BULLETIN OF THE - ‘ i
INSTITUTE OF MATHEMATICS

ACADEMIA SINICA

Volume 15, Number 2, June 1987

HAZARD RATE ESTIMATION UNDER THE SIMPLE
PROPORTIONAL HAZARDS MODEL

BY

PHILIP E. CHENG (%5

Abstract. This paper considers nonparametric estimation of the
hazard rate function A of the lifetime distribution under a simple
proportional hazards model.- Based on the model characterization, two

naive estimators a, and A, -of the kernel type dre proposed.  The
former is derived from the empirical cumulative Jhazard function and
the latter from the maxmmm likelihood est1mator of the lifetime
survival function. The two are shown to be asymptotlcally eqmvalent

and are compared with their well-known counterparts, > and 7\, which
are utilized under the general random right censoring model. The
comparisons are made in térms of the ratios of asymptotic variances
and the widths of simultaneous  confidence bands. It is shown that

both A, and 7\,, are preferred to » and 7\, a desirable information
under this model.

1. Introducﬁon; Let Xl, -, Xa be indepehdenthlixfevtimes of n
individuals from a popuIatwn of mterest and YI, --, ¥, be the
corresponding independent censoring times. The so-called random
right censorship model assumes that X;’s and Y;’s are independent
and the data observed is the set {(Z;, D;), i=1,---, #} where
Z: = min(X;, ¥3) and D; = I(X; < Y;). This model is often useful
for survwal analy51s in some medical studies and engmeermg
reliability studies where the Y:’s vplay the role of ~censoring
mechanism, for instance, random loss of patients in: follow-up
studies or random failures due to another cause. In ‘connection to
the random right censoring model a part1cu1ar model with simple
proportional hazads, hereafter_ referred to ds the SPH model, was
introduced by Armitage \(\1959).":‘Tb be specific n‘i\a‘thematically, let
P(X; 2t)=8(), P(Y;2t) =C(t) and P(Z =1)=L(#). Note
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that L(¢) = S(¢) C(¢) by independence. The SPH model assumes
that C(¢) = S()? for all +>0 for some positive constant 28,
equivalently, S(#) = L(#)* with & =1/(1 + 8). The case #=0 or
@ = 1 represents the full-data case without the censoring variables
. ¥’s, or ¥; = oo for all 4. Practically, in some engineering studies
where two types of independent failure mechanisms are competing
with each other, it is often of interest to test if they represent
independent Poisson processes or the independent risk intensities
are proportional when the risk patterns are similar, etc. (See for
example Cox (1959)), namely, certain SPH model may be valid.

Studies on estimation of the survival function S(Z) under the
SPH model have been extensive. For testing S(#) in the two
sample problem, Efron (1967) computed the Pitman efficiency
of competing test statistics. Koziol and Green (1976),> Csbrgdé and
Horvdth (1981), Chen, Hollander and Langberg (1982) and Ebrahimi
(1985) all concentrated on estimating S(#). Recently, Cheng and
Lin (1984) investigated the maximum likelihood estimator of S(#)
and the small-sample mean squafed errors for this m.l.e. was given
by Cheng and Chang (1985). Estimation of the hazard rate function
5/L(t) = — (d/dt) log S(¢) via the product limit estimator of Kaplan
_a{r_ld , Mejer (1958) has been studied by McNichols and Padgett
”,(1985). _It appears that the derivation of mean squared errors by
,McNichols and Padgett lacks an intuitive explanation for the SPH
::Iriodel, for instance, it does not indicate a .comparison with the
gienevralk ‘random right ’censoring model. = This motivates = the
.foIIowin‘g‘ study on estimatirig Z(t) under the SPH model. '
- Consider. the observed random sample (Z;, D;), i =1,---, n, let
,Za_)’,""_,, Zwy be the ordered Z’s and Dy, -+, Dmy be the
_,gorr_es_pogding indicators. Under the general random right censoring
model, a popular estimator of i(#) is

