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] Abstract. The authors consider an z-th order forced nonlinear
" functional differential equation and give sufficient conditions for all
solutions to be oscillatory. - A - nonoscillation theorem is also proved,

and examples illustrating the results are given.

1. Introduction. In this paper we discuss the oscillation and
nonoscillation of solutions of a class of forced higher order nonlinear
functional equations with general deviating arguments. The results
‘ presented below generalize those of Graef, Grammatikopoulos and
Spikes [4], and are new even for the reduced case of ordinary
differential equations. Improvements over other known results are
indicated and examples of the theorems are included.

The differential equation to be considered in this paper is

(D Lox(t) + F(t, 2(g:(2)), -+, 2(gn(?))) = h(?),
where # > 2 and L, is the disconjugate differential operator

1 d4 1 d_.d 1 _d -

(2) L.= Da(1) dt Dea(t) @ Gt p(t) dt po(t)

We assume that p;, ¢;, £ : [a, ©) > R and F: [a, ) X R”— R are
continuous, p:;(#) >0, 0<i <z and g;(#) > o0 as t— oo, 1 < j<m,
In addition we assume that :

(8) [T pityat=co for 1<i<m—1.
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We introduce the notation:

oz 1 a
(4) : Lox(t) ; o(t) L; () P,(t) dth i (t), 1<i<an.

The domam EQ(L,,) of L,, is deﬁned to be. the set of all funct1ons
z: [T, ) — R such that L: x(t) 0<i<z exist and are
continuous on [Tx, 00) In What follows by a proper solution of
equation (1) we mean a function x D(L,) which satisfies (1) for
all sufficiently large ¢ and sup{lxe(®)| :t>T} >0 forevery T > T..
‘We make the standing hypothesis  that equation (1) does possess
proper solutions. A proper solution x(t) is called mnonoscillatory -if
there exists #; > e such that x(t) =0 for ¢ =1;; the solution is
called oscillatory if for any given # >a there exists # and g 7
satisfying 4 <t <#5, 2(3) >0 and 2(f) <0; and it is called a
Z-type solution if it has arbitrarily large zeros but is ult1mately
nonnegatwe or nonpositive.,

Let e {l,--, n—1}, 1<k<n——1 and t se [a 00) We
deﬁne o s

L=1

5 , ; v
(%) Ik(t S5 Piy oy D)= f ink(r)Ik 1(9’ s; p;k ot Diy) @re

For convenience of notatmn for 0 <2 <n-—1 we let

. (6> 2 .,t(ty s) ‘_f pO(t)'I;(t) S35 pl, Tty pz>; ].Z(t) _']-l<t7'a)- :
2. A nonoscillation result.

THEOREM 1. Suppose that (3) holds and let - [a, ) —> R be a
continuous function. If for any T > a we have

CF(@, w,e - ) < F(@) and
(7) o 'hmm/‘ ]n 1<i 7’) ﬁn(?")[k(?") f(¢>]dr

=1

or ; _
F(t’ ul’ 7 um)_>. f(t) ‘ and
- 1 t . i

=—OO’
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then all proper solutzons of equatzan (1) are nonosczllatory

Proof. Let x(t) be a proper solut1o.n of (1) and suppose that
(7) holds Integrating the equation
Loz(t) = h(t) — F(t, 2(0:(2)," -+, 2(gn(1)))

n-times from. T to ¢, we obtain

n—1

20/ ps®) = 3 0 BT Do B0

9 .
) + fTIn_l(t, 75 D100, Du-t) D7)

[h(r) — F (7, 2(g:(2));-- -, 2(gn()))] dr,

Where ¢, 0 <i<#—1, are constants. Since (3)' implies that

I;(t T pl, t Ty pi) . ;s
1i =0,0<i<n—2,
Pe Toa(t, T D1 s Dut) e

there eXist constants K >0 and 7' > T such that
(10) _ZC;I;(t, T, 1’,‘""’ Ppi) = =KL A, Ty py,o=vy Pu-1)
for 1> T’. From (9) and (10) we have

o) 2 [ Tuslt, 7) ) UBG) — T dr = KJes(t, T)

for t>T'. 'An application of condition (7) ‘shows that =(#) is
eventually positive. The proof in case (8) holds is similar.:

Theorem 1 generalizes Theorem 3 in [4]. We should also note
that Theorem 1 can obviously be extended to equations where
the functions F and % depend on z, 2’,---, £ ¥ with each z®
depending on several different deviating‘arguments 01, 02, Om.
With this in mind, Theorem 1 would also generalize the
’ nonoscillation results in '[1], [2], and [6]. Nonoscillation ~results
under much different types of conditions can be found for example
in [3] and [5]. ‘

ExampPLE 1. Consider the differential equation

) 11 )Y 4 21 20 t=
(11> (t (t $(t)> ) ;+ fl2e=1 1+ 22(1%) 49¢, >1,
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where >0 is a constant. It is a matter -of straightforward
computation to verify that condition (7) is satisfied for this equation.
Therefore, by ‘Theorem 1, all’ proper solutions of equation (11) are
nonoscﬂlatory In fact, (2) = #° is one such solutmn ‘

3. Oscillation ‘Tlteorems.'

THEOREM 2. Suppose that (3) holds and
wi F (8w, ) 20 if all ;>0
oru,soforj=12 , m.

If for all large T -we have.

