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Abstract. A (v, n-+1)-association scheme isa set §= {4, =1, 4,,
«evs Ay} of # +1 symmetric (0, 1)-matrices of order v xv such that (i)
B7.0A: =] (the all-ones matrix), (ii) 4; 4j = D7, aiir Ag for 04,
F< n, where a;jr are non-negative integers. The main purpose of this
paper is to study the existence or non-existence of a (v, # + 1)-association
scheme for certain parameters » and #, especially for the case of v is
a power of two.

1. Introduction. An association scheme with # classes (or
relations) consists of a finite set X of v =2 elements together
with 2 + 1 non-empty relations R,, Ry, -+, R, defined on X which
satisfy conditions (R1) to (R4). ‘

(R1) Each R; is symmetric,i.e. (2, ¥)e R; implies (v, z)< R;.

(R2) TFor every o, v X, (2, ¥) € R; for exactly one .

(R3) R, = {(x, ) : 2 € X} is the identity relation.

(R4) If (=, ¥) € R;, the number of 2z € X such that (z, 2)=R;
and (¥, 2) € R; is a constant a;;, depending on i, 7, £ but not on
the particular choice of 2 and Y.

Association schemes were first introduced by statisticians in
connection with the design of experiments ([5], [6]1, [12]1, [14],
[15], [16], [19]), and have since proved very useful in the study
of permutation groups ([7], [101, [11], [18]), graphs ([11, [2], [3],
8D, and coding theory ([9], [13]).

In this paper we call an association scheme with 2 classes on
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a set of v elements a (v, # + 1)-association scheme or simply a
(v, 5 + 1)-scheme. We describe the relations by their adjacency
matyrices A; which are the v x v matrices with rows and columns
labeled by the elements of X and defined by

1 if (z, v) € R,
(A, = {

0 otherwise,

The definition of an association scheme is equivalent to saying
that the A; are non-zero o X v (0, 1)-matrices which satisfy
conditions (A1) to (A4). (We often use the set of = {4, -, As}
to denote the association scheme.) ‘

(A1) Each A; is symmetric, i.e. 4; = AL
(A2) Y0 A; = J (the all-ones matrix).

(A3) Ay =1

(A4) A; Aj = Nhao@ijr As, Z,7=0,1,---, ».

(A1), (A2), and (A4) together imply
(A5) A A;=A;A;, 4,j=0,1,--,n.

Summing up the equalities in (A5) for all j, we can see that
every A; has a constant row sums and column sums 9; i.e.

(A6) A J=JA=v], i=01,--,n.
Other relations on @;j; are listed below (see [13]).

Biio = Vi, @ijr = @jiz, Gojr = Ojp,
(A7) Ve Qijr = Vi Qrji, 2aj=08ijr = Vi,

2i7=0Bijr Crim = Dl5=0 Bism @ jks.

The existence of special association schemes, such as Hamming
schemes, spectral schemes, cyclotomic schemes, Lee schemes, have
been extensively studied, see section 2.5 of [9], for some recent
results see [20, 21].

The main purpose of this paper is to study conditions on the
parameters v and 2 for which a (v, # + 1)-scheme exists or does
not exist. In section 2, we prove some theorems on association
schemes. Section 3 discusses constructions of association schemes
from association schemes with smaller parameters v and %z, Finally,
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in section 4, we use these results to study the existence and non-
existence of (v, # + 1)-schemes for certain parameters v and #,
especially for the case of v is a power of two.

2. Some theorems om  associatiorn  schemes. Suppose
of = {Ao, Ay,--+, Ag} is a (v, #+ 1)-scheme, Let of; denote the
set of all A; with v; =4  The following two equalities are
important in this paper.

2.1 lof1l + 2]efsl + -+ +0lefs]l =v.
(2.2) lofsl + |ofel -+ |Sol =22+ 1.

Note that some of; may be empty.