A = Z Ki(t — Z@)) Day(m — £ + D,

‘where 'Kb(t — s) = K((t —s)/b)/b; b =0, is a bandwidth sequence
which. approaches zero as # approaches infinity, and K(-) is the
so-called kernel function that integrates to one, usually a probability
deﬁsity function on the line. The estimator 1 is a convolution
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smoothing of the formal derivative of the empirical cumulative
hazard function Hu(2) = Xz <t Diry/(#e— i + 1) discussed by Tanner
and Wong (1983), Ramlau-Hansen (1983) and Yandell (1983).: In
the full-data case, D;=1, S&) =L({l) and 7 reduces -to . the
estimator z(2) = 37, Ky(t — Zuy)(# — ¢ + 1)7t, proposed by Watson
and Leadbetter (1964), of the hazard rate function % of Z. Many
studies on the hazard rate estimators have appeared in the literature.
For the full-data case, there is a survey paper by Singpufwaﬂa and
Wong (1984), and for the censored data, there is one by McNichols
and Padgett (1985). . '

It is worth noting that the SPH model assumes the basic facts:
2(2) = ah(t) with k() = — (d/dt) log L(t) and « is the expected
proportion of the uncensored observations. Therefore a natural
estimator of 2 is 1 = ain it where o, = 271 Y01 D;. "“The use of this
estimator may also be justified from the following two aspects.
Firstly, consider the fact S =L¢ and let L, be the empiﬁcal
survival function for L, then L.” is a maximum likelihood
‘estimator for S (Cheng and Lin (1984)). Hence a convolution
smoothing of — a,logL, by a delta sequence will provide an
estimator 1, =a,k for 1, where o= K %(—logL,) is also an
estimator of % considered by Rice and Rosenblatt (1976) for the
full-data case. The performances of 7. and 2, are expected to be
asymptotically equivalent. Secondly, the well-known product -limit
estimator § of Kaplan and Meier (1958) is 2 maximum likelihood
estimator for the survival function S. Thus, a kernel convolution
smoothing of — log8 will also give an estimator of 2, i.e,
1=K *(— log S). The estimator of 1 given by McNichols and
Padgett (1985) is derived along this latter idea and its performance
is asymptotically equivalent to that of 1.

The aim of this paper is to show that the performance of
s (or 1,) is different from that of 2 (or 7). Specifically, as
estimator of 1 under the SPH model, the former is preferred to
the latter based on their asymptotic variances although they are
all asymptotically unbiased. Section 2 describes the wusual
assumptions needed for standard asymptotic results and treats the
comparison in terms of pointwise asymptotic normality. The ratio



156 -7 7 PHILIP E. CHENG - oL [June

of. . the asyinptotic variances also leads to a comparison of
simultaneous confidence bands given in Section 3 as a byproduct.
The results provide a more precise information not shown in
previous studies of the SPH model.

2. Pointwise asymptotic properties. The derivation of biases
_andfvari;ances of 2 and 1. can not be easily carried out due to the
logarithmic functional form however, Lemma 2 below asserts that
the asymptotic biases and variances of f,,, and 1, are equal and -so
are those of 1 and 1. It suffices to study the comparison between
2 and 7, say, for the pointwise properties. - The exact expressions
of bias and variance for the estimators % and 1 are given by
‘Watson and Leadbetter (1964) and Tanner and Wong (1983)
respectively. ~To obtain the bias and variance for the estimator s
we shall make use of the characterization of the SPH model due
to Armitage (1959): the SPH model holds, ie., S = L* for certain
positive constant .« less than one if and only if the random
variables Z and D are independent. As an immediate consequence,
both % and % are independent of @, The following standard
conditions on the survival function S and the kernel delta sequence
K, will be imposed as needed. The distributionali assumptions are

S1. S, C and L are continuous and L = SC,
82 The densﬂ:y f of X is continuous on [0, T'] where
- LT)>0 | . |
S3. The second derivative of f exists and is bounded on [0, T°].

" S4. f2 js absolutely continuous and has. bounded derivative
on [0, T].

The kernel and bandwidth cond1t1ons are:

K1l Ky(x—y)=K((x —y)/b)/b. K is a bounded probability
density function and vanishes off [— 4, A], 0 < A < oo,

K2. K is symmetric and has a derivative K’ satisfying
[(& () dz < o,

‘K3. The bandwidth sequence b = b,— 0 and #b— o as #— oo,

K4. b loglogn— 0 and (2b)-1/2 Iogn — () as s — oo,

K5.; #b°(logb—') — 0 as 7 -» oo,
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LeMMA 1. Assume Si, S:, Ky and K. Then for 0<t< T
(i) EL@) = EIQ®), and
(ii) lim, Var 2,(8)/Var 2(2) = .

Proof. From formula (3.1) of Watson and Lgadb_etter and
Theorem 1 of Tanner and Wong we have '

E.(}) = aER(?)