(12)

(13) hm mf m f ],,_1(t 7) p,,(r) h(r) dr

and ;

(14) Iimsup——;l—“ [ Fstt, )2 (f)h(f)dr= + oo
== Jaa(t, T ST | ’

then all proper solutzons of ‘equation (1) are oscillatory.

Proof. Let x(¢) be a nonoscﬂlatory or Z-type solution of (1),
say (1) > 0 for t =21, > a. There exists T > ¢, such that 0;(t) =t
for ¢t =T, j=1,---, m. From equation (1) and (12) we have

Lex(t) =h(t) — F(, 2(01(8)),++, (gu(®))) S h(1), t =T,

Proceeding as in“the proof of Theorem 1, if we integrate the above
inequality #- t1mes We see that there ‘exist K >0 and T’ > T such
that = '

2(t) < [ Fatt, ) 2ulr) WD) i + KJuslt )

for- +>T" Conchtlon (13) . then yields a contraction to the
assumption that 2(t) 20 for ¢ > T, The proof in case x2(t) L0
for t >, is similar. R o o

ExampLE 2. Consider equation

t \1

sy k <_]:_ /1 x/(t>>,>l + %.’b(k“ﬂﬁ
S =6t[6sin (Int) + 7cos (In#)] -
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for £>=1. -All conditions of Theorem 2 are satisfied; and so every
proper solution -of equation (15) is oscillatory. It is easy to see
that () = #*sin (In¢) is an oscillatory solution of (15).

Theorem 2 generahzes Theorem 4 in [4] and Theorem 21 in

[8]. In the sense of the remarks following Theorem 1, it also -
extends Theorem 9 in [7].

THEOREM 3.  Suppose that (3) holds dnd

uy F (2, wr,--+, 4w) <0 if all u; >0

(16) or ;<0 for i=1,2---, m.

If conditions (13) and (14) hold for all large T, then every proper
solution 2(2) of equation (1) such that

17) 2(t) = O(Jz-1()) as t—> oo

is oscillatory.

Proof. As in the proof of Theorem 2 we let x(¢) be a
" nonoscillatory or Z-type solution of (1), say :n(f) Z0fort=>t = a,
and let us essume moreover that x(#). satisfies (17). Letting T >t
be such that z(g;(#)) =0 for t>7T, j=1,---, m, and integrating
equation (1) we obtain ‘

2(t) > [ Jast, ) a(r) 8D @y = REaat, T

for all suﬂiciently ‘Iayrge z. COnditioﬂ (14) then gives a contradiction
to the boundedness of #(#)/J.-1(f). A similar proof holds if
x(t) < 0-for t= .

ExaMpPLE 3. The conditions of Theorem 3“are‘sétisﬁe'c'1' for the
differential -equation . ,
‘ 1/1 im\VY 1 .
(F=o)) -5 =te

(18) - ¢

= 62[6 sm (In t) + 7cos(ln?)], £ =1.

It follows that every proper solution x(¢) of (18) satlsfymg
x(t) = O(#*) as t—> oo is oscillatory. We mnote that equation (18)
has an unbounded oscﬂlatory solution x(t) =1 sin (In?) such that
2(t)/t* is unbounded.
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“‘The final theorem in this paper is an oscillation result which
places conditions of F which are similar to those used to obtain
nonoscillation in Theorem 1. ' P

THEOREM 4. Suppose that (3) holds zmd there are contmuous
fzmcz‘zons 11, f2: [@, o) ——»R such that :

fl(t) - F(t’ Us,- -y um)

(19) < fo(8) forall (t, us,---, 4n) € [a, o) x R™

If for all large T we lumvek

(20) h%nfm f Joest, ) I RC) = Fi1 07
and

@) h%ﬁ” T 0 ) f Je-slt, 1) Dulr)LBCr) = f2<f>1 ar
A L + o0,

then any proper solution x(t) of equatzon (1) is oscillatory and
28} Ds(t) is unbounded.

Proof. Let x2(¢) be a proper solutinn of (1) defined for
t>1t,>a. From (1) and (19) we have

| R — fi(t) < Lo x(t) < h(t) — fi(#) |
for t> T, where T >1, is such that 9;(t) =ty for t=T,
j=1,---, m. Integrating the above inequality #-times we obtain
that there exist K >0and T/ > T such that
S Taeslt, ) pu) () ~ fo(r)) dr — Kyt T)
<o) < [ Juoslt, ) DuRITRG) — Fi)] dr + KJooslt, T).

for tz T’. Condltxons (20) and (21) 1mply that x(t) satisfies

l1msup z(2) ‘= 4 oo and 11m1nf a:(t) ~—‘°°.’

; Ao ]n—-l(t) : ]n—-l(t)
If follows that x(2) is oscﬂlatory and x()/pe() is unbounded
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ExaMPLE 4. Consider the equation

_1_ ;1_ , AN . (1 + t12)1/2 x(tez/Z)
(22) ( t < t z (t)> > t5 eayz [1 + x2(t> + e—-Gm: x2(ten’/2)]1/2
= 6t[6cos (In¢) — 7sin (In2)], ¢ = 1.

As easily verified, Theorem 4 is applicable to equation (22), so
that all of its proper solutions are oscillatory and unbounded. One
such solution is x(#) = ¥ cos (In#).

~Theorems 3 and 4 generalize Theorems 5 and 6 in [4]
respectively. In the spirit of the remarks following Theorem 1 we
also have that Theorem 3 generalizes Theorem 2 in [2] and
Theorem 2.2 in [8].
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