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"Abstract. . A technique for cbtaining necessary conditions on
restricting the Fourier transform is introduced, )
» ¥
Let I = [a, b] be a finite interval in R and let v & C*(I) be
real-valued and v//(¢) >0 for all £ in I. Put 7(¢) =, v(@)), ¢t I..
7(t) is a C? curve in R?. For a Lebesgue measurable function %
on 7, we shall also use [Z]/z2(;) to denote the L?-norm of 4. Let of
be the set of all rapidly decreasing smooth functions on R2. For
g € of, let Tg be the restriction to 7 of the Fourier transform § of
g. That is

To(t) = g1, = §(r@)).
In [1], Per Sjolin proved, among many other things, that

THEOREM 1. Assume 1< p<<4/3 and 3(1—1/p) <1/g<1.
Then

&5 (TP YD ey < Collglliremy, g€ .

The following estimate was then derived from Theorem 1 by
applying Holder’s inequality.

THEOREM 2. Let r be a C*™*' curve in R?, for some n > 3, which
has non-vanishing curvature except at finitely many points. Assume
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that the highest order of contact of the tangent al these points is
nw—1 Then

(2) : | ”Tg”um < Culglrawn, g€, k

if1<p, g< oo and (n+ 1)(1—1/p) <1/q. The inequalily need
not hold if (n+ 1)(1—1/p)>1/q.

Theorem 2 does not contain the case (2 + 1)(1—1/p)=1/q.
This note is devoted to a more detailed study of this problem. It
will be shown in Lemma 4 that the inequality (2) need not hold
if (w+1)Q—1/p)=1/q and 1/q>1/p.

In the sequel, let I=1[0, 7], #>0. Assume  that
b)) =10(1+ ¢(2)), 6=2, ¢ C(I), ¢(0) =0, and ¥ >0 on
(6, 7]. ‘Let 7(2) = (¢, ¥(2)). For any complex number z =« + i,
>0, and g € of, let '

(T: ) (@) = §(r () 1~

The following is the main result of this note.

TuroreM 3. (i) Assume that 2 + 4aa > 0. Then
(3) (1 Turip 9oy < Coligllrrry, 0 € o,

if 1<p<<4/3 and 3(1—1/p) <1/q. The mequalzty (3) does 7ot
kold if p > 4/3 or 3(1 —1/p) > 1/4q.

(ii) Assume that 2+ 4a<<0. The inequality (3) hqlds if
1< p<4/3 and max{3(1 —1/p), 1+ 6)(1A —1/p) —a} <1/q, or
if3(1—1/p) =1/qand 1< p < (6 —2)/(6 — 2 — &). The inequality
(8) does mnot hold if p=4/5 or max{3(1—-1/p), (1+86)
(1-1/p) —a}>1/gor 1+ 6)A—1/p) —a=1/g>1/p.

Proof. We shall begin with the following lemma.

LEMMA 4. The inequality (3) does not hold if

A+6)A-1/p) —a>1/g
or

A+6)A—-1/p) —a=1/g>1/p.

Proof of lemma. Choose a large positive number M. For ans;
positive integer &, set 7= M~* and 6, = M~*'. Let Q: be the
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rectangle whose dimensions are o, 0% along the tangent and normal
directions of 7 at 7 respectively. By choosing M very large, we may
assume that the collection of rectangles {(1 + 1/M YQu: k= 1,2,---}
is pairwise disjoint and that there exists ¢ > 0 such that, for every
R>1, r(¢) lies in Qp if |# — 2] < ¢d,. Choose a smooth function ¢
such that ¢(2, ¥) =1 if (@, ¥) € Q, the unit cube centered at the
origin, and ¢(», ¥) =0 if (2, v) & 1 +1/M)Q. Let k2, v)
= ¢(2/6, y/03). After performing a suitable rotation and a
translation to %;, we may assume that Z.=1 on Q; and %.=0
outside of (1 + 1/M) Q;. Let ¢ be the smooth function such that
{]k = hk. Then

lgellL2cmey = 08794 YP (Bl Locr2.

