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Abstract. Let R be a prime ring with involution = and center Z
If d is a nonzero derivation on R such that d(x)x — #d(x) € Z for all
symmetric # or for all skew &, then we show that R must be a
commutative integral domain or an order in a 4-dimensional simple
algebra. Similar results are also obtained where the condition d(x)z
—xd(x) € Z is replaced by d(x)x + xd(x) € Z. As a by-product we
prove a theorem generalizing Chacron’s theorem: if z” € Z for all
symmetric #, where # is a fixed integer, then R satisfies the standard
identity in 4 variables.

In an early paper [7] Posner proved the following theorem:
If 4 is a nonzero derivation on a prime ring R such that, for all
elements x in R, {2, d(x)] = 2d(2) — d(x)x is in the center Z of
R, then the ring R must be commutative. In this paper we shall
consider similar problems when the ring R is equipped with an
involution *. What can we say about the structure of R if [, d(2)]
e Z merely for all symmetric elements & = 2* or for all skew
elements = = — 2*? In this case one cannot expect to conclude the
commutativity of R even if R is assumed to be a division ring. For
instance, in the ring of real quaternions, if * is the usual conjugation
(a+ B+ 7ri+oR)*=a— pi—yrj— ok, all symmetric elements are
central and hence the property [#, d(x)] € Z holds trivially for
all symmetric elements x. On the other hand, if % is defined by
(¢ + Bi+ rj+ k) = — fi + rj+ ok, all skew elements commute
with one another, so the property [, d(2)] € Z holds for all skew
elements x when 4 is an inner derivation induced by socme nonzero
skew element. Also, one can easily produce counter-examples by
suitably defining an involution % and a derivation d on the ring of
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2 x 2 matrices over a field. As we shall see in the present 'paper,
the quaternions and the 2 x 2 matrices are the only objects of
which one can make noncommutative examples. Explicitly speaking,
any such a prime ring must be either a commutative domain or an
order in a 4-dimensional simple algebra. Or equivalently, the ring
must satisfy the standard identity

34(3/1, L2, X3, Bs) = zs: (— 1)" -’L’aa) Zo@ Lo oo

In what follows R will always denote a prime ring with
involution * and center Z. S is its set of symmetric. elements and
K its set of skew elements. For a subset A of R, A means the
subring of R generated by A. And, for subsets A, B, [A, B] will
be the additive subgroup of R generated by elements of the form
[@, b] = ab — ba with a € A and b € B.

We start with a symmetric version of Posner’s theorem. For
the time being we are concerned first Wlth the case when R is not
of characteristic 2

TEEOREM 1. If d is. @ nonzero derivatiom on R such that
[d(s), sl € Z for all s € S, then R satisfies s, provided char R+ 2..

Proof. TFirst, we show that the hypothesis actually assumes a
stronger form, namely, [d(s), s]=0 for all s= S. By linearizing
on s in [d(s), s]€ Z we have [d(s), t]1+[d(), sl Z for all
s, t e 8. In particular, [d(s), s*] + [d(s?®), sle Z for all s S.
Expanding this and using [d(s), sl € Z we get 4s[d(s), s] € Z.
The fact that [d(s), sl Z forces s€ Z or [d(s), s] = 0 because
char R=+2. Hence [d(s), s]=0 for all s S.

Next we show that we may assume d to be inner.  From
[d(s), s] =0 we have [d(s), t] + [d(Z), s]=0 for all s, £ S. Set
t=1s, k] where k£ € K; then -

0=T[d(s), [s, E1] + [d([s, 1), s]
= [d(),[s, £11+ [Ld(s), #], 51+ [Ls, d(B)], 5]
= [[d(s), s], k] + [[s, d(B)], s]
= [Ls, d(&)], sl.
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Thus [6:(s), s]=0 for all s= S if we denote by §; the inner
derivation induced by d(k). Suppose that this theorem has been
proved for nonzero inner derivations, then we can conclude that
d(k) € Z for all k€ K or R satisfies s,. Thus we are done because
d(K) € Z implies R satisfying s, by [6; Lemma 1.6].

