'(q—p) A
(B) s e a>0, ¢>p+1, p>0.

(C) r'(k)yr(k—1/2) =2>-*r(2k—-1)1(1/2), k>0.
(D) r(/2) = 2

LeMMA 1. Let Y’ be a 2 x 2 Hermitian matrix (i.e. 'Y’ =Y")
over Cayley number ©@r. Then for positive integer k with k= 10,
we have

n={ o, (det Y[ det(Y! + E)]-2+5 Y’
= 2T'(B) I'(E — 4) I'(E — 5) I'(k — 9)/T'(2k — 5) I'(2%% — 9).

Proof. Let

yt — [’.lh ?112]
Y1z Y. )

Then

detY’' = Y1 Ys — N(’ylz) and
det(Y’ + E) = (y1 + 1)(%: + 1) — N(¥2).

With # =%, ¥: — N(9:2) as a new variable in place of ¥s, then
) 00" /0 ‘ E—10 py-1
I = u yildys de dy .
1 fo /«: f@R {w + 9y + 1+ [ut N(Y2) 1y 125

Integration with respect to %; by using formula (A) eight times,
we get '

47 00 0 E—10 443
I = 7 rr2e —9) u ¥ du dy, )
! I'(2k —5) f f (0 + y1 + 1 + ufy)**?

Let # =y, 2. Then

I = = I'(2k — 9) f vE-10 gy .yt dys
r(2k —5) (v +1)%=2 Jo (g + 1)%-°
ATk —9)  I'(k—9)I'(k) , I'(k—5)I'(k—4)
Ir'(2k —5) rk—9) 'k —9)
2B I t—4)r&—5rk—9
(2t —5) I (2k — 9) )
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- LeMMA 2. Let X' be a 2 x 2 Hermitian ;mztrzx over Cayley
number ©@p. Then for kB> 6, we have

L= [ det(X’ +iE)*det(X’' —iE)"*dX'
= 9124k 18 (9% — 5) I'(2k — 9)/T*(k) I'*(k — 4).
 Proof. Let |
Z1 X1z
X = :
[j;-u X2 ]
Then

det(X’ + iE) det(X'’' — iE)
= (21 + D[ (22 — 21 N(212) /(23 + 1))2
+ (1 + N(212)/(1 + 21))*].

with &} = Z1s/v/ % + 1 as a new variable in place of zy., then

dx. dxi, d.’lh
L = f f foo (x1+1)k'4[(.2‘z L1 N(&?u))z’l‘(l'l’N(wlz))Z}k )

Integration with respect to x. by using formula (A), then with
respect to xi, and x, simultaneously; we finally obtain

- Tk=1/2T1/2) Tk —5)z*  T'(k—9/2)T(1/2)
: Tk - T@-1) Ik~ 14)

Our assertion for L then follows from the following duplication
. formulae;:

(k) Ir'(k—1/2) = 2% F(.Zk — 1) z'/3,
I'(k— 4) I'(k — 9/2) = 21°-% 1 (2k — 9) z/2,
LEMMA 3. Let Y be a variable of 3 x 3 Hermitian malvixz oveyr
Cayley number Qr. Then for k> 18, we have
L= fggg+ (det Y)*-[det(Y + E)]-*+°dY

=z2 (k) I(E—4) I'(k—8) I'(k—9) T'(k —13)
- I'(k—17)/T(2k — 9) I'(2k — 13) I'(2k — 17)
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Proof. Since »Y is .positively definite, we can let Y = tTT
with - : , : i .