Put v, = M¥<+/0_ Tet N be an arbitrary positive integer. We
choose points w,- -, wy in R? such that

N
i=1

where r, is the translation by w. Note that

vy N

L. L2 ; o 7w, gj[l’;p(nz),

P24¢ o

¥
(35 0370, 00° - 0| = s
if 18— 72] Séﬁk, k=1, 2,---, N Thus ’
: I v
Ta+z‘ s Tw: O
[i P(; Uj tw; g])

where A is a constant independent of N, If the inequality (3) is
true, then we would have for each positive integer N,

Q

=>
iy =

v
B +CH s
;fq;_m;v,?t“dtzAN,

»
c Z Mite+t/op , 3§1+9)(9-1) > N#/4,
=1
for some constant C independent of N. Therefore, since §;=M 7,
v ‘ ,
C, Z Mistara-Q+0U-1/p)) > Nbla
j=1

for all positive integer N. This cannot hold if"
A+00A—-1/p) —a>1/q
or
A+0)A—-1/p)—a=1/g and p>gq.
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This completes the proof of Lemma 4.

REMARK ‘This techmque apphes to 81m11ar srtuatrons It With
some mod1ﬁcat1on, is also ‘useful if the curvature is everywhere
nonvanishing (see [2]). , , .

Let us continue the proof of of Theorem 3 Note that on the '
~subinterval  [7/2, 7], - 7 has non- vanishing curvature k and
(Turip@) (B = 12/2141-§(r(2))]. - By the well known result, the
inequality (3) can not held if p =4/3 or 3(1 — 1/p) > 1/q - Now .
assume 1 < p<4/3, 3(1—1/p) £1/q and 2 + 4o 2:6. Then

—a+ (0=-2DA-Yp) < —a+ (6—2)/A<0.
By Theorem 1, for ¢ & of, T -

C"Q”Li’c 2y > ll(Tg)(1/f")1'1/"||L1’cr>
= Cill(Tavipg) 2% « £0-D0C- “”HL%r)
= CallTorip g”L‘I(r)-‘ :

This finishes the proof of (i). Next assume 2 +4a<<d. In the
(1/p, 1/g) plane, the lines 3(1 —1/p) =1/q and (1 + 0)(1 —1/p)
— & = 1/q intersect at.(1/po, 1/¢0), where 1/po= (6 —2 —a6)/(6 —2)
and 1/g, = 3a/(6 — 2). Since 1< p,<<4/3, Theorem 1 implies, for
all g € of, | R

CHQHL%(RZ) AT (P! )2 20] Laocry .
> Cull(Tussp @) » £  £9-DC1190 garcyy
= Cil| Tas1p gllizoor. . N

By interpolation, the inequality (3) holds if 3(1 —1/p) <1/¢ and
1<p<(0—2)/(6—2—a). Next assume po'< p<<4/3. Then
31 —frI/p) <@+6)(1A—-1/p) —a. Assume also (1+ 6)(1—1/5)
—a<<1/q. Define g, by 3(1 —1/p) =1/g.. Then q1>g¢ and

o—-2)A=1/p) —alg-q/(a—a)
= [+ 0)1—1/p) —a—1/al/Ua~1a)
<1.
Therefore

RO PN gy <ol
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Now
| Tasip g2 =1 Tg(2) - 2|0
S CITg(t) « (p'")1-1p]a . gLa—0-21~-1/p)1g
By Holder’s inequality and Theorem 1,
1Taripg glla,, < CIL(TG) (¥ ) 1217 Lasiacry

< ClTy(y"y=volls,,
< Cilgle

oy

This completes the proof of Theorem 3.
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Remark. When 2 + 4e << 0, the problem remains unsettled if

QA+0)A-1/p)—a=1/9g<1/p<(6 —2—a)/(6 —2).
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