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Intreduction. In [4] Baouendi, Chang and Treves introduced the
hypoanalytic structure on a C® manifold and they geve an application
to show the hypoanalyticity of an RC structure based on the Levi
form (see (1.9)). In this paper we show that a characteristic vector
(see (1.3)) on which the Levi form vanishes, yet its product with the
second commutation bracket of some vector field in the structure is
non zero, is not in the hypoanalytic wave-front set of any RC
distribution of the manifold (see 1.8)). Similar results to [4] and
ours were obtained in [5], [6]. However, our technique gives the
result like Corollary 1 here which partially answers a question raised
in [10].

1. Preliminaries and statement of the result. For the general
theory of hypoanalytic structure the reader is referred to [4].
Here we only recall briefly what is needed.

Let ) be an open connected subset in B”+”, In £ are defined
m complex valued C* functions Z,---, Z, with their differentials
linearly independent. We call them basic hypoanaiytic functions.
The differentials d7,---, dZ, generate a closed m-dimensional
subbundle, called 7/, of the complex cotangent bundle CT*Q.
The orthogonal of 7/, denoted by T''*, for the duality between
tangent and cotangent vectors is an #-dimensional locally integrable
Frobenius Lie algebra over (2. The integer 7z is called the
codimension of this hypoanalytic structure.

We define the mapping

Z= (21, -, Zm) : QQ —C”.

Suppose H is a holomorphism defined on Z(£2). Then H(Z),---,
H.(Z) define an equivalent hypoanalytic structure on ). We are
also allowed to make C* change of coordinates in (3.
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A distribution % defined in Q is called a solution if for any C®
section L of Tt we have

(1.1) Lk =0

in the distribution sense. By the result of [9] (Chap. II) that given

any C° solution %z we can find a2 C° function % (with Q contracted
if necessary) defined in Z(£2) such that

(1.2) =1k o Z.

A C® submanifold X of Q is called maximally real if
dZi\x, -+, dZnlx are linearly independent and span CT*X. It is
easy to see that dim X =m. Any solution 2 has a well-defined
trace on X which is denoted by %x. The characteristic set of 7"’
is defined by ‘

(1.3) To=T'n (T*Q\0).

Let zx be the natural quotient map from T*Q[x into T'*X We
see that zx is injective on T °|x. We say that a point of T *X\0
is characteristic if it belongs to zx(7°{x) and noncharacteristic
otherwise. We say that a solution % is hypoanalytic at o € Q if
% (see (1.2)) is the restriction of a holomorphic function defined
in a neighborhood of Z(w). We write WF.(k) for the hypoanalytic
wave-front set of a solution %. TFor the definition of WF;, one can
find it in [4] (Chap. II Sec. 1.4).

Let (o, 6) € T, and % be a solution. By the result of [4], in
order to show that (o, 8) & WFi.(k) we can restrict ourselves to
(0, 6) € T%. In fact, let X be an arbitrary maximally real
submanifold containing o, it suffices to show

(1.4) zx(0) & WFi.(hx).

We restate a sufficient condition from [4] (Theorem. 2.2Chap. 1)
for a point (e, §) not contained in the hypoanalytic wave-front set
of a solution % For simplicity we shall take o to be the origin of
R™  TLet X be a maximally real submanifold containing 0. Let
A be an open cone in C” containing zx(8). For ¢ € C™ we set
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KO =(G+--+ )
We assume that for any c € A

|Re ¢l > [Im¢].

Let V¢ be a neighborhood of the origin in €™. We take any
function ¢ € C7(£2) such that ¢ equals to 1 near 0. Let w be a

local coordinate of X containing 0. We write z(w) = Z|x. For any
solution % and any positive number » we define

(15) Fx(gh; T, Cf) — j;fe——ic-z(w)—m(C)[r—z(w)]z g(w) h(w) dZ(W)
with ¢ e A and r €V For z=(2y,---,2») € C™ we have used the
notation

[z =2z1+---+ 25

Let Z, denote the Jacobian matrix of Z, with respect to w.
Let £y be some positive constant multiple of the maximum of the

second derivatives of z(w) under any suitable norm in supp g.
Suppose Im Z,(0) =0 and for some « > £, there exist 4, VC, ¢ and
positive constants ¢, R such that

(1.6) |F (gh; =, £)|< ce1CVR
then (0, 0) &€ WF.(k).