B )
T =10 t: twl t, b ts>0 and tm, tis, ts € @ .
0 0 %

Then a direct calculation shows that
detY = (t1 12 ts)z, .

det (Y +E)=@F+DE+D@E+ D+ B+ D NG
+ (82 + 1) N(#13) + (#1 + 1) N(%23)
+ N(t12) N(tza) — 1 T[tza(tm tm)]
= Q(T)

and the Jacobian for the transformation from Y to 7 is 8tV #34s.
Consequently, we have

5= f“’f’ff@f@/@

. S(tz tz tg)k—ls t tg t3 dtm dtzs dtls dt1 dtz dts .
T

Rewrlte Q(T) as

GE+DBE+DE+ 1) + (2 + 1) N(2:2)
+ (82 + 1) N(ts) + N(812) N(#3)/(1 + 83)

S+ @E+DN (m— ; tgfil t2s tm)-
. : . - b2 i :

Integration with respect to #i3, then Z;; and then #i; We get

T2k —13) | 2*Ir(%k—17) | =*I'(2k —17)

L =
: rGk—9)  1(2k—13) r(2k — 13)
f f o S(21513)%18 t783 t3 Aty dts dis
[+ 1@+ D@+
With u =1, v =1, = ={} as new varxables then the integral in

the above formu.a can be evaluated by using formula (B) “three
times. Our assertion then follows.

LeMMA 4. Let X be a variable of 3x3 Hérmitian malrix ovey
Cayley number @r. Then for k> 18, we have
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L= f det(X + iE)-*det(X — iE)-*dX
sz ;
= 280=k 115 (9% — 9) I'(%k — 13)
- I'(2k — 17)/T%(E) I*(k — 4) I*(k — 8).
Proof. Let

A= {(22 + ) N(213) + (21 + ) N(223)
— T[(@12 X23) 2131}/ { (21 + 8) (22 + i) — N(212)},

B=[(x + ) (w2 +3) — N(x12) [ (21 — 8) (22 — ) — N(212)].
Then o |
det(X + iE) det(X — iE)

- B[(n- ALY + (11 AZAY]

Integration with respect to x; we get

L= Tk —1/2) 1(1/2)
(&)

. f°° f‘” f f dxi: dxrys d.’Egs-d.'l?l dx .
oVew SO, SOy SOy BH1 + (A — A)/20)%
Note that (A — A)/2 is a linear combination of N(z), N(xss)

and T'[ (&1 #23) Z13] with coefficients depending only on &, 2: and
Z12. Indeed, we have

Az—; 4. aN(213) + AN (@23) + 7 T[ (212 Z23) 215 ]
with
o= — $§+1+N($12)
: B 7
19=_-%‘§+1+N($12) y= Tt T2
B ’ B
Use formula (A), we get
j' dxys diﬁzs
el (1+ (A— A)/2)%1 .
- _ =TIr(2k—9) | 1

r(2k—1) [8.— P N(xi)]*
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A direct calculation shows that
af — PP N(2ye) = B!

Thus our assertion follows from Lemma 2 since

_ 222k —9) dx:» dxg_iﬁx_g
L= (k) >/:oo fJ )

Now we shall obtain. an integral formula for holomorphic
functions on &¥.

PROPOSITION 1. Let f(Z) be a square integrable holomorphic
Sfunction defined on G¢ and k be an even integer with k> 18. Then
we have

F) = ek [ ety ded 1w —2)|" 12 az

gt 2
W = &,
with

4y 205 T (R — 4) (k- 8)
0() r'(k—9) I (k—13) I'(k — 17)

Proof. Let H(k, O¢) be the vector space of square integrable
holomorphic function defined on &¢. In other words, H(%, &¢)
consists of all holomorphic function f(Z) defined on &% and it
satisfies the square integrable condition:

1= [, (et ¥)-1°|£(2)[* 4Z < + oo.

It is well known that the Bergmann kernel function K(W, Z) of
H(k, &), is a constant multiple of det[(1/2)(W —*Z)]-*. Now it
suffices to determine the constant.

Let the constant be ¢(&) and

9(Z) = det(Z + tE)~%

of course, g(Z) is a holomorphic functions deﬁhed on &¢ and
lglls = fgf (det Y)*-18 det(Z + iE)~*det(*Z + iE)~* dZ.

