EMBEDDING DISTRIBUTIVE LATTICES IN VECTOR LATTICES*

BY

FON-CHE LIU (劉豐哲)

Dedicated to Professor Chen-Jung Hsu on his 65-th birthday

Abstract. Embedding of distributive lattices with smallest element into vector lattices is considered together with some observations of the embedding.

1. Let L be a distributive lattice with the smallest element θ . We shall prove without recourse to Stone Representation Theorem that L can be embedded in a conditionally complete vector lattice which is the order dual of the vector lattice of all valuations of bounded variation on L vanishing at θ . In particular, when L also has a largest element we infer that L can be embedded in C(S) for some compact Hausdorff space S. This fact does not seem to have been observed before. Following Birkhoff [1] a real-valued function μ defined on L is called a valuation if $\mu(x) + \mu(y) = \mu(x \wedge y) + \mu(x \vee y)$ for all x, y of L. But for our purpose, by a valuation μ we also understand that $\mu(\theta) = 0$. If μ is a valuation and F a generic finite chain $x_1 \leq \cdots \leq x_n$ in L, let

$$(\mu^+; F) = \sum_{k=1}^{n-1} \{\mu(x_{k+1}) - \mu(x_k)\}^+,$$

$$(|\mu|; F) = \sum_{k=1}^{n-1} |\mu(x_{k+1}) - \mu(x_k)|,$$

where for a real number r, $r^+ = r$ if $r \ge 0$ and $r^+ = 0$ if r < 0. Then we define $|\mu|$, μ^+ , μ^- on L by

Received June 3, 1983.

^{*} Part of the works done at Université de Paris-sud, Orsay during the academic year 80/81, while the auther was on leave of absense with pay from Academia Sinica and with financial supports from National Science Council, R.O.C.

$$egin{aligned} |\mu|(x) &= \sup_{F \subset [heta,x]} \; (|\mu|\,;\;F)\,; \ \mu^+(x) &= \sup_{F \subset [heta,x]} \; (\mu^+;\;F)\,; \ \mu^-(x) &= (-\;\mu)^+(x),\; x \in L\,. \end{aligned}$$

A valuation μ is said to be of bounded variation if $|\mu|(x) < + \infty$ for all $x \in L$. If a valuation μ is of bounded variation, then $|\mu|$, μ^+ and μ^- are monotone nondecreasing valuations on L and the following hold: $|\mu| = \mu^+ + \mu^-$, $\mu = \mu^+ - \mu^-$. Obviously monotone nondecreasing valuations are nonnegative and of bounded variation on L.

Now let X be the space of all valuations of bounded variation on L, then X is a real vector space and the set X_+ of all monotone nondecreasing valuations on L is a convex cone with tip θ . If we order X using X_+ as the the positive cone, then X becomes a vector lattice such that for $\mu \in X$, $\mu^+ = \mu \vee 0$ and $-\mu^- = \mu \wedge 0$. For these facts we refer to [1]. We shall denote by X^{π} the order dual of X. Now let $\tau: L \to X^{\pi}$ be defined by $\tau(x)(\mu) = \mu(x)$ for $x \in L$, $\mu \in X$. We shall prove the following theorem:

THEOREM 1. τ is a lattice isomorphism of L into X^{π} .

We note that since the order dual of a vector lattice is a conditionally complete vector lattice, theorem 1 implies that every distributive lattice with a smallest element can be embedded in a conditionally complete vector lattice. If L has also a largest element U, then X becomes a Banach lattice with the norm defined by $\|\mu\| = |\mu|(U)$, $\mu \in X$. In this case the topological dual $X^* = X^*$ (see, for instance, [5]). X is then obviously an abstract (L)-space in the sene of Kakutani [2] and hence X^* is an abstract (M)-space whose unit ball X_1^* is $[-\tau(U), \tau(U)]$. Thus X^* is isometric and lattice isomorphic as Banach lattice with the space C(S) of all continuous real-valued functions on a compact Hausdorff space S [3]. Hence we have the following corollary to Theorem 1:

COROLLARY. If L is a distributive lattice with smallest and largest elements, then L can be embedded in C(S) for some compact Hausdorff space S.

2. To prove Theorem 1, we note first that τ is obviously order preserving and $\tau(x \vee y) \geq \tau(x) \vee \tau(y)$ for $x, y \in L$. For $\mu \in X$ and $x \in L$, let μ_x be defined by $\mu_x(z) = \mu(x \wedge z)$ for $z \in L$. μ_x is easily seen to be in X. Now for $\mu \in X_+$,

$$(\tau(x) \lor \tau(y))(\mu)$$

= $\sup \{ \tau(x)(\mu_1) + \tau(y)(\mu_2) : \mu_1, \ \mu_2 \ge 0 \text{ and } \mu_1 + \mu_2 = \mu \}$
 $\ge \tau(x)(\mu_x) + \tau(y)(\mu - \mu_x) = \mu_x(x) + \mu(y) - \mu_x(y)$
= $\mu(x) + \mu(y) - \mu(x \land y) = \mu(x \lor y) = \tau(x \lor y)(\mu)$.

Thus $\tau(x) \vee \tau(y) \geq \tau(x \vee y)$ for $x, y \in L$. Hence $\tau(x) \vee \tau(y) = \tau(x \vee y)$. Similarly, $\tau(x) \wedge \tau(y) = \tau(x \wedge y)$ for $x, y \in L$. We have shown that τ is an order preserving map which preserves lattice operations. It remains to prove that τ is an injection. Let $x, y \in L$ and $x \neq y$. Obviously one of the ideals $[\theta, x]$ and $[\theta, y]$ contains only one of x and y, say $y \notin [\theta, x]$. Then there is a prime ideal P which contains $[\theta, x]$ but not y [4]. Let $\mu: L \to R$ be defined by $\mu(z) = 0$ if $z \in P$ and $\mu(z) = 1$ otherwise. Then since P is prime, $z_1 \wedge z_2 \in P$ implies that either $z_1 \in P$ or $z_2 \in P$, from which we infer that μ is a valuation. Since μ is nonnegative and monotone nondecreasing, $\mu \in X$. But $\tau(x)(\mu) = \mu(x) = 0 \neq 1 = \mu(y) = \tau(y)(\mu)$. Thus $\tau(x) \neq \tau(y)$, which shows that τ is injective. Theorem 1 is proved.

3. We give an observation to conclude our note. We have remarked in section 1 that there is an isometry and lattice isomorphism T from X^* onto C(S) for some compact Hausdorff space S. Using T we can transfer each $\mu \in X$ to be a bounded linear functional I_{μ} on C(S) by

$$l_{\mu}(f) = \langle \mu, T^{-1}(f) \rangle, f \in C(S)$$

where $\langle \cdot, \cdot \rangle$ is the pairring between X and X^* . Consequently there is a regular Radon measure μ defined on all Borel subsets of S such that $l_{\mu}(f) = \int_{S} f d\mu$ for $f \in C(S)$. In particular

(1)
$$\mu(x) = \int_{S} (T \circ \tau)(x) d\hat{\mu}$$

for all $x \in L$. Thus to every valuation μ of bounded variation on L corresponds a regular Radon measure μ on S such that (1) holds.

REFERENCES

- 1. G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Pub., 1967.
- 2. S. Kakutani, Concrete Representation of Abstract (L)-Spaces and the Mean Ergodic Theorem, Annals of Math., 42 (1941), 523-537.
- 3. ____, Concrete