=« [[1— (1— L)1 k@) Kt — ) dy
= Ei(t).

To prove (ii), we follow Watson and Leadbetter -and let

L « .
L(L) = j‘; 2z +1—-L)— (11— L)*]dx. ‘ Observe that for ¢
fixed, ‘ o

Var 2,(t) = Eo E(h(£))* — a2 (ER(t))* o o
= o Var #(¢) + (1 — ) [Var &(2) + (Eh(t)mn—l
= o Var i(¢) + O(1/%) '
=a()+ (II) + O(/=),

where

(D = [ LL@)) (@)K —v) dy,
and .

=2 [f{a-LE)T1- A-LE)"]

o< y=z . . : ‘ .

— (L[ A—L(2))"— (1 ~ L()*1[L(y) —L()1 M}
- {2(w) 2(2) Ko(t — y) K (¢ —2) }dy dz.

It was shown by Tanner and Wong that Var ) = @) + dD)

and that (D)= ( [ K?) 2(5)/nbL(t) and (II) = o(1/nb). The above

approximations together with K3 implies (ii). o

One may observe from Lemma 1 that the smaller the parameter
o is, the better the estimator 2. is, compared with 2. As an
immediate consequence, the pointwise asymptotic normality of the
estimators s, A and 7 can be put together in a manifestly

comparable form.
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THEOREM 1.  Let S1—S3 and K1 —K3 hold. Assume also
7b*—0 as #—> co. Then for 0<t<T and

PO [nbL(tj/h(i) ( f KZ)]”Z, |

the folloiviﬁg weak convergence results are valid
(1) & 12 8,(8)(2(2) — a()) - N(0, 1),
(i) () (B(t) — B(t)) - N(0, 1),

(ii) @™ B (Wlt) — 2()) > N(0, 1).

Proof. Notice that the assumptions together with (2.16) of
Rice and Rosenblatt ensure that g,(2)(Ek(2) — k(2)) —0 as
#—>co, It is here for the bias part the added condition #5°— 0 is
used. By Lemma 1 (i)’ B2(2)(EX(2) — 2(8)) >0 follows similarly.
Since it follows from Tanner and Wong that « V2 g,(2)(1(2)
-—EE(t))-—»N (0, 1) and, implicitly in the absence of censoring,
Bx(2)(R(t) — ER(t)) — N(0, 1), hence (i) and -(ii) are established.
For (iii), write 1,(¢) — 2() = a(h(t) — h(£)) + (cxn — @) (t) where
x> and B,(1)(cty — &) = O(B?) in probability. By Slutsky’s
theorem and (ii) we conclude (iii).

As mentioned in the first paragraph of Section 2 we give the
following two facts which imply that all the results of Lemma
1 and Theorem 1 are also valid if any estimator(s) with tilta “~”
is replaced with the corresponding one(s) with hat ©~”,
Consequently, a complete picture of the pointwise asymptotic

properties is provided. The first fact is
LeMMA 2.  Let K1, K3 and S1 — S2 hold, Then for 0 <t<T
lim sup #%|k(t) — h(2) | <Ag@®) | K| /L()z.

almost surely, where |K|| = sup:|K(x)| and g is the density function
of the random variable Z,

Proof.
¥ 3 .- 1
o) = b = 3 B~ 2o iy

"log(lJr n1—1+1)]'
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Since {x—log (1 + x)| < 2¥/2 if 0 < x <1, we find that
|h(2) — ()| < Y Ko(t — Z:)/2R(Z:)?

‘where R(x) = #{Z; Zk 2}, the number of individuals at risk at time

x. Henece,

nli(t) = 5(1) | < [n/2R(ZITY. K((t ~ Z:)/b)

< [IKI/22~* R(t + 5AY] S ITt — bA < Z <t + bAl/n.

The right-hand side of the last inequality converges w.p. 1 to
Ag(t)|K||/L(2)? by strong law of large numbers and the fact that
b—0 as n— oo, ‘

Analogous to Lemma 2, it follows from Lemma 1 of Breslow
and Crowley (1974) that [1(2) — 2(2)| = O(1/#) w.p. 1 under the
same conditions. This is the second fact. A

3. Simultaneous confidence bands. The method of Bickel and
Rosenblatt (1973) for deriving simultaneous confidence bands for
an unknown density function has been applied to estimation of the
hazard rate function. Rice and Rosenblatt (1976) and Sethuraman
and Singpurwalla (1981) obtained the same confidence bands based
on two different estimators in the full-data case. Along the same
line of derivation, Yandell (1983) gave confidence bands for 2
based on 1 for randomly right-censored data. The purpose of this
section 1is to give confidence bands for 1 based on the estimators
2, and 1, so that a comparison between the confidence bands from
2. (or 7.) and that from 2 (or 1) can be made under the SPH
model.