By changes of variables in the real part of Z, we get
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1= det Y)*® det(Y + E)~#+5dY
gl fge;< e ) et( | ) |
. fg det(X + iE)-*det(X — iE)-*dX
. .

=LxIL
= 280-6k 227 P(f — 9) I'(k — 13)
- I'(k — 17)/T(k) T(k—4) T'(k — 8).

This proves ¢(Z) is an element of H (k, g¢) and hence we can
use it to determine the constant ¢(k). But it follows easily from
the evaluation at Z =%E, i.e. ‘ ’

GGE) = (20)-% = e(k) - (2 gl

PROPOSITION 2. For even integer k> 36 and functzon f(z ) in
S(k, G¢, T'), we have : . :

F) =) [, (det ¥yt |
e[ L v —7@)] TG D 12 az

~rel

s

Proof. Let J(r, Z) be the determinant of the functional
(Jacobian) matrix of 7 at Z. By the argument of [1], we have

J(, Z) = £ det(Z)™®

where ¢ : Z—> — Z-!. Thus we have

i(r, )17 = |J (1, Z2)|

for all y € I'' Note that &% can be transformed into a bounded
domain’ of C?, by Proposition 1 page 44 of [2] we obtamed that
the series L(Z) defined by

L(Z) =(detY)* ZF det [—— U ’T(Z))]—kj*(r, 2" F(Z)
converges u*uformly and absolutely on each compact subset of
I'\g¢ if B> 36. Thus our proposition follows from the prev1ousi
proposition and - f(7(Z)) = j(r, Z)* f(Z).

Note that S(k G¢, I') is a subspace of the Hllbert space
H(k, '\G¥¢) consisting of holomorphic functions defined -on I'\&¢
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and square integrable on I'\G¥ with respect to the measure
(detY ) *dX dY. By Lemma 12, p. 181 of [2], we get that
dime S(&, &, I') < + oo
THEOREM 1. Sﬂj)ﬁoée % is an even integer with &> 36. Then
dime S(&, &, I')
=c®) [ (det¥)r-s

Z[det( L (z—‘r<z>>)] it 2y*ez

with
o 2730 =2 (B I'(k — 4) I'(k — 8)
W =TrG =) 1 - B3 1 — D)

Proof. Let “dime S(k g¢, TY=N and let v¥v:i(Z), ¢¥(Z),---,
+va(Z) :be an prthonon‘lal ’ba_s1$ of S(&, &f¢, I') with respect to the
inner product ‘ '

So={ w(detY)M F2)0Z) az.

Suppose that f(Z) hag A 16 ¥i(Z), ¢; € C, is an element of S(%, I').
By the orthonomahty of the basis, we have

ramy= [ (Gt Y)MZ%(W) vi(2) f(Z) az.

F==1
On the other hand, we also 11ave the integral formula for f(W) as
shown in the previous Proposition. Hence, by the uniqueness of
Bergmann kernel function, we have

S I FD) = ®) S [aet( 5 7 — 7)) | w2

rer

Consequently, we have

N={[_ \detY)”‘“Zl«,b,(Z)lde

— k-18 i £ H ~k
(k) f g_ﬂ(det Y) S; [det( (Z — r(Z))] iz az
REMARK ‘By the fundamental set constructed on p. 533 of [1],
it is easy to.prove (det Y~ dX dY is a finite measure on 1"\91,”
In other words, we have '
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vol (I'\G¢) = L o (det Y)-8dXdY < + oo.

9. Zeta functions associated with Hermitian forms of rank
three. We define two subgroups of GL(S&z) as follows:
Tr = {glg € GL(Jz), det(g - X) = det(X)},
gx):{gigeglbg'%xsc'\ojo}‘ '

Then &, is a Lie group of type Es and &, is generated by
unipotent transformations (¥)ij, i4j, 1<i, <3, w€0o as
defined in page 517 of [1].