Now. let d(x) =[a, #] for all x € B, where ¢ is a fixed
noncentral element. Applying * to [d(s), s]1=[[g, s], s]=0 we
have [[e* s], s]1=0. Thus [[a+ a* s], s]=0=[[e— a* s], s]
for s€8. Since e¢ Z, ¢+ a¢* and a — @¢* cannot be both in Z
Hence we may, if necessary, replace ¢ by e + ¢* or ¢ — a* and
assume that ¢ is either symmetric or skew.

Assume first that ¢ € S. For s € S we have [d(a+s), a+s]=0.
Thus 0=[le, ¢ +s], ¢ +s]l=1[[eg sl,a+ sl=1[[g s], a] for all
s & S. That is, d*(S) = 0 from which it follows that R satifies s,
[6; Theorem 2.2]. A

It remains to check the case When ac K For sS we have
[d(a*+5s), a2+s5]=0 and hence [[a, s] a*] = 0. Thus [[a? s], a%]
=0 for all s€ S. Now a® € S so we are done unless * € Z Hence
assume that a?>e Z Then ad(s)+ d{(s)a=d(as + sa) = 0.
Commuting this with s we have 2d(s)?> = 0, whence d(s)?= O and
d(s)d(t) + d(t)d(s) = 0 for alI s, t € S. Replace ¢ by st + ts;

0=d(s)d(st +ts) + d( st + ts) d(s)
=d(s)sd(t) + d(s)d(t)s
: -+ 2d(s)td(s) + sd(t) d(s) + d(t)sd(s).

Since ‘
d(s)sd(t) +sd(t)d(s) =s[d(s)d@) +d@t)d(s)]=0

and -similarly d(s)d(t)s + d(t) sd(s) =0, we end wup with
d(s)Sd(s) =0 for all s=S. Note that d(s) € S so we conclude
that d(S)=0 and hence R satisfies s, [4; Lemma 5]. This
completes the proof. '

Next we trun to a corresponding result in the skew case.

“ THEOREM 2. -If d is a nonzevo derivation om R such that
[d(k), k] € Z forall k = K, then R satisfies s, provided char R == 2.



252 ' P.H. LEE AND T.K. LEE [September

Proof. From [d(k), kle Z we have [d(k), k]l + [d(k), k1l € Z
for all %, k= K Expanding [d(k), [k, k1] + [d([%, k1), E] and
using [d(k), [k, E1]1 + [Lk, d(B)]1, Bl = [k, [d(R), 1] =0 we get
[[d(k), k], Bl € Z for all &, k< K. 1f this theorem holds for
nonzero inner derivations, then either d(K) € Z or R satisfies s
But if d(K) & Z we still have that R satisfies s; by [6; Lemma
16]. So we suppose that d(x) = [a, ] for all x € R, wherea & Z.
As in the proof of the preceding theorem, we may assume further
that ¢ is in S or K.

The case when a2 K is much easier. If Z2 N K0, let
e Z such that ¢ = —@+0. For s S, as€ K so

&?[la, s1, s] = [le, as], as] = [d(as), as] € Z.

Thus [l[e, s}, sl € Z for all s S and hence R satisfies s, by
Theorem 1. However, if Z N K =0 we have that [[e, 2], £] =0
for all 2K Then O0=1|[{a, a+ k], a +k]=1[[a k], ] for all
ke K That is d?(K) = 0 and hence R satisfies s, by [6; Theorem
2.61.

