NOTE ON CONSTRUCTIONS OF HIRANO'S SYSTEM OF CENTER CIRCLES

BY

CHEN-JUNG HSU (許振攀)

Abstract. Given a line l_0 and a system of center circles of Steiner-Kantor-Morley, K. Hirano gave a construction of a system of center circles with reference to the given line l_0 [1][2]. In this note a general construction, which includes Hirano's construction as a particular case, of a similar system of center circles with reference to the line l_0 is given. A general construction of Hirano's another system of circles [1][2] is also given.

1. Introduction. Starting from the system of center circles of Steiner-Kantor-Morley, K. Hirano constructed a system of center circles with reference to a given line l_0 (Hirano [1]).

Some alternative constructions of Hirano's system or similar system of center circles are also known (Hsu [2], [3]). In this short note, we intend to show that a more general construction gives similar system of center circles.

More precisely, let $\{12\cdots n\}$ be an n-line which consists of the n lines: line 1,..., line n. The center circles of a 3-line $\{123\}$, a 4-line $\{1234\}$, a 5-line $\{12345\}$,..., an n-line $\{12\cdots n\}$ are denoted respectively as A(123) (which is the circumcircle of the triangle $\{123\}$ formed by three lines 1, 2 and 3), A(1234) (called Steiner circle), A(12345) (called Kantor circle),..., and $A(12\cdots n)$. Then the respective centers are denoted as (123), (1234), (12345),..., $(12\cdots n)$, and are respectively the centric point of the 3-line $\{123\}$, the 4-line $\{1234\}$, the five line $\{12345\}$,..., and the n-line $\{12\cdots n\}$. The point of intersection of the line i and line j is denoted by

Received by the editors September 16, 1985.

⁽AMS) 1980 Mathematics subject classification: Primary 51M05 Secondary 51A20, 51N20

Key words: System of center circles of Steiner-Kantor-Morley. System of center circles with reference to a line l_0 .

(ij) and is called the centric point of the 2-line $\{ij\}$.

Now the typical construction of Hirano's system of center circles is as follows: Let l_0 be a given line. Let k be an integer such that $3 \le k \le n$, and let $\{12 \cdots k\}$ be the given k-line, The k centric points $(12\cdots(k-1))$, $(12\cdots(k-2)k)$, \cdots , $(23\cdots k)$ are on the center circle $A(12\cdots k)$. Now, 1° let $(12\cdots (k-1))|_{I_0}$ be the second point of intersection with the circle $A(12\cdots k)$ of the line through the point $(12\cdots(k-1))$ and parallel to the given line Then, 2° construct k perpendicular lines, one through la. $(12\cdots(k-1))\|_{l_k}$ and perpendicular to the line k, one through $(12\cdots(k-2)k)\|_{l_0}$ and perpendicular to the line $(k-1),\cdots$, and finally one through $(23\cdots k)\|_{I_0}$ and perpendicular to the line 1. These k perpendiculars all meet at a same point of $A(12\cdots k)$. This point is denoted by $R_{l_0}(12\cdots k)$. For a (k+1)-line we have (k+1)such points: $R_{l_0}(12\cdots k)$, $R_{l_0}(12\cdots (k-1)(k+1))$, \cdots , $R_{l_0}(2\cdots k(k+1))$. These (k+1) points are on a circle denoted as $C_{l_0}(12\cdots k(k+1))$, the center of which is the point $R_{l_0}(12\cdots k(k+1))$. Thus for an n-line $\{12\cdots n\}$ we have Hirano's system of center circles with reference to the line $l_0: C_{l_0}(1234), C_{l_0}(12345), \dots, C_{l_0}(12 \dots n)$.

The known modifications so far of the abve construction of Hirano's system which also give rise to a system of center circles are either by changing 1° to get the second point of intersection $(12\cdots(k-1))_{\perp l_0}$ with $A(12\cdots k)$ of the line through $(12\cdots(k-1))$ and parpendicular to the given line l_0 , or by changing 2° to construct k parallel lines, one through $(12\cdots(k-1))_{l_0}$ [or $(12\cdots(k-1))_{\perp l_0}$] and parallel to the line k,\cdots .