Ay=TI € of1. For any A; € of, Ai € of1 if and only if A4; is
a permutation matrix; in this case A; = Ai= A:'. Moreover, we
have the following theorems,

THEOREM 2.1 of: is an abelian group under matrix multiplication.
In fact, of1 is isomorphic to (Z:)™ for some nom-negative integer m,
and so |f1| = 2™,

Proof. For any pair A;, Aj € o1, A; A; = Zi-0aijp Ar implies
that A; A; has a constant row sums and column sums 2%-o@;;z Vs
Since A; and A; are permutation matrices, so is A; 4;. These
imply that 1 = X%,z and so all @ =0 except agijn=vs=1
for exactly one k, i.e. A;A; = Ay € of1. This proves that of: is
closed under matrix multiplication. Also, the identity matrix
I=A,€ of1. And for each 4; € of, Ai'=A;i € 1. So &1 is a
group under martix multiplication. By (Ab), of1 is abelian.

The fact that A; = A;! implies that every element of of: is
of order 2 except A, =I By the Basic Theorem of Abelian Group
(see [17], Theorem 4.6), of1 is isomorphic to (Z;)™ for .some
non-negative integer .

THEOREM 2.2 If A; € of1 and A; € f, then A; A; € 1.

Proof. We will prove the theorem by induction on 4. By
Theorem 2.1, the theorem is true for the case of Z = 1.- Suppose
the theorem holds for all %’ <% >2. Similar to the proof of
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Theorem 2.1, A; A; = X7, @:jr Ar implies that 7 = v; = 2 %=0@; jr Vs,
Suppose @;» = 0 for all A, with v, > %. Then, by A4; = 477,

(2.3) A; =" a:(A; Ap).

vk<h
By the induction hypothesis, A; 4; € of 0, for all v, <h. (23) is
impossible since A; € ofs and (A2). Thus a:jr =1 for some A,
with 9, > %. This implies that all a;jr =0 except @ijm=1 and
= = k for exactly one m, i.e. A; A;=A, <€ o

For any ofs, consider the relation 2 on s defined by: A; 13 Ax
if and only if A4; A; = A; for some A; € of;. Using Theorem 2.1,
it is easy to check that % is an equivalence relation on 5. So of
is the disjoint union of equivalence classes [4;]. For each A; eofs,
denote F(4;) = {A; € of1: A;A; = A;).

THEOREM 2.3 Suppose A; € o and |of1] =27 as shown in

Theorem 21. The following statements hold.
C@) F(A;) is a subgroup of o1, and so F(A;)~(Z)™ for

some m' < m.

(ii) |[4;]1] = 2=,

(iii) |F(A4)| < h.

(v) [[4;D] is @ multiple of 2m"", where m' = Llog: 7.

) |Swl=a2" " and h|cS1| = a 2™ for some positive integey a.

Proof. (i) Suppose A; A, c F(A;), i.e. 4, Are of; and
A;A;=ArA;j=A; Since Ai'=Ai € ofy and A A; = A A; = A,
A*e F(4;). A;Areofi by Theorem 21 and (A;A:) A;
= Ai(Ak AJ) = A; Aj = Aj, so A; A, F(A]). Also I= A, F(AJ).
These prove that F(A;) is a subgroup of of1. of:= (Z)" implies
S (A;) = (Z:)™ for some m' < . . :

(i) Note that [4;]={A; 4, : A; € of1}. A; A; =4, A; if and
only if (A:A)A;=A4; or A,A e F(A4;). So [[A4;1]
= [f1l/IF(4;)] = 2m-—"

(iii) By (A6) and (A4),

0, ] =JA;=3 A A;= 3, A A+ S A A
: i=0 A4, eF(AJ-) A;eF (AJ-)

—=|F(A;)|4; + N,
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where N is a non-negative matrix. Compare the entries which
are ones in A;, then 2 =v; > | F(A;)|.

(iv) By (ii) and (iii), 2™ = |F(A4;)|< &, so m’ < log: k. Then
m' < m'" and |[A4;]] = 2" is a multiple of 2m-=", :

(v) |efi] =a 277" follows from (iv) and the fact that of
is the disjoint union of equivalence classes [4;]. Z > 2" implies

klicf1|> a 2m.