Finally, we assume that e = S. For ke K, set k= ak + ka.
Expanding [d(k), 2] + [d(k), k] and using [d(k), Bl Z and
[d%(k), k] = 0, we obtain that — d?(k) & + 2[d(k), kla + d(R)* € Z.
Commuting this with 2 we have d(&)[d (%), 2] = 0 and so [d (&), %]
= (0. Hence [d(k), k] + {d(k), E] =0 for all %, k= K Replacing
kh by ak+ ha and expanding, we have d(B)d(h) + d(k)d(k)
= d¥(k)r + hd*(%). In  particular, 2d(k)?=d*k)k + kd*(k)
= 2d*(k) k. Thus d(k)* = @*(k) k and hence d(k) d(h) + d(k) d(k)
=d¥ k) + d*(h)E for all & ke K. Comparing this with the
previous expression for d(k)d(k) + d(k)d(k) we have hd*(k)
=d%(h)k for all h, ke K. As a result, kxd*(k) = d?(k) 2k for all
ze K If K2C Z then R satisfies s, [5; Lemma 2]. Otherwise,
K? contains a nonzero ideal 7 of R. Thus kxd?(k) = d*(k) xk for
all x € I and hence for all & € R, whence d?(k) = 2k for some
2r € C, the extended centroid of R [2; p. 23]. Since kd*(k)=d%(h) k,
we have 1; = 1; whenever kk=~0. Fix two elements ¢, & € K such
that b=~ 0 and let z € C such that d%(a) = ua. Then d?(k) = uk
for all € K with ak=<0. Butif ek =10, then a(lk + 5)<0 and
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so u(k +b) = d*(k+b) = d*(k) + d*(b) = 2k + ub. Thus we have
vk = Jxk and hence 2= 4 if £E=40. In other words, d*(k) = uk
for all ke K If »+#0 then uk®=d%%) = d[3F d(r)]
= 6kd (k)* + 3k* d*(k) = 9k* d*(k) = 9uk® and so 2* = 0 for all ke K
Then (B*z —2*k*)*=0for all € K and 2 € R, Post-multiplying
by £ we have (Z’2)*=0. Thus AR is a right ideal of R in which
the fourth power of every element is 0 ; by a result of Levitzki
[2: Lemma 21.1] this cannot happen in a semiprime ring unless
B =0. Hence =0 for all e K. Again, from (k2 + 2*E)? =0
for all k€ K and x € R, we can conclude K =0 via the same
argument and so R is commutative. However, if z = 0 then d(k)?
=d*(k) k=0 for all € K and so R satisfies s, by [6; Theorem
2.17]. ‘This proves the theorem.

Before removing the restriction on char R in the statements of
the previous theorems we need a result on power-central symmetric
elements. The following theorem was proved by Chacron [1]
under the additional condition that R has no nonzero nil ideals.

THEOREM 3. Let # be a fixed natural number such that steZ
Jor all s S. Then R satisfies s..

Proof. If Z NS =0, then s"=0 for all s€S. An argument
similar to that in the proof of Theorem 2 reduces 7 successively to
yield S =0 and so R satisfies s;.. If ZNS 40, we can localize R at
Z+*=Z N8 to obtain a simple ring Rz+ with an involution ‘defined
by (za ')* =2*a ! for 2 € R and « € Z*\0. Thus Rz+ satisfies
the same power-central hypothesis on symmetric elements. In
light of [1; Theorem 4] Rz+ satisfies s, and, a fortiori, R satisfies
S1 too.

In addition to Theorem 3 we need one more lemma concerning
the centralizer of d(S).

LemMmA 4. Assume that char R=2. Let a € S and d a nonzero
derivation on R such that [a, d(S8)]=0. Then o° = Z,

Proof. Since ¢ < S, d(a®) =1[a, d(@)]=0 by hypothesis. For
2 € R we have
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0=a*d(a*z + 2*a®) + d(a*z + z* a?) a°
=a‘d(z) +a*d(a* + x)a* + d(2*)a
=a*d(x) +d(xz* +2)a* + d(x*) at
=gtd(x) + d(x) a*.

That is, [, d(R)] =0 and hence ¢®* € Z by a theorem due to
Herstein [3].

Now we dispose of the case of characteristic 2. Note that K
coincides with S and [z, ¥] assumes the form ay + yx if char
R =2. Therefore, our hypothesis reads d(x)x -+ xd(x)cZ
for all 2 € § = K in this case.