First of all, one important fact must be noted. It can be easily
checked that the two facts at the end of Section 2, Lemma 2 and
its immediate parallel, also hold true uniformly over the interval
[0, T7]. This is due to that 21— 2| < 24|K|[/R(T + bA) and
1% — &) < nAlgl-|K|/[R(T + bA)]® almost surely, where ||
denotes supremum modulus over the -interval [0, T'] except that
|K] is defined over its own domain. Incidentally, L(T + bA) >0
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if # is sufficiently large since L is continuous and L(T)>0. The
above fact implies that confidence bands (over [0, T1) based on
3, and 1, are asymptotically equivalent and so are the bands based
on 1 and 7. Therefore, it suffices to compare the bands derived
Vfrom i, and 1. Before giving the bands based on f,, we need to
state two existing results. The following mnotations will be used.
Let 7, = (210og(T /b))** and dp =7, + (log 7)/7», where

r = nlEH(— A) + K1) ([E2)7, i K4)>0;
=<f(K’)2/fK2)1,2/27r i K(A)=0.

Define A(#) = (%) L—l(t)< sz), B() = h(t) L—l(t)( f Kz) and
hi(t) = f Ki(t — s)dH(s). The two results are as follows.

LemMMA 3. (Yandell) Let S1— S4 and K1 — K4 hold., Assume
blon #—0. Then for each real value x

Plr, (M, — d,) < x} —> exp(— 2e~*)
where M, = ||(nb/A(#))2[ () — Ei(®)]1I.

LeMMA 4. (Sethuraman and Singpurwalla) Under the same
assumptions of Lemma 3 without the condition b log n— 0,

Plr.(iM, — d,) < x} — exp(— 2e~%)
where 1M, = || (nb/B(®))*[k(t) — ki ()]

We remark that Theorem 2.2 of Sethuraman and Singpurwalla
(1981) is also valid with ||+]] of Lemma 4 taken over [0, 7'] instead
of over [bA, T1 only, because the Wiener process in their
proof may be defined to be zero over (— oo, 0]. However, in
Lemmas 3 and 4 above, if Ei(2) and k:(¢) are replaced with a(£)
and %(¢) respectively, and  condition K5 is . imposed, then the
appropriate domain for |-|| is [6A, T] instead of [0, I']. This is
due to the nonnegligible bias near the boundary value ¢ = 0 if the
hazard rate function does not vanish off smoothly near =0, It
is worth noting that such phenomenon is also discussed by Falk
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(1984) and Rice' (1984) in the context of kernel estimation of
density and regression functions, '

THEOREM 2. Let S1 — S4 and K1 — K4 hold. Then for each
real valu(e‘x

Plru(#, — d) < o} — exp(— 2¢7%)
‘where M, = ||(nb/aA())*[1,() — aks(D)]1]. |

Proof. Utilizing the fact 1(¢) = ek(?) under -the SPH model,
‘we observe the following:

(#b/cc A())2[ 2,(2) — atht ()]
= (nb/aA(t))*[ach(t) — ki (1)]
+ (2b/osA(#))*(0ts — a5) h(2)
= (2b/B())2[h(t) — ki (t)] + O((b log log #)*2).

By Lemma 4 and K4, the proof is completed.

‘ As remarked before Theorem 2, the bias part can be treated
in a similary way.

CoroLLARY. If K5 holds in addition to the assumptions of
Theorem 2, then

P{rn(zﬁn — dy) <z} —> exp(— 2e~%)

where; M, = supsasesr (#b/acA#))2| 1u(2) — 2(D) 1.

In view of the construction of confidence bands (p. 1077 Bicke!
and Rosenblatt (1973)) it follows from Lemma 3 and Corollary above
that the widths of the confidence bands based on 2, (or 1,) is
approximately «!/? times as wide as that based on I(or )
uniformly over the interval [bA, T']. Parallel to Theorem 1, this
concludes that if the SPH model is valid, an increase of asymptotic
relative efficiency is achieved with the proposed estimator 2n (OT 72)
versus the usual choice 1 (or ).
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