THEOREM. Let (w, 0) € T%. Suppose the following conditions
are satisfied:
(L7) Im<o, [L, L],>=0
Jor all C* section L of T'L and there exists one section L such that
18 <, IL, [L, E11.>#0,

where [A, B, means taking the Lie bracket of the vector fields A,
B then evaluating at w. Then (o, 0) ¢ WFi.(k) for any solution h.

REMARK. Coniditions (1.7) and (1.8) are also satisfied for
(w, — 0). Therefore in this case (o, 0) € WFi.(k) implies (0, —8)
& WFi. (k) and vice versa.
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The Theorem 6.1 of [4] says that if for a covector (w, 8)€T5
there exists a C*® section L of T/* such that

(1.9) Im<e, [L, L].> <0

then (o, §) &€ WFiw.(k) for any solution k. Combine this result and
our theorem we can state the following corollary.

COROLLARY 1. Fix w € ). Suppose for all 0 such that
(0, 0) € T we have either (1.7), (1.8) or (1.9) holds for 6. Then
any solution h is hypoanalytic at o.

We say a hypoanalytic structure is zeal anmalytic T' and T'*
are in the real analytic category. By the Theorem 5.3 oi [1] and
Corollary 1 we have.

COROLLARY 2. Suppose the hypoanalytic structure is real analytic
and the assumptions of Corollary 1 are satisfied. Ther T'* is
analytic hypo-elliptic at o.

2. Reductions. From now on the point o under - consideration
is chosen to be the origin of E”+* and {2 is an open connected set
containing 0. Let Zi,---, Z, be basic hypoanalytic functions. The
rank of the mapping Z at 0is m + » where 0 » < (m, #). By
the Proposition 2.4 of Chap. I of [9] there is a coordinate (&, ¥)
with £ € R™, y € R” such that in {) we have

2.1) Zi(x, y)==x; +ip;(x,v), j=1,--, m,

where ¢ = v — 1 and ¢; are real function satisfying

iz, ¥)=y; 1< j<r;

2.2 .
(22) ?;(0, 0) = grad ¢;(0, 0) =0, 7r+1<j<m.

In this coordinate T’* can be generated by the following set
~ of vector fields.

0 N _9 T
(2.3) » LJ—‘ ayj +;xj(x7 y) axk"' .7 17 ,ﬂ.

In this coordinate the submanifold X = {(z, ¥); v =0} is
obviously maximally real. Let Z.(x, y) denote the m X m matrix
of the first order partial derivatives of Z;(x, ¥) with respect to
x:. We have
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(2.4) Z:(0,0)=1.

Let &, 7 denote the covariables of # and ¥y respectively. We
set x=(z,2”) and y=(@, 6 ¥’ with 2 = (2, -, x,),
2 =(Brst, 0, Tm), Y = (Y1, -, Y») and ¥’ = (Yps1," -+, Yu). Similar
notations apply for € and 5. It is easy to see that

(2.5) To=1{(0,0,¢ 17 ); & =7=0,¢&" € R™"\0}.

To avoid triviality. i.e., T§= ¢, we assume that m > By the
representation theory of a solution in Chap. II Sec. 4 of [9] we
may assume that the solution is continuously differentiable near
the origih.

We first prove the theorem when 7 =% (so m>#). In this
case (2.2) reads ¢; =v;, j=1,---, # and ¢;(0) = grad ¢;(0) =0,
j=u+1---, m We shall always assume this condition in the
rest of our proof.