It is now natural to raise a question whether we can still get a system of center circles with reference to the line l_0 if we replace 1° by taking the line through $(12\cdots(k-1))$ and making a fixed angle θ with the given line l_0 , and replace 2° by constructing lines which are making a fixed angle ϕ with the remaining line.

2. General construction of Hirano's system of center circles. The following proposition answers the above question:

PROPOSITION 1. Let an n-line $\{12 \cdots n\}$ and a line l_0 be given. Let k be an integer such that $3 \le k \le n-1$. Let θ , ϕ , $0 < \theta$, $\phi < \pi$

be two fixed angles. For the k-line $\{12\cdots k\}$, let $(12\cdots (k-1))_{i_0\ell}$ be the second point of intersection with the center circle $A(12\cdots k)$, on which the centric point $(12\cdots(k-1))$ lies, of the line through $(12\cdots(k-1))$ and making the angle θ with the given line l_0 . Next draw k lines, one through the point $(12\cdots(k-1))_{l_0\theta}$ and making the angle ϕ with the line k, one through the point $(12\cdots(k-2)k)_{l_0\theta}$ and making the angle ϕ with the line $(k-1), \dots,$ and the last one through the point $(23 \cdots k)_{l_0\theta}$ and making the angle ϕ with the line Then these k lines meet at one point on the circle $A(12\cdots k)$, denoted as $R_{l_0\theta\phi}(12\cdots k)$. For the (k+1)-line $\{12\cdots k(k+1)\}$, we have k+1 such points: $R_{l_0\theta\phi}(12\cdots k)$, $R_{l_0\theta\phi}(12\cdots (k-1)(k+1))$,..., $R_{l_0\theta\phi}(23\cdots k(k+1))$. These k+1 points lie on a circle denoted as $C_{l_0\theta\phi}(12\cdots k(k+1))$. In this way, for the n-line $\{12\cdots n\}$, we have a system of circles $C_{I_0\theta\phi}(1234)$, $C_{I_0\theta\phi}(12345)$, \cdots , $C_{I_0\theta\phi}(12\cdots n)$. Moreover, $R_{l_0\theta\phi}(12\cdots k)$ is the center of the circle $C_{l_0\theta\phi}(12\cdots k)$, and the circle $C_{l_0\theta\phi}(12\cdots k(k+1))$ contains all the centers $R_{l_0\theta\phi}(12\cdots k)$, $R_{l_0\theta\phi}(12\cdots(k-1)(k+1)), \cdots, R_{l_0\theta\phi}(23\cdots k(k+1))$ of the respective circles $C_{I_0\theta\phi}(12\cdots k)$, $C_{I_0\theta\phi}(12\cdots (k-1)(k+1))$, \cdots , $C_{I_0\theta\phi}(23\cdots k(k+1))$. Thus the system of circles $C_{I_0\theta\phi}(1234)$, $C_{I_0\theta\phi}(12345)$, \cdots , $C_{I_0\theta\phi}(12\cdots n)$ is a system of center circles.

Proof. Let the k lines: line $1, \dots$, line k of the k-line $\{12 \dots k\}$ be represented by

$$zt_i + \bar{z} = z_i t_i, \quad i = 1, \dots, k,$$

where z_i are points and $t_i = \bar{z}_i/z_i$. Then the characteristic constants of this k-line, defined by F. Morley, are

(2)
$$a_{\alpha}^{(k)} = \sum \frac{z_1 t_1^{k-\alpha}}{(t_1 - t_2)(t_1 - t_3) \cdots (t_1 - t_k)}, \quad \alpha = 1, \cdots, k.$$