Tet 4A=S,N&Rs and 4+ =, N Ksi. Then 4 is a selfdual
lattice with respect to the product (X, Y) = trace % (XY + YX).
Define an equivalence relation ~ on 4 under the operation of &, by

Ty ~ T iff there exists g € §, such that g « T} = T
If T is an element of 4*, then the set
{9gloe J., 9T =T}

is a finite subgroup of &,. We let o(T) be the order of this
group. Now define a zeta function &5 (s) as

o iy 1
@ EO= Ty

Let 4, = A* U (— A%), Ay = A — 4; and A be the subset of 4,

with signature +, +, —.

.For those T in A3 we can replace o(T) by -u(T), a constant
multiple of the density defined in [9 or 10] and choose the constant
so that #(T) = o(T)"* when T € A;, and define

—le) = 2(T)
(B) | Es5(s) Zzzlz et T

For Re $>9, the series in right hand sides of (A) and (B) are
absolutely convergent and hence &;(s) and £;(s) are holomorphic

functions in the complex half plane Res>9. Furthermore, &;(s)
and ¢&;(s) have analytic continuations which are memerophic
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functions in the whole complex plane and holomorphic except
possible simple poles at s =9, 5 or 1 [9].

PROPOSITION 3. For s> 0 and k> 18 + s, we have

Ly(s) = /:g - S (det Y)r-15-s det(Y + iS/2)" fay

v SEA

= (&, s)(cos 3n(Ll +5)/2 - &5(9 + s)
+ cosz(1 +8)/2-&5(9 + 5))

with
Gk, s) = 2%8+3s f12 II I'k—s—9—45)r{ + s+ 4j5)/r'(k — 4j5).
j=0
Proof. Suppose L;(s) and L;(s) are subseries of Ls(s) with

the summation over 4; and /4, respectively.
By changes of variables and an elementary calculation, we

obtain
tle) — 1
L Te;,~ o(T)(det T Y+
»2R det V)t 8-sdet (Y + iE/2)"*dY
e(fgeg( etY) et ( iE/2) )
= 5(k, s) ecos3z(1 + s)/2 & (9 + s),
with

Tk, s) =283 2 T[] I'(k—s—9—47) (1 +s+47)/T'(E—4)).
j=0
In the same way, we also have

Li(s) =& (s) - 2Re ( ... (det Y)4=1o= det(Y + iH/2)" dY)
= 7(k, s) »cos z(1 + 5)/2 - &(9 + ),

with H = diag[1, 1, — 1]. This proves our assertion.

To get functional equations for & and &, we need a more
detailed description similar to those given in section 4 of [9].
Define . KRs={X € Jrldet X 540} and let &Ri be the set of
matrlces in &Rs havmg 2 positive and 1 negat1ve eigenalues. Then

Rs=Rs U (—&Rs) U(Rs) U (— &KRs)
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is . a decompositions . of = £R; into disjoint subsets. -.Let
A; =diag[—1, 1, 1], 4z = diag[1, — 1, 1], A= diag[1, 1, — 1] and
& be the set of upper triangular matrices T in M:(@r) with
positive numbers on the main diagonal. Defihe - mappings
¢; (=1, 2, 3) of & into K5 by

¢;_:T——>’TA T

Then ¢; is one to one and onto- a connected component Rz of &Rs.
Obviously, we have

8
s = J &
=1
For any

71 t1z t13

0 0 =3

in &, we let

dT = d‘n d‘tz dt’a dtm dt13 :dtzs

be the euclidean measure on &. Then v
dX =22 {13 34T

if X=!TA;T or X ="'TT.
Denote by o/ (£Rs) be the functional space of rapidily decreasmg
functions on s For any f in of (&R3), we define

0+, 9) = [ 4 S |det(X)|* dX,
0=, ) = [ FOdet(X) |- aX
and - - |
f(x) = ng f(2) -2, X)v)_dZ:.ﬂ"\" |
PROPOSITION .4. Let <7'>’;( 1 sS and m—(fs)be ;iéﬁned as a"bbv')é;