Let L € T'*. We use the notations L* =L, L =1 and L*
means either L™ or L~. Let Le T’* and (0, §) € Ts\0. For
nonnegative integer ! we set

(2.6) Q:(6, L) =<0, [L*% [L* [---, [L* [L, L1---1op,

where the number of brackets equals 7 and it is understood that
Qo(6, L) =<6, L|y>. The weight of a covector (0, §) € TE\0 is
defined to be the positive integer ! such that for all L e T we
have
Q;(0, L) =0, for all j<I—1,
and
Q:-1(6, L)=*0

for some L € T'+. It follows that noncharacteristic covector has
weight 1. It is easy to see that ‘

THO0 = >0 T
. I=1

where T'§ consists of covectors of weight / and all but finitely
many summands are empty. As we identify T, with R™* by
sending (0, ) to 6, it is easy to see that for any integer » > 1 the
set T,= {0} U(U,T% is a subspace of T,. In a coordinate
satisfying (2.1), (2.2) we have
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T = {Z a;dz;+ > bpdys; aj, br € R,
j=1 k=1

2.7) .
> (gl + 1b;1) #0}.
In order to transform the functions ¢;, j =%+ 1,---, m in a more

manageable form, we introduce the following notation. We say that
two real wvalued C® functions fi, f: defined on ) are equivalent
if there exists a holomorphic function F defined in a neighborhood
of the origin of €™ such that

fl(x; y) —fZ(x: y) = ReF(Zl(w’ '!l),‘ ) Zm(x; '!/))

and we write
fi~fa
Now assume that 7'; is non-empty. Let
T:1=T/Ts.

We can find a non-zero element ¢ € Ti,. In virtue of (2.7) we
can make a linear change of coordinates in '’ (with corresponding
transformation in Z,.4,- -+, Z») such that

0 = dx,,+1.

By the- reductions in Chap. II Sec. 5 of [4] we may also assume
that

¢n+1(x7 y) - Pﬁ+1(x,1 ’!/) + Rn+1(x, 'y),

where P,.1(2’, ¥) is a homogeneous polynomial of degree two with
Poi(2’, ) +O(I(x, ¥)I®) (this follows from the fact that ¢ € T73),
and Ry, ) = O(I(x, 9)1®). Let Tui = [d%4s1, To]l be the
subspace spanned by dz,.: and 7:. We can carry on this process
recursively as follows. Suppose that we have at the origin the
covectors dpi1," -+, %y all in T'§ and we have for 1<# < j the
subspaces Tz, T:, where

Tz,r - [dxnw, T2,r—1]y ) T;,r = TZ/Tz,r—-l-
We have also for 1< <j

¢n+f($, '.ll) - Pn+r($,» ’.l/) + Rn+r(x;’ y)»
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where P,.,(x’, ¥y) is a homogeneous polynomial of degree two,
Py (2!, y) A~ O(| (2, ¥)1®) and Ry, (2, y) = O(|(x, ¥)|*). Moreover,
for any real numbers ai,---, @; such that

2. @ Pue(@, 9) ~ O (2, DI

we must have @, =---=@; =0. Now if T ;= To/T: ;5 {0}, we
can find a non-zero element § € T';, ;.1 and make a linear change of
coordinates in Z,+j:1,-* -, £m (with corresponding transformation in
Zusr1,"+, Zn) such that 0 = dx,sj+1. By the same reason as for @u41
we may assume that

Pnrjr1(®, Y) = Porjar(Z!, ¥) + Rurjni(®, 9),

where P,.j.1(2’, ) is a homogeneous polynomial of degree two,
Pojsi(2, ¥) &0 (2, ¥)I®) and Ru.ju(x, ¥) = O([(z, 9)I®). We
should remark that in doing so P,..(x’, ¥), 1 < » < j, are unchanged
and still Ry.r(z, ¥) =0(|(x, y)I®), 1<7r<j. If there are real
numbers ai,---, @;+1 such that