THEOREM 24 Suppose E < {1,---, v}. If

D lefil = p=a% 4t om,

JsE

where ;> Yoy > #y > 0 are integers, then Z",-eE JlSil= s 27,
where 2" = |ofy].

.. Proof. We will prove the theorem by induction on p. Suppose
D=1, then p=2° and there is some % € E such that ofs = @. By
Theorem 2.3 (v), klef3]l = 2™ So the theorem holds.

Suppose the theorem holds for all p’' < p=9% + ---+ M =2
Since #y > m would imply X e jlofj|> Dierlof;1> s 2™ without
loss of generality we assume that #; <<m. Suppose j << 97* for
all j € E. By Theorem 2.3 (v), each |of;| is a multiple of 277"
where m/' =|log:jl<<m — uy, 1ie. m—m'’ >u; +1. Thus
P = Xjeelef;] is a multiple of 2%1*' which contradicts D= s e
+ 2% + 2% and #; >--->uy > u; + 1> u;. So there is some 2 € E
with %2 = 2™*1. By Theorem 2.3(v), |ofi] = @ 277" and k|ofsl
> a 2", where a is a positive integer and m'’ = |[log: k| = m — u,,
ie 2m—m" < guy

Consider E’ = E\{k}, then p’ = p — |ofs|, where [of1] < @ o
< 9% +9%-14--- 4 2%, So P’ =9% + .-+ + Q%er1i+t 9¥r 4+ ...+ 9% where
>0 and w, S > Upry S W, S>> w1 > 0. By the induction
hypothesis, Xjer jlof;| 2(s —a+ 7) 2% 2 (s —a) 2". So Zjcr jlof;]
>a2+ (s—a)2" =35 2™

Hence the theorem holds by induction.

THEOREM 2.5 |ofil| is a divisor of v.
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" Proof. Consider the binary relation ~on X defined by: i~
if and only if there is a matrix Az = (a{)) € o1 such that a{’= 1.
~ is an equivalent relation as shown below.

(i) i~1i since Ay =1 = (8;;) with 65 =1
(ii) i~ j implies j ~ i follows from the fact that each A is
symmetric.

(iii) Suppose i~ j and j ~ k&, i.e. there are A,, A, € of1 with
d® =a{®=1. Note that A,=A4,4,€ o1 and af = aff aif = 1.
So a{? =1 and then i ~ k.

The equivalence relation ~ partitions X into equivalence
classes. TFor each ie X .and A, € of:, there exists one j € [i]
such that &{? =1. The correspondence between A, and j is one to
one. Thus each class [Z] is of size |of 1‘l. Then v= |f1] *
#(equivalence classes), i.e. [&f1] is a divisor of ».

3. Constructions of mnew association schemes from given
association schemes. In coding therory, extemsion of an association
scheme is a very common way to get new association schemes
(see [9], section 2.5). In this section, we introduce other
constructions of new association schemes from given association
schemes by means of Kronecker product of two matrices.

Suppose A = (@;;) is a # x v matrix and B a 7 X s matrix.
The Kronecker product AR B of A and B is the following
(ur) x (vs) matrix

e¢uB @:B---a1, B
A®B= ﬂle azzB"'dzyB

aulB au2B"'auvB

The following equalities are frequently used in th@s paper.

(3.1) a(AQB) = (aA) ® B = AQ® (aB).
(3.2) (A; + A:) ® B = (A: @ B) + (A: ® B).
(3.3) AQ (Bi+ B:) = (AR B:) + (AQ Bs).
(34) (A®B)(C®D) = (AC)® (BD).

(3.5) (AQ® B)t= At Q B
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THEOREM 3.1 Suppose of = {Ao,---, Au} is a (v, n + 1)-scheme
S = {44+, A} is a set of m+ 1 v x v (0, 1)-mairices such that
(i) each A; is the sum of some matyvices in of, (ii) all A sum up io
J, (i) A; ;= X% o Ar for 0< i< m and 0< j < m, where a;
are non-negative integers. & = {Bo, -+, By} is a (u, p + 1)-scheme.
g' C g satisfies Bo € g’ and B; B; = X, bipn Bi for B;, B;e g/,
where by, are non-negative integers. Construct the set

U = {A,@B, A e S and B; € g’'tu
{A;®QB;: Ai € of" and B; € G\G'}.