Then we have for any f € of (R:) satisfying f(X) = f( = X),
1) o*(f, s) and O~(f, s) are holomorphic functions of s in the
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half plane Res<<0 and have analyiic continuations which are
memeymorphic functions in the whole complex plane,
(2) S |
[(D+ (f 9 -—'s)]f.
o= (f,9—s)
_ 2‘M(s)[cos, 3zs/2 ~cosws/e - ][d>+ {, s)].
3 cos zs/2 cos 3xzs/2 + 2 cos zs/21L0~ (f, s) 4

Here a(s) = z'2(2z)~* I (s) I'(s — 4) I'(s — 8).

o Proof. The first assertion follows from the‘ genéral theory of
[9]. Here we only prove the functional equation for o-(f, 9 —s).
The functional equation for @+( 7, 9 —s) can be proved in the same

way.
With the measure induced from ¢;, we then heve

@(f 9—5) =3 S, FCT4; T2 -t BT AT

j=1

= hmz [, FOTA; T) 2etmia 175((’TT zBE))dT

-0 o

30

= lim f% ) f(X)dX- 2; [ 2 e (VT 40F)
+ (tTA; T, X))dT. o |
Set e |
g;(X) —hm/ 20 it o o 5 (T, zaE) + <fTA T, X)) dT.

By approprxate changes of variablés, we have

R P - if X e (— &),

g(— Ay if Xe(—Ra)
Thus it suffices to evaluate g¢;(E), ¢;( — E), 9;(Ax) and g;(— Ap).
An elementary calculation using only the definition of the gamma
function shows that ‘ ‘

10;(E) = a(s) exp(z is/2),
Ngi(— BE) = a(s) exp(— zis/2),
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and = : _ )
exp(3 = is/2), - j==Fk
exp(— zis/2),  JjFk
exp(— 3ris/2), j=k,
exp(z is/2), jFk

By our assumption f( — X) = f(X), it follows that

@"(f,’ 9 — 5) = 2a¢(s){3 cos zs/2 « O*(f, s)
+ (cos 3zs/2 + 2cos s/2) 0~ (f, s)}.

gi(As) = a(s) {

g;( — Ap) = a(s) {

With Proposition 4 and a general argument as in p. 153 of [9]
(Indeed, function equation for £ and & is the same the functmn
equation for 0+ and ¢~ was shown.) We then

TuEOREM 2. Let &(s) and & (s) be the zela fzmctzans as
defined in (A) and (B) respectively. Then we have

(1) &i(s) and £:(s) are holomorphic funcltions on ithe half
plane Re s >9 and have analytic continuations which are holomorphic
Junctions in the whole complex plzme except possible poles at s =9, 5
or 1, : :

(2)
[Zg : :;] =222 (2x) 3 I (s) I'(s — 4) I'(s —»8)}\
. [cos 3zs/2 cos zs/2 ][E; (s)]
3cos zs/2 cos3ns/2 + 2 cos zs/2dLes (s)

COROLLARY Let &5 (s) and £5(s) be the zeta functions as deﬁned
in (A) and (B), respectively. Then we have

§(0) = = &(0) =27z 1O I'(5) [, (detY)™*aY.

Proof. From our functional equation, we have

&(0)
= 11m &(9 —s)

= hm 2z (2z) %I (s) Ir'(s— 4)

« I'(s — 8)(£%(s) cos 3zs/2 + £5(s) cos 7:3/2)
= 2-26,-15 "(9) I'(5) 131_1;1(53 (s) cos 3zs/2 + £5(s) cos zs/2).
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On the other hand, by Lemma 7 of [9] £3 (s) and &;7(s) have the
same residue

-9
j:g a5 (detY)—-*dY

at s=9. Note that

lsl_gl 1 =3 (cos 2zs/2 + cos zs/2) = r.
Thus
&(0) = 2-% -1 (9) 1'(5) Ln.@; (detY)-* QY.
In the same way, we .prove E5(0) = — E;(O).