F+1

Z ar ¢xer(2, Y) ~ O (2, ¥) ),

then a;+1 5= 0 by our assumption on ¢,..(x, ¥), 1< <j But this
implies that do,. ;41 lies in T3 modulo T%,; which is a contradiction
to our choice of dxgsj+1. Since Ty is finite dimensional, this process
must stop for some integer 2< m —u. Therefore we have a
coordinate system in £ satisfying (2.1), (2.2), (2.7) and the above
conclusions which we summarize as follows: The space T:/T:

is spanned by the % covectors d®y,.1,- -+, @Tn.r and we have
m-— 12

@7 Ti= {Z 4;d%pej; a; € R, S Ia,-laéo},
j=1 j=1

for j=u+1---,2+Fk

(2-8) go_,-(x, 'Il) = Pj(xla y) +Rj($, y)’

where P;(x’, y) are homogeneous polynomials of degree two and
Ri(z, ¥) € C*(Q), Rij(z, y) =0(i(x, y){®). Also for any real
numbers a;,---, @ such that
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F3

(2.8)" > a; eari(m, y) ~ O (z, NI
j=1 ~

we shall have @, =---= g, = 0. Note that in this coordinates
{d$n+k+1,‘ -, dxm] = T \

In other words, {dZ,ips1,- -+, dxn] consists of all the covectors at
the origin of weight bigger than two.

Assuming above . constructions, suppose we have for some
covector (0, 6). € T'3 such that conditions (1.7), (1.8) are satisfied.
This implies that T3~ ¢ and the integer 2 in (2.7)’ is less than
m —n. By a linear change of coordinates in Zyi1z:1,-7°, £m We may
assume (and so in the rest of our paper) that

(2-9) 0 = dXpipsi1.

This change of coordinates of course changes Z,.1,---, Z, but
properties (2.1), (2.2), (2.7) — (2.8)’ all retain, In virtue of the
Lemma 5.1 and equations (5.12), (5.13) of [4] we may assume in
addition to (2.1), (2.2), (2.7), (2.9) that | |

9i(w, ¥) = l(2")ij (2, ¥) + Ol (2, 1)),
j=n+k+1---, m,

where [;,1, /;,2 are linear functions. By performing a holomorphism
on Z(2)

H(Z) =Z; j=1---, nt+k :
Hi(z) =Z; —i 1;,(Z")1;,(Z!, —iZ"), j=n+k+1---,m
and a change of coordinates in #1241, -+, £» We have
(210) iz ) =0z, WD, j=n+tk+Ll-,m
By the reduction in Chap. II Sec. 5 of [4] we may assume that ‘
p;(x, 0) =0(|z{®), Jj=n+1l--- m
By the following holomorphism on Z({2)
Fi(Z)=2Z; j=1---,n+Ek,

"

FJ(Z) :ZJ“—Z. Z @Jr xlrxsyxt(O)ZlZth j=”+ 17'.'1 4

1,s,t=1

and a change of coordinates in &L,+1,***, £» we have
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(2.11) gi(x, 0) =0(l=xl*), j=nu+1---,m

In summary we have

LemMA 2.1. With the assumptions of the Theorem and » = n
there exist a coordinate (x, y) in Q and basic hypoanalytic functions
Zy,* -+, Zn suck that (2.1), (2.2), (2.7) — (2.11) hold.

In the sequel we shall always assume the conclusions-of Lemma
2.1 hold.

Let L;, L,, L, be in the form (2.3), j,s e {1,---, n} we have
for 0 = d$n+k+1 B

(2-12) - <0) [Ljy -[L87 zl]]0> = 16 ¢n+k+1,;j.;s.zl(0).
Simple computation shows that (2.12) has the form -

Z ad(l)(¢n+k+1 @l)cd(l»(O) ' o) € C

where «(7) is a multl index in N™** or length four Condxtlons
(2 8), (2.10) imply that this sum depends linearly on the third
order terms in (2, y) of the Taylor expansions of @uip.1. To get
@« it suffices to take ¢,.z+: monomial of degree three in (=, ¥)
and make the computations.
We have in particular
Parirr = Po(2, 9) + (2, ¥)

where Pi(2z’, y) is a homogeneous polynomial of degree three and
7i(x, ¥) = O(|(=x, ¥)[®). Also the third order part in the Taylor
expansions of 71(x, y) contains no terms in (z’, ¥) only. It follows

from (1.8) and (2.12) that Pi(«x’, ¥) cannot be equivalent to higher
degree terms. By making the transformation