Ther Q[ is an association scheme.

Proof. We shall prove that (Al) to (A4) hold for Q/.
(A1) Since all matrices in of, of’, &, &’ are symmetric nonzero
(0, 1)-matrices, so are all matrices in Q/.

(A2) > {A:®B;:4;€ of and Bj e g’}
+ > {4i® B;: Aie of and B; € 9\g'}
=2 A® > B+ >, A® >, B;
Aied Bieg’ Aled’ Bieg\g’

=Jo ® Z Bj+]v® Z BJ'

Bieg’ Bieg\g’
=]v®( > Bi+ > Bi>
Bieg’ Bicg\g8'
=J, & Ju
=]1m-

(A3) L.=LQIL=AQB, <.
(A4) For Aseof, Bje g', A, e of, B, &,
(A: ® B;) (A, ® B.)
= (4; 4,) ® (B; B;)
= > @nAr® Y, bmBi

Arcd Byeg’
= Z{airkb;'shAk®Bh :Are of and By e g’}
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.~ Fordieof, Bje g', A of', B, G\T',
. (A®B;)(4:®B,)
= (4; A7) ® (B; B,)
= > @ Ai® Y, bju B

A;:Ed" Byeg
= {tmbja Ai®Bi: Ai € of’ and Bre G\ '}
+ Z (@i bjsn e At @ By : A€ of and Bic g'}

where A; = 31,2 A; by assumption (i) of the theorem.

For Aied’, Bje g\ g, Are o', B, g\g’, we can
similarly prove that (4:Q B;)(A,® B,) is a non-negative integer
combination of matrices in Q/.

COROLLARY 3.2 Suppose of = {Aq,---, As} isa (v, n ¥ 1)-scheme
and & = {Bo,---, B} is a (u, p+ 1)-scheme. Then S RI
= {A;QB; :0<i<n and 0L j < p} is a (vu, (n+1)(p +1))-scheme.

Proof. Choose of’ = of and g’ = {B,}. Apply Theorem 3.1.
oS @ G is called the type I product of of and &. Note that
Hamming scheme of length 3 is in fact equivalent to {ZL, J: — L}

& {L, . — L}

COROLLARY 3.3 Suppose of = {Ay,---, Ax} isa (v, n + 1)-scheme
and I = {B,,---, B,} is a (u, p + 1)-scheme. ' = {J,} and G’ is
a subgroup of &= {B;:row sum of B; is 1}. Then {A; R B;:
Aieof and B;je 'V U{,®B;:B; g\G'} is a (vn, n| T’
+ p + 1)-scheme. (This new scheme is called the type II product
of of and G with respect to ')

4. Existence or non-existence of association schemes with
certain parameters v and #. The main purpose of this section is
to prove the existence or non-existence of schemes with certain
parameters v and #. In other word, we want to determine N,, the
set of integers # + 1 for which there exists a (v, # + 1)-scheme,
It is easy to see that 2<min Ny<max N,<v. The only
(v, 2)-scheme is {I, J — I}. so min N, = 2.

A (v, 3)-scheme {A,, Ai, A:} is equivalent to a strongly regular
graph whose adjacence matrix is A; (see [4]). For » a composite
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integer or a prime of 4s-+ 1 type, there always exists a
(v, 3)-scheme., But it is unsolved for the case of v is a prime of
45 4 3 type. We know that there is mno (3, 3)-scheme or
(7, 3)-scheme, ;

If v=9s, with 7, s>2 are integers, then {I,, (J, - 1) R,
& J.— L)} is a (v, 3)-scheme. In fact this scheme is the type
II product of {I,, J, — I,} and {I, Js — I} with respect to {I;}. If
v is a prime of 4s + 1 type, we can: use the fact that Z, has 2s
quadratic residue to construct a (v, s)-scheme.

Next question is to determine max N, in term of ».

THROREM 4.1 If v = 27 u, wheve r is a non-negative integer and
u an 0dd integer, then max N, = 2"~*(u + 1).