4. Zeta functlons associated with Hermitian forms of rank 2.
Arguments in this section can be proved in the same way ‘as
those .in previous section, so we omit most of the proofs.

Let §' be the 10-dimensional vector space over R deﬁned by

«?s’:{[f__l JG]I&, &2 €ER and x e @R}'.
X &g . :

& oz . '
For an element X =.[_! E] in ', we let . .
N xr o-b . .

{det X =¢£18 — N(x),
trace X = &, + &,.

Define two subgroups GL(3') as follows: ) o
Jr={glg e GL(S )s det(g X) = detX}, ,
= {glg-J, c ¥4}

where Ns,,—{[.‘j_: x][f;,ngZ .z'en} Let M+ be the set of

positively definite elements of 3‘0 and M- be the set of{elements
with signature +, — in J,. Define an equivalent relation_~ on
¥ as . :

81 ~ S; iff there exists g € &, such that g 81 Sg. .

Now our zeta functions & (¢) and &5 (t) are deﬁned as
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© U= M’;‘E o(S)(det 8)*
and o

-(2) = £(S)
(D) &7 () MZP et ST

where »(S) and x(S) are defined as in the previous section.
Consider the series defined by

Lus) = [opv D, (det Y)"=sdet(Y +iS/2)*aY.
L I sey Taesno ‘ IR

By the integral test, L.(s) is absolutely ‘c:onvyergen,pfqr k>18
and Res > — 8. Furthermore, we have

Li(s) = &5(18 4 8) - 2 Re( [y, (det )45 det(Y + iE/zj',-k'dY)
+ B+ 2Re( BNCES ol det(Y+zU/2)"’ dY)

w1th U dlag[l — 1] An elementary calcu]ation shows
Ly(s) = . 921425 14 T(k —s—1Drk—s— 13) '
« (13 + s) (9 + s)/T (k) I'(k — 4)
s {cosa(L +s) &3(13 +8) + &5 (13 + s)}

This proves the follov(ri'hg'i‘ :

PROPOSITION 5. Suppase Lz(S) is tke zeta fzmctzaﬂ as deﬁﬂzed
above, then we hve for k> 18 and s> — 8,

L:(s) 5"‘22”’2'3 z* P(k —s— 17) F(k —s— 2.[3)“
«I'(13 + s) I'(9 + s)/T(k) T(k — 4)
{cos n(l + s) Ez (13 + s) + & (13 + s)}

By the general argument [9] & (s) and Ez (s) are holomorph1c
functions in the whole complex plane except for possible s1mple
poles at s = 5 and s=1. A similar considération as- that in
Proposmon 4 ylelds the followmg

TH:EOREM 3 Let &3 (s) and &5 (s) be zeta fzmctums as deﬁned
in (C) and (D), respectively. Then we have o
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[ig : :] = 2! (22)™ I'(s) I'(s — 4)[0031”3 coi zs][ig;] '

REMARK. The functionalﬂequation for & and &5 are consistent
with the. functional equation given in p. ‘15,6. of [9] or _[_12] with
m =10, = 1.

5. Contributions to the dimension formula frem conjugacy
classes represented by translations. Let 7 ={g-Pz-g-llge T,
Pp:Z—>Z+ B, Beg,] be the set all conjugate elements of
translation Ps:Z—Z +B. We decompose II into disjoint union
of followmg sets:

o Iy = {id},
H-z{g-PB-g‘llgeI’ rank B =4}, i=1, 2,_3.

LEMMA 5. Let B ey, with B =1 (z =1, 2) Thm there exists
g3, suck that -

g+ B=diag[s, 0, 0], se Z—{0} (G=1),

S x 0 _ ‘
gB=|% s 01, 3132—‘1\!7(.'17)740 ) (i-’—"-Z).
0 0 0 : o :

Proof. See Lemma in 3.2 6f [1].