H(Z)=2;, j=1n+1--, m,
H](Z) =Zj + CKj‘ZI; a; € C, J =2,-, 0

and corresponding change Qf coordinates in (2’, y), with suitable
choices of e, j =2,---, # we can conclude that

Purre1(®, ¥) = Re(azi|2112) + n(2, ¥)

with 2 € C\0 and 7(=x, ¥) does not  contain terms homogeneous of
degree three in (@i, ¥1) in its Taylor expansions. By rotating 2z;
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we may assume that @ is real. It is easy to see ‘that
2 s 4 s
Re((z1]211%) ~4x191 ~ 5 %

NAPADEPP PR S
" Re(zi]2112) = Im(éz1]d241?).
By a dilation in z; we may therefore assume that
Pusrr(®, ) = 4+ 7:(2, Y)

where rs(x, 9) has the same property as 7.(x, ¥). Applying again
the transformations to get (2.10), (2.11), we have a ‘ coordinate
(@, y) and basic hypoanalytic functions satisfying conclusions of
Lemma 2.1 and moreover : ‘

Sp”+k+1(-'l7, Y) ="!/?i + Rusrs1(, Y)
where Ryvrea(2, y) keeps the property #3(x, ¥) has.

~ For the final reduction we make the following change of
coqrdinates _and transformations, for 2> 0 to be chosen later:

Xy = 2%, Y=,

y; = 2, i=2-, n,

z;=02%;, Jj=2,,n+kntkt2 -, m,
z;=2Z;,  j=ntk+l

and
o _ 1
HI(Z)_T'ZI’ )
H{(Z) :—xlz—z,-, =2 mt b mA k2,
H(Z) =52, i=nmtk+l

It follows from the construction of Ry:+z+1 and (2.10) that we have
the: final form of ¢;’s.

LEMMA 2.2. With the assumptions of Lemma 2.1 we have in
addition to the conclusions of Lemma 2.1 that

) ¢n+k+1(x7‘ y) = ?/:i; + Rﬁ+k+1(l: &, y)1

(218) ..
T go](xy y) = R](xy x: '!/); ] =n + k+ 2" "’;m
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where R; is a C® fzmctzon in (0 ) x L and lim;, R;(2, », ¥) =
j=n+k+1-

3. Proof of the Theorem.v We first prove the Theorem when
r =n. We assume the conclusions of Lemma 2.2. The maximally
real submanifold X is given by .

All we need to show is the estimate (1.6). . .
By contraction we may assume that Q =V x W with
V (W, resp.) an open ball in BR™ (R, resp.) centered at the origin.

We may and shall assume that for each y € W the mapping
x}—e—> Z(z, y) from V into C'” is injective So the mappmg

(31) g (w ¥) > (Z(=, 9), y)

is a diffeomorphism of  onto a C® submanifold M of C™ x R™,

Let % be a C* solution and £ = %o Z Since % is a solution, the
m-form k aZ(dZ =dZ,---dZ,) is closed in L. Consequently, its
push-forward via (3.1), % dz, is closed on M. We assoc1ated with
I the following closed m-form on M

H = H”(z T, C) = g—il* 2~E(C)Ez—r]2 h(Z) dz

Here 7, ¢ € €™ and [Re ¢| > | Imc= |. Let ¢ be an arbitrary poiht
in W. We call X; the maximally real submanifold of Q defined by
y =t Denote by M, the image of X; under the mapping (3.1).
Let I(¢) be the straight line segment in W Jommg 0 and ¢ and call
I'(t) the (m + 1)-chain which is the 1mage of V' x1I(¢) under the
mapping (3.1). For g€ C7 (V) we define §(z, y) =g(x) when
2 =2Z(=x, y). Then supp § intersects the boundary of F(t) only on
M, and M, Stokes’ theorem we have

(3.2) Co fMtgH X fMo GH = fm) dg AH
Note that
F*(gh; ©, ¢) = f :8

To get estimate (1.6) we show the same estlmate holds for both
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f% gH and fr o dINE.