Proof. Suppose of is a (v, # + 1)-scheme. By Theorems 21
and 25, |of1] = 2" with m» < 7. By (2.1) and (2.2), ’

02 | ofil +23 of;l =27 4 2(m + 1 — 2) = 2(n + 1) — 2%,

Then
n+1< Qu+27)/2<L (2u+ 27)/2=2""(u + 1).

So max N, < 2" %(u + 1). ,
. Conversely, we will comstruct a (v, 27~(#% + 1))-scheme and

conclude that max N, = 2"z + 1). '

Consider the following # X # permutation matrices P, = (),
0<k<u—1, defined by > =1 if j =7 + &k and £’ = 0 otherwise,
where the addition of indices are taken modulo #. 3

let Ag=P) and A;=P, + P,; for 1<i< (u—1)/2. It is
straight forward to check that of = {4,, Aoy Ay} is a
(u, (# +1)/2)-scheme by using the fact that Py P; = Ppys. Consider
the (2,2)-scheme & = {I:,J: — L}. Theno/ ® IQ---Q G (with #
terms of &) is a (v, 27~*(u + 1))-scheme.

In the rest of this section, we will concentrate on the case of
v = 2%,

THEOREM 4.2 Supposev = 2* and n + 1 = 9% + 2%1 +--- +2% =2,
where g > uy >-+->u, > 0 are integers. If u>=7r + uy, then there
exists a (v, # + 1 )-scheme.
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Proof. We will prove the theorem by induction on #. The
case of # =1 is clear since v=n+1=2. Suppose the theorem
holds for all #' <w>2. Without loss of generality we can
assume that # + 1> 3, since {I,,J, — I,} is a (v, 2)-scheme.

Suppese #,>1, i.e.z+1 is even. Consider o = 2¢! and
7' +1=(n+1)/2. Note that #’ + 1= 9%+ 94+ ... 494 "1 > 2,
Since #>7 + u, implies # —1>7 + (#,— 1), by the induction
hypothesis, there is .a (¢, #’ + 1)-scheme of. Consider the
(2, 2)-scheme G =1{k, J. — L}. By corollary 32, of ® G is a
(v, # + 1)-scheme.

Suppose #, =0, i.e. #+ 1 is odd. for the case of #+1=3, a
(v, 3)-scheme exists as shown in the 3rd paragraph of this section.
For the case of z#+1>05, consider v =2¢2 and # +1=n/2.
Note that #' + 1 = 2% * + 94 14 --- + 9%~ > 2, Since u>7 + u,
implies # — 2> (# — 1) + (uo — 1), by the induction hypothesis,
there is a (v/, #' + 1)-scheme of. Next consider the (4, 8)-scheme,
=1L ,(J:— L) x L Q(J:— k). Let ' ={L,(J: — L)X L}.
By Corollary 3.3, the type II product of of and & with respect to
g’ is a (v, # + 1)-scheme,

Thus the theorem holds by induction.

Although Theorem 4.2 is proved by induction, we can in fact
construct the corresponding (w2, + 1)-scheme in the proof. TFor
convenience, we use the following notation.

e ) -0
‘ <M1,---,Mu>=M1®"'®Mu.

Suppose =2 and #+1=9%+92+---+ 9% > 2, where
U=>uy =>--->u#u, =0 are integers and #>7 + u,. (If u,>0, we
can consider v’ =2*"% and #' + 1= (n# + 1)/2*. Then use type I
product of schemes.) Let u; =0 for {>7. Define

d‘(o) = {<M1’...’ Mu>:
M; =1 or K for 1<j<u,, M; =1I for j = u, + 1},
SO = KMy, -, My>: M;j=J for 1< ji<uy+¢ —u; —1,
Mi=IorKforu+i—u;<j<wu+i—1,
Muo+1:K MJII for j = uy +17 +1},
for i=1, 2,--, u — u,
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Then of = (Up=icr—1o/) U {4,} is the scheme given in the proof
of Theorem 4.2, where A, =X {M : of P =M}, r<i<u— o).