Then the centric point $(12\cdots(k-1))$ of the (k-1)-line $\{12\cdots(k-1)\}$ is given by $a_1^{(k-1)}$, and the center circle $A(12\cdots k)$ of the k-line $\{12\cdots k\}$ is given by

(3)
$$z = a_1^{(k)} - a_2^{(k)}t, \quad |t| = 1.$$

The line through the point $(12\cdots(k-1))$ and making the angle θ with the given line l_0 :

(4) (1)
$$+$$
 0) $+$ 0 (2) (2) $+$ $ar{z} = z_0 t_0$ with respect to the section $z_0 = z_0 t_0$

is given by the equation:

1s given by the equation:

$$e^{2i\theta}t_0 z + \bar{z} = e^{2i\theta}t_0 a_1^{(k-1)} + \bar{a}_1^{(k-1)}$$

$$= e^{2i\theta}t_0 a_1^{(k-1)} + (-1)^{k-2} s_{k-1}^{(k-1)} a_{k-1}^{(k-1)},$$
(5)

since we have the relation:

(6)
$$\bar{a}_{\alpha}^{(k)} = (-1)^{k-1} s_k^{(k)} a_{k+1-\alpha}^{(k)},$$

$$(7) s_k^{(k)} = t_1 t_2 \cdots t_k.$$

Since it is also known that

$$a_{\alpha}^{(k-1)} = a_{\alpha}^{(k)} - a_{\alpha+1}^{(k)} t_k$$

the equation (5) can also be written in the following form:

$$e^{2i\theta} t_0 z + \bar{z}$$

$$=e^{2i\theta}\,t_0[a_1^{(k)}-a_2^{(k)}t_k]+(-1)^{k-2}\,s_{k-1}^{(k-1)}[a_{k-1}^{(k)}-a_k^{(k)}t_k].$$

Thus the points of intersection of this line and the circle (3) are given by the values of t satisfying the equation:

$$\begin{aligned} e^{2i\theta} \, t_0[a_1^{(k)} - a_2^{(k)} \, t] + \left[\bar{a}_1^{(k)} - \bar{a}_2^{(k)} \, \frac{1}{t} \right] \\ &= e^{2i\theta} \, t_0[a_1^{(k)} - a_2^{(k)} \, t_k] + (-1)^{k-2} s_{k-1}^{(k-1)}[a_{k-1}^{(k)} - a_k^{(k)} \, t_k], \end{aligned}$$

that is,

$$(9) \qquad -e^{2i\theta} t_0 a_2^{(k)} t^2 + \left[e^{2i\theta} t_0 a_2^{(k)} t_k + (-1)^{k-1} s_k^{(k)} a_{-1}^{(k)} \frac{1}{t_k} \right] t + (-1)^k s_k^{(k)} a_{k-1}^{(k)} = 0.$$

The two roots of this equation are $t = t_k$ and

$$(10) t = (-1)^{k-1} \frac{s_k^{(k)} a_{k-1}^{(k)}}{e^{2i\theta} a_2^{(k)} t_0 t_k}.$$

Thus the second point of intersection of the line (5) and the circle (3) is given by

(11)
$$z = a_1^{(k)} + (-1)^k \frac{s_k^{(k)} a_{-1}^{(k)}}{e^{2i\theta} t_0 t_k}.$$

This is the coordinate of the point $(12\cdots(k-1))_{l_0\theta}$.

The line passing through this point and making the angle ϕ with the line k:

$$zt_k + \bar{z} = z_k t_k$$

is given by the equation:

$$egin{align} e^{2i\phi}\,t_k\,z\,+\,ar{z}\ &=e^{2i\phi}\,t_kigg[a_1^{(k)}+(-\,1)^krac{S_k^{(k)}\,a_{k-1}^{(k)}}{e^{2i\theta}\,t_0\,t_k}igg]\ &+ar{a}_1^{(k)}+(-\,1)^krac{e^{2i heta}\,t_0\,t_k}{S_k^{(k)}}ar{a}_{k-1}^{(k)}, \end{split}$$

that is

(12)
$$e^{2i\phi} t_k z + \bar{z}$$

$$= e^{2i\phi} a_1^{(k)} t_k + (-1)^k e^{2i(\phi-\theta)} \frac{s_k^{(k)} a_{k-1}^{(k)}}{t_0} + (-1)^{k-1} s_k^{(k)} a_k^{(k)} - e^{2i\theta} a_2^{(k)} t_0 t_k.$$