By Lemma 2.2 we can find positive numbers 0, and 1, such
that for 2 € (0, ), 8 € (0, &, %1 € [— 3, 0] and |2] <85

3
(3.3) ¢n+k+1($, _6’ 0) < - '§2_7
(34) | onrre(®, ¥1, 0) 1< 28°,
(3'5) . l(?’l(x, Yy, 0)9“', gaﬂt(x’ Yi, O)I < 268,

We can take 8, small such that
' {(z, 9); 12| <88, |yl <o} cQ. '

From now on the number i€ (0, o) will be fixed. Oﬁ
X we consider the functions Z;(z, O); j=1,---, m with
zeV ={zeR" |x| <85 6§ (0, &1}. Condition (2.11) and the
choice of the maximally real submanifold X imply that for x € V'
the positive number z, in §1 is a constant multiple of 62, From
now on we shall choose & fixed and small enough such that
£y < 8/16. -

We choose ¢ € C5(V’) satisfying

(3.6) 0<9g<1 and g=1 for |z]<66.

Let ¢t =(—4,0,---, 0) € R*.  To estimate ./;w dJH we consider
R R &
the quantity
Q =Reli¢ -z + L[z — <1*}/ ¢l

It suffices to deal with =0, ¢ € A N R™ and we call this quantity
Q,. We use & for ¢ real and write & = &/|£|. Thus for § = dZu+r+1,
z(x, t) on M; '

QO = ¢n+k+1(x, t) + li( lx}2 - i(gﬁi(x) t),' ) ¢M(x7 t)) IZ)
+ (§01($, t)’ T ?m(a}', t)) ° (6 - E)-
The positive number & will be specified later. From (3.3), (3.5)

we have

Qozﬁ;——zxmaz — 2510 — €.
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If we make
) 0
. —_— < —_
3 7) 16 < 8

V¢ small enough and A “thin” enough, we can conclude that

Q=>c>0

for some constant ¢. Therefore for such choices of x, V¢ and A
there exist positive constant C;, R; such that

(3.8) l I, gﬂjs Cie- VR,  forall re Ve ccA.

To estimate j; . dg N H we observe that by (8.4), (35) and
(3.6) we have on the support of dg

Qo = — 20° + £(360% — 48%) — 25(6 — £].

From (3.7) we conclude that there exist positive constants C;, R;
such that -

(3.9) l /... din Hls C:e-¥VR,  for all ce VE ¢ Ay,
rcy

where V{is chosen small and A; “thin” enough. ‘

We have thus prove the Theorem when » =#. To deal with
the case » <% we assume that (2.1), (2.2) and (2.3) hold. We shall
add (2 — 7) variables Zpi1,- -+, Zmin—r. The set Q is thus changed
to Q' =V x U x W Cc R"*~7 with (2, -+, &w) € V = B(0, 6;) CR™,
(Zm+1,"**, Tmin—r) € U = B(0, 8;) € R*"  and (Y, Yn) €W
= B(0, d3s) C R* where B(0, /) means open ball centered at 0 with
radius 6. We then consider a new #n-dimensional integrable Lie
algebra, 7'/*, in )’ generated by

{Eszj: j=1:”",‘ 7,

(3.10) =~ 9 .
Li=L; — ——"F—, r<<j<a=»
. ! ] OLmsj—r I
where L;, j=1,---, # is given in (2.3). We also have an enlarged

sytem of basic hypoanalytic functions for the enlarged structure
bundle 7'/ given by

Z; =12 j=1,---, m,

{Z,-=x,—+iy,+,-“m, J=m+1---, m+n—7r
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This new system is of maximal rank, i.e., # = . Note that if % is
a solution for T’ then % considered as a distribution defined in )/
(independent of x;, j =m + 1,---, m + 2 —7) is a solution for 7.
We can then apply the previously proved result for r=# to

conclude that (0, 8) & WFu.(k). This completes the proof of the
Theorem. '
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