"Now we begin to compute the éoﬁt'rlbﬁflons from' 12'
(=0, 1, 2, 3). Once and for all, we assume that % is ah even
integer and k& > 36. '

PROPOSITION 6. The contribution from zdentzty of r to the
dimension_formula is . : . o
=I(k)I'(k— 4) I't—8)/r(k—9)rk— 13) rk— 17)
* 2720 2% vol (I\&K).

- Proof. The identity forms a smgle con}ugacy class ~and
id, Z) =1 It follows

No=c(k) [, (det¥)®axay
= ¢(k) + vol(I\TH)
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with -

9-30 521 P(k) I'(Ek — 4) T'(k — 8)
Tk —9) I'(k — 18) 'k — 17)

(k) =

. PROPOSITION 7. The contribution from II; to the dimension
formula is a ’

N; = 2% £{(0) =272z~ I'(9) I'(5) vol(& -\ R4 )-

Proof. Let 4= {Ps| B J,, detB=0}. Then the normalizer
of 4 in I' is ' N Ny (in the notation of [1]) which is the semidirect
product of I, « {+id} and {Ps|B € J,}. Note that the series

c(k) Lo(s) = ¢(R) [ . > (det ¥)*=*=s det(Y + iS/2)~*aY

g, aa+ =
is absolute]y convergent for any positive number s. Thus we have

(k) La(s) = e(R) f Z (det ¥ )*=15-5

TEH

. det[-é]‘? (Z — fr(Z)-)] i Z)*dz.

Hence theh contribution is given by
N; = lim e(%) Ls(s) = 22 £ (0)

s—0
= 275z~ 1'(9) I'(5) vol(F - \&R3).
The above equalities are follow from Proposmon 3 and Corollary
to Theorem 2.

PROPOSITION 8. The contribution from II, to the dimension
formula is N = O.Y

Proof. Let M(s)=Ps with B = diag[s, 0, 0] and se Z2'=Z—{0}.
Then by Lemma 5, we have ‘ o

= Ug-MG) -9

gel sez’
' The centralizer of M(s) is the stabilizer of the  boundary
component s define by ' | N ‘

onmf Y=o
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By the argument of 6-3 of [1], we get that the set
" : F :Z = diag[iy, 0, 0], y>0

is a fundamental domain for the contralizer of M (s) and

B o0 yk-—ls dy .
M= e(R) ‘Y;' fo (w +is/2)¢ €

where ¢ is the volume of a fundamental domain on &¢§ for the
centralizer of M(s) restricted on &%s. Since

~(C_ytdy _ rk—17)1r@d7n (_2_>”
sezr J0 (y -+ z's/Z)" I‘(k) seze is

== ()"

it follows that N = 0. .
With the same argument as in Proposition 8 and by- using
Theorem ‘3, vol(SL(Z)\SL:(R)) = 22/3, we get

PROPOSITION 9. The comtribution from II, to the dimension
Jormula is given by : '

Ny = 29374k — 9)e(—8).

Combine Proposition 6 to 9, we have

THEOREM 4. The total | contribution from conjuga'cjr'j'» classes
represented by translations Pp : Z —7Z + B, B € &, to the dimension
formula is ‘

I'(B)I'(k—4) r(k—8)/I'(E— NI'(k — 13) I'(k — 17)
« 2730 =27 yol(I\GH)
4+ 283~k —9) - £2(— 8)
+ 272 7= 1'(9) I'(5) vol(F . \&R¥)-

REMARK. For the case of Siegel’s cusp forms on the upper-half
‘plane of degree #, the contributions from conjugacy classes
represented by Pyp:Z-—->Z + NB, N is a positive integer and B
is a symmetric # X # matrix over integer, to the dimension formulae
with respect to the principal congruence subgroup I, (N) of
Sp(z, Z) is computed in [10]. Especially, when # =1, 2, 3 and
N > 3, these contributions give the dimensions of cusp forms with



292 T MINKING EIE

respect to I',(N). We hope that Theorem 4 can be applied to
obtain explicit chmensmn formulae for cusp forms with respect to
certain subgroups of r of ﬁmte mdex.
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