Similarly, the line passing through the point $(23 \cdots k)_{I_0\theta}$ and making the angle θ with the line 1 has the equation:

$$\begin{split} e^{2i\phi} \, t_1 \, z \, + \, \bar{z} \\ &= e^{2i\phi} \, a_1^{(k)} \, t_1 + (-1)^k \, e^{2i(\phi-\theta)} \, \frac{S_k^{(k)} \, a_{k-1}^{(k)}}{t_0} \\ &\quad + \, (-1)^{k-1} \, S_k^{(k)} \, a_k^{(k)} - e^{2i\theta} \, a_2^{(k)} \, t_0 \, t_1. \end{split}$$

Subtracting these two equations side by side, we have

$$e^{2i\phi} z(t_k - t_1) = e^{2i\phi} a_1^{(k)}(t_k - t_1) - e^{2i\theta} a_2^{(k)} t_0(t_k - t_1).$$

Thus the point of intersection of these two lines is given by

(13)
$$z = a_1^{(i)} - a_2^{(k)} e^{2i(\theta - \phi)} t_0.$$

Since this expression is symmetric with respect to t_1, \dots, t_k , it follows that the k lines stated above meet at this point. This is a point on the circle (3) corresponding to the parameter value $t = e^{2i(\theta-\phi)} t_0$. This point is denoted as $R_{I_0\theta\phi}(12\cdots k)$.

For the (k+1)-line $\{12\cdots k(k+1)\}$ we have k+1 such points: $R_{l_0\theta\phi}(12\cdots k), \quad R_{l_0\theta\phi}(12\cdots (k-1)(k+1)), \cdots, \quad R_{l_0\theta\phi}(23\cdots k(k+1)).$ Since, by (8) the expression (13) can also be written in the form:

(14)
$$z = [a_1^{(k+1)} - a_2^{(k+1)} t_{k+1}] - [a_2^{(k+1)} - a_3^{(k+1)} t_{k+1}] e^{2i(\theta-\phi)} t_0,$$

$$= [a_1^{(k+1)} - a_2^{(k+1)} e^{2i(\theta-\phi)} t_0] - [a_2^{(k+1)} - a_3^{(k+1)} e^{2i(\theta-\phi)} t_0] t_{k+1},$$

it follows that the point $R_{I_0\theta\phi}(12\cdots k)$ is on the following circle:

$$(15) z = \left[a_1^{(k+1)} - a_2^{(k+1)} e^{2i(\theta-\phi)} t_0\right] - \left[a_2^{(k+1)} - a_3^{(k+1)} e^{2i(\theta-\phi)} t_0\right] t.$$

Since this expression is symmetric with respect to t_1, \dots, t_{k+1} , we can conclude that the (k+1) points: $R_{I_0\theta\phi}(12\cdots k)$, $R_{I_0\theta\phi}(12\cdots (k-1)(k+1))$, \dots , $R_{I_0\theta\phi}(23\cdots k(k+1))$ all lie on this circle which is denoted as $C_{I_0\theta\phi}(12\cdots k(k+1))$.