TuroreM 5. If d is a nonzero derivation on R such that
d(s)s +sd(s) € Z for ail s S, then R sailisfies s, provided char
R=2,

Proof. For se 8, d(s*) =d(s)s +sd(s) e Z by assumption.
Then, d(st +ts) € Z for all s, f € S. Expanding d(szt + Is?), we
get d(s®)t+s2d(t) + d()s* + td (s*) =s*d(¢) +d() §° since
d(s®)t =td(s?). This tells us that s*d(¢) +d(f)s*€ Z and so
std(t) =d(@)s* for all s, £ €S. By Lemma 4 we obtain that s Z
for all s € S. With this the theorem is proved by Theorem 3.

In view of the preceding theorem one might ask whether the
conclusion remains true if d(s)s + sd(s) € Z for all s § in case
char R=~2. The answer is affirmative indeed as we see in the
next

THEOREM 6. If d is a nonzero derivation on R such that
d(s)s + sd(s) € Z for all s €S, then R salisfies s..

Proof. Because of Theorem 5, it suffices to prove the theorem
in the situation when char R+ 2.

For s, we have d(s?) =d(s)s+sd(s) € Z and 2s*d(s?)
= d(s*)s* + s*d(s®) € Z. Hence, either s* € Z or d(s*) = 0. Assume
first that d(Zn8)=0. Then d(s*) =0 holds always for all
se 8. ‘Thus, for s,t€8S, we have d(st+1s)=0 and so
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0=d(s’t +1s°) =s*d(t) + d(t)s>. Hence [s% d(S)]=0 for all
s 8. On the other hand, if s€S and % € K, then [s, 2] € S and so
0=d(sls, k] + [s, kls) = d([s* k1) = [s% d(&)]. Thus, [s? d(K)]
=0 and, a fortiori, [s*, d(K)]=0 for all seS. Consequently,
[s4, d(R)]=0 and so st Z for all s S [3]. Therefore, R
satisfies s, by Theorem 3. Now to the case when d(Z n S)=£0.
Let @ € Z N § such that d(«) +0; then d(a?) = 2wd () 5+ 0. For
s € § we have d(a’s*) € Z, thatis, d(a?)s® + a?d(s?) € Z. Hence
s* € Z for all s € § and with this we have the theorem.

In [2; Theorem 2.1.11] Herstein generalized a result of Baxter
on K o K, the additive subgroup of R generated by elements of the
form kk + kk with %, k € K. An inspection of his proof reveals
that 2"*K"C K + K o K for each natural number % As a
consequence, for any x K, there exists some # such that
222 € K + K oK and, in particular, 2?2 € K o K incase xS N K.
With this in hand, we are ready to prove a skew analogue to
Theorem 6 and conclude this paper.

THEOREM 7. If d is a mnonzero derivation on R such that
d(kR)E + kd (k) € Z for all k < K, then R satisfies s..

Proof. As before we need only consider the case char R=~2.
If K*C Z, there is nothing to prove. So we assume that K2
contains a nonzero *—ideal I of R. By hypothesis, d(&) =d(k)k
+kd(k) € Z for all ke K. For h ke K we have hk -+ kR
=(h+k)>—hr—Fk, so d(K-K)SZ follows. For seSn7J
C S N K, we have 2*s € K o K for some natural number 7. Then
2*d(s) =d(2"s) € Z and hence d(s) e Z That is, d(SNI)c Z
For se S NI we have both d(s) € Z and 2sd(s) =d(s?) € Z;
then either d(s) =0 or s€ Z. Thus SN I is the union of two
additive subgroups, namely, S N I n Kerd and S NI N Z, so either
diSNI)=0o0rSNICZ If SNICZ then I satisfies s; and so
does R. But if d(S N I)=0 then d(S NT) =0. Being a Lie ideal
of the prime ring I, S N I contains a nonzero ideal of I wunless I
satisfies s,. Then, S N I contains a nonzero ideal J of R as well
and so d(J) =0, a contradiction. This completes the proof,
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