For example, v =28 and #z+1=24+22+ 2+ 2", Then of
contains the following # 4+ 1 matrices.

{K°1, K%, K, K, I, I, I, I>, ¢i, €, €3, cs=1 or 2,
<J,J, K% K%, K, I, I, I, ¢s, ¢ =1 or 2,

L T1J K K I I, =1 or 2,
LLLLLLEK DAL LT T KD,

where K'=K and K*=1I.

COROLLARY 4.3 Suppose v=2* and 2<n+ 1< 21+ thepn
there exists a (v, n + 1)-scheme.

THEOREM 44 Suppose of is a (v, 2 + 1)-scheme with 2*~' <n + 1
<v=2% then n + 1= 2"+ 2% for some 0 < w < u — 2.

Proof. Suppose the theorem is not true, then ‘n+1=2“‘1+2"’+z,
where 0 <w<#—2and 1<2<2*—1. By (2.1) and (2.2),
22 1cfil +23 1Sl
= Idllp-z!- 2(m+1— |f1l) =2(z + 1) — |S1l.
Then
lofi] = 2(2 + 1) — v = 29+t 22 > 2w+l

By Theorem 21, |ofi] =2™ for some non-negative integer .
P=p>pg+1>92%>20+ implies #—1>m>w + 2.. Again, by
(2.1) and (2.2),

2= 9> |ofil +2lefal +33 [ofl

= |f1] + 2|ofe] +3(z+1—]f1]—|fel)
== 8e2%~1 - .29 3z — 27 — | of].

Then
[ofs] = 24—t — 9m+1 4 3.29 4 3z.

By Theorem 2.3(v), |of:| is a multiple of 27  Therefore,
|ofz] = 2¢—t — 2m+1 4 ¢ 27— where ¢t > 1 is an integer. So
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1) il =m+ 1= (ol — o]

| T =2+ z+ (2—1)2"1 >0
and
(42) S ilefyl = o= Il = 2ol = 38— )2~

(4.1) and the fact that m> w + 2 1mply 2—t>20,ie. 2—¢t=0
or 1. Then

Dol =(2—=1)2m 1+ 29 4 9% -+ 94,
=3

where m—1>w>u;>--->u; >0 and s>1. (Note that
(2 —t) 27! is either 2#-! or nothing.) By Theorem 24,

Z]l@f,l>(2—t+1+s)2m>(4—t)2m

F=8-

This contradmts (4.2). Thus the theorem holds.

By Corollary 4.3 and Theorem 4.4, we have

N = {2},

N. = {2, 3, 4},

N: =12 3,4,5,6, 8},

Nis= 12,3, 4,5,6,78,9, 10, 12, 16}.

However, for v = 32, the only #+ 1 for which 'we can not use
Theorems 4.2 and 4.4 to determineif # +1< N, is # + 1 =15. But
there exists (4, 3)-scheme and (8, 5) scheme Their type I product
is a (32, 15) scheme. So we have ' k B

N;; = {2, 38,---, 16, 17, 18, 24, 32}.

Similary, for » = 25, we have difficulty when # + 1 = 23, 27, 29, 30,
31. Since there exist (4, 3)-scheme, (16, 9)-scheme, (8, 5)-scheme,
(8.6)-scheme, by using type I product, there exist (32, 27)-scheme
and (32, 30)-scheme. Also the following is a (32, 23)-scheme:

o ={{K°1, K%, K%, K, I, I, €1, €2, €3, s =1 or 2,
J.J, K% K°%, K, I, ¢ cc=1 or 2,
LK, I, T, T, I, K, ¢:=1or 2,
<J. 1. 11 K K. -



1986] EXISTENCE AND NON-EXISTENCE OF ASSOCIATION SCHEMES 269
so only the cases of # + 1 =29, 31 are unknown. »
 Nee= {2---28, (299), 30, (31?) 32, 33, 34, 36, 40, 48, 64}.

In general, we still can not determine N,. In order to get
more resulls on N, we believe that we should understand more
structures on of; for an association scheme of.

Acknowledgment. The author wishs to express his gratitude
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