By the above discussion, we know that the circle $C_{l_0\theta\phi}(12\cdots k)$ corresponding to the k-line $\{12\cdots k\}$ has the equation:

$$z = \left[a_1^{(k)} - a_2^{(k)} e^{2i(\theta - \phi)} t_0 \right] - \left[a_2^{(k)} - a_3^{(k)} e^{2i(\theta - \phi)} t_0 \right] t.$$

This equation and (13) show that the point $R_{I_0\theta\phi}(12\cdots k)$ is the center of the circle $C_{I_0\theta\phi}(12\cdots k)$. Thus the centers of circles $C_{I_0\theta\phi}(12\cdots k)$, $C_{I_0\theta\phi}(12\cdots (k-1)(k+1))$, \cdots , $C_{I_0\theta\phi}(2\cdots k(k+1))$ all lie on the circle $C_{I_0\theta\phi}(12\cdots k(k+1))$, and the Proposition 1 is shown.

Now, let θ' , ϕ' be another pair of fixed angles, and let $C_{I_0\theta'\phi'}(1234)$, $C_{I_0\theta'\phi'}(12345)$,..., $C_{I_0\theta'\phi'}(12\cdots n)$ be the system of center circles with reference to the line I_0 corresponding to this pair of angles. Then, from the expression of (15), it follows that the two systems of center circles: $C_{I_0\theta\phi}(1234)$,..., $C_{I_0\theta\phi}(12\cdots n)$ and $C_{I_0\theta'\phi'}(1234)$,..., $C_{I_0\theta'\phi'}(12\cdots n)$ coincide if and only if $e^{2i(\theta-\phi)} = e^{2i(\theta'-\phi')}$, that is, $e^{2i\Gamma(\theta-\phi)-(\theta'-\phi')} = 1$ holds. Thus, we have the following:

COROLLARY 1. The two systems of center circles $C_{I_0\theta\phi}(1234), \cdots, C_{I_0\theta\phi}(12\cdots n)$ and $C_{I_0\theta'\phi'}(1234), \cdots, C_{I_0\theta'\phi'}(12\cdots n)$ coincide if and only if $(\theta - \phi) \equiv (\theta' - \phi') \mod \pi$ holds.

From the equation (15), we also have the following:

COROLLARY 2. The system of center circles $C_{l_0\theta\phi}(1234), \cdots, C_{l_0\theta\phi}(12\cdots n)$ coincides with the system of center circles $C_{l_0'}(1234), \cdots, C_{l_0\theta\phi}(12\cdots n)$

 $C_{l_0'}(12\cdots n)$ if the line l_0' has the turn $t_0' = -e^{2i(\theta-\phi)}t_0$, where t_0 is the turn of the line l_0 .

3. Constructions of Hirano's another system of circles. Hirano's another system of circles: $B(1234), \dots, B(12 \dots n)$ is constructed as follows: For the 4-line $\{1234\}$, let $R_4(123)$ be the point $R_{I_0}(123)$ defined above taking the line 4 as the line I_0 . Then, we have four such points: $R_4(123)$, $R_3(124)$, $R_2(134)$, and $R_1(234)$. These points are on a circle denoted as B(1234). For the 5-line $\{12345\}$, we can define similary a circle B(12345) as follows: Let $R_5(1234)$ be the point $R_{I_0}(1234)$ taking the line 5 as the line I_0 . Then, the five such points: $R_5(1234)$, $R_4(1235)$, $R_3(1245)$, $R_2(1345)$, and $R_1(2345)$ lie on one circle denoted as B(12345). And so on. Thus for the n-line $\{12 \dots n\}$, we have a system of circles: B(1234), $B(12345), \dots, B(12345), \dots$

Corresponding to Hirano's this system of circles, we can show the following:

PROPOSITION 2. Suppose that the n-line $\{12\cdots n\}$ is given. Let θ , ϕ be two fixed angles such that $\theta - \phi \equiv \pi/2 \mod \pi$. Let $R_{4\theta\phi}(123)$ be the point $R_{i_0\theta\phi}(123)$ defined above taking the line 4 as the line l_0 . Then the four points similarly defined: $R_{4\theta\phi}(123)$, $R_{3\theta\phi}(124)$, $R_{2\theta\phi}(134)$, $R_{1\theta\phi}(234)$, all lie on a circle denoted as $B_{\theta\phi}(1234)$. Next, let $R_{5\theta\phi}(1234)$ be the point $R_{i_0\theta\phi}(1234)$ defined above taking the line 5 as the line l_0 . Then the five points similarly defined: $R_{5\theta\phi}(1234)$, $R_{4\theta\phi}(1235)$, $R_{3\theta\phi}(1245)$, $R_{2\theta\phi}(1345)$, and $R_{1\theta\phi}(2345)$, all lie on one circle denoted as $B_{\theta\phi}(12345)$. And so on. In general, for the n-line $\{12\cdots n\}$, let $R_{n\theta\phi}(12\cdots(n-1))$ be the point $R_{i_0\theta\phi}(12\cdots(n-1))$ taking the line n as the line l_0 . Then the n points similarly defined: $R_{n\theta\phi}(12\cdots(n-1))$, $R_{(n-1)\theta\phi}(12\cdots(n-2)n)$, $R_{n\theta\phi}(12\cdots n)$, all lie on one circle denoted as $B_{\theta\phi}(1234)$, $B_{\theta\phi}(12345)$

Proof: We give the proof for the general situation here. As proved in Proposition 1, the point $R_{I_0\theta_{\theta}}(12\cdots(n-1))$ has the coordinate:

(16)
$$z = a_1^{(n-1)} - e^{2i(\theta - \phi)} a_2^{(n-1)} t_0.$$

Thus the point $R_{n\theta\phi}(12\cdots(n-1))$ has the coordinate:

(17)
$$z = a_1^{(n-1)} - e^{2i(\theta - \phi)} a_2^{(n-1)} t_n.$$

By (8) this expression can also be written as follows:

(18)
$$z = [a_1^{(n)} - a_2^{(n)} t_n] - e^{2i(\theta - \phi)} t_n [a_2^{(n)} - a_3^{(n)} t_n]$$

$$= a_1^{(n)} - a_2^{(n)} t_n [1 + e^{2i(\theta - \phi)}] + a_3^{(n)} e^{2i(\theta - \phi)} t_n^2.$$

If $\theta - \phi \equiv \pi/2 \mod \pi$, then $1 + e^{2i(\theta - \phi)} = 0$, so this point $B_{n\theta\phi}(12\cdots(n-1))$ has the coordinate:

$$(19) z = a_1^{(n)} - a_3^{(n)} t_n^2.$$

This shows that the point $B_{n\theta\phi}(12\cdots(n-1))$ is on the following circle:

(20)
$$z = a_1^{(n)} - a_3^{(n)} t.$$

This is the equation of the circle $B_{\theta\phi}(12\cdots n)$, with $\theta - \phi \equiv \pi/2 \mod \pi$. It is obvious that the other points: $B_{(n-1)\theta\phi}(12\cdots (n-2)n), \cdots, B_{1\theta\phi}(23\cdots n)$ are all on this circle.

Since the circle $B(12\cdots n)$ has the equation $z=a_1^{(n)}-a_3^{(n)}t$, from (20) we can conclude the following:

COROLLARY 3. Let the two angles θ , ϕ be such that $\theta - \phi \equiv \pi/2$ mod π . Then the system of circles $B_{\theta\phi}(1234), \dots, B_{\theta\phi}(12 \dots n)$ coincides with the system of circles $B(1234), \dots, B(12 \dots n)$.

REFERENCES

- 1. Kotarō Hirano, On some systems of center circles and their relations (in Japaness), Sūgaku, Japanese Math. Soc., 8 (1958), 210-211.
- 2. Chen-June Hsu, On systems of center circles derived successively from that of Steiner-Kantor-Morley, Soochow Jour. of Math. & Natural Sciences, 3 (1977), 17-34.
- 3. _____, Remarks on constructions of new systems of center circles, Soochow Jour. of Math., 7 (1981), 25-36.

Institute of Mathematics Academia Sinica Nankang, Taipei, Taiwan 11529