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Abstract. Embedding of distributive lattices with smallest
element into vector lattices is considered together with some
observations of the embedding.

1. Let L be a distributive lattice with the smallest element 0.
We shall prove without recourse to Stone Representation Theorem
‘that L can be embedded in a conditionally complete vector lattice
which is the order dual of the vector lattice of all valuations of

bounded variation on L vanishing at 6. In particular, when L also
has a Iargest element we infer that L can be embedded in C(S)
for some compact Hausdorff space S. | This fact does not seem to
have been observed before. Following Birkhoff [1] a real-valued
function u defined on L is called a valuation if u(z) + 2(y)
=u(ZNY)+ur(xVvy) forall z, v of L But for our purpose,
by a valuation gz we also understand that u(ﬁ) =0. If 2 is a
valuation and F a generic finite chain z; S L &, in L, let

(u; ; F) = Z {#(@ps1) — u(xk)}“”

(lul; F) = Z | (@ar1) — ) ],

where for a real number 7, 7+ =7 if >0 and 7+ =0 if r<0.
Then we define |x|, #*, #~ on L by
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lul(x) = Sup (lul; F);
Fcge, x1

pt(z) = Sup (ut; F);

b (@) = (= )*@), 2 L.

A valuation gz is said to be of bounded variation if lal(z) << + oo
for all zeL. If a valuation x is of bounded variation, then [x], #*
and g~ are monotone nondecreasing valuations on L and the
following hold: lu| = #* + z~, #= p* — p~. Obviously monotone
nondecreasing valuations are nonnegative and of bounded variation
on L. ‘

Now let X be the space of all valuations of bounded variation
on L, then X is a real vector space and the set X, of all monotone
nondecreasing valuations on L is a convex cone with tip 6. If we
order X using X . as the the positive cone, then X becomes a
vector lattice such that for ¢ € X, #* =2V 0 and — v =pu N0
-For these facts we refer to [1]. We shall denote by X~* the order
dual of X. Now let r:L—X* be defined by z(x)(x) —u(x) for
xzelLl, pre X We shall prove the following theorem:

. TuEOREM 1. r is a lattice zsomorphzsm of L into X~.

We mote that since the order dual of a vector lattice is a
conditionally complete vector lattice, theorem 1 implies that every
distributive lattice with a smallest element can be embedded in a
conditionally complete vector lattice. If L has also a largest
element U, then X becomes a Banach lattice with the norm defined
by |zl = 121(U), r € X. In this case the topological dual X* = X~
(see, for instance, [5]). X is then obviously an abstract (L)-space
in the sene of Kakutani [2] and hence X* is an abstract (l/)-space
whose unit ball X5 is [— «(U), «(U)]. Thus X* is isometric and
lattice isomorphic as Banach lattice with the space C(S) of all
continuous real-valued functions on a compact Hausdorff space S
[3]. Hence we have the following corollary to Theorem 1:

CorOLLARY. If L is a distributive lattice with smallest and
largest elements, then L can be embedded in C(S) for some compact
Hausdarﬁ‘ space S.
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2. To prove Theorem 1, we note first that r is obviously order
preserving and «(zV ¥Y) Z«(x) V(y) for x, y L TFor peX
and x € L, let g, be defined by u.(z) = u(x A 2) for z € L tx 1S
easily seen to be in X. Now for 2 € X,,

(z(2) V() (n) ,
- =sup{r(@)(e1) + c(¥)(ne) : 11, 12 =0 and py + pp = ﬂ}
= (@) () + (W) — 22) = pe(2) + 2(y) — p:(y)
= p(2) + u(y) — w2 AY) = nl@ vV Y) =z v y)(s).

Thus () V() =Zr(xVy) for , yeL Hence r(x)V (y)"
=t(z VvV ¥). Similarly, () Az(y) =z(x ANy) for 2,y L We
have shown that r is an order preserving map which preserves
~ lattice operations. It remains to prove that ¢ is an injection. Let
r,y€ L and x+y. Obviously one of the ideals [, ] and [0, ¥]
contains only one of # and ¥y, say v ¢ [0, 2]. Then there is a
prime ideal P which contains [0, £] but not ¥ [4]. Let ¢:L—R
be defined by u(z) =0if z€ P and x(z) =1 otherwise. Then
since P is prime, 2; A 2z € P implies that either 2, € P or 2z, € P,
from which we infer that  is a valuation. Since z is nonnegative
and monotone nondecreasing, £z € X. But (2)(z) = a(z) =0~1
= u(y) = «(y)(n). Thus z(x)=*~:(y), which shows that r is
injective. Theorem 1 is proved.

3. We give an obsei'vation to conclude our mote. We have
remarked in section 1 that there is an isometry and lattice
isomorphism T from X* onto C(S)‘ for some compact Hausdorff
space 8. Using 7 we can transfer each x# < X to be a bounded
linear functional I, on C(S) by

1,(f) =<u, T7US), f e C(S)

where <+, > is the pairring between X and X*. Consequently
there is a regular Radon measure 2 defined on all Borel subsets of

,s such that 7,(f) = [ fdp for f € C(S). In particular

@ w@) = [ (T o) x)dp

for all o € L. Thus to every valuation u of bouhded variation on
L corresponds a regular Radon measure 2 on S such that (1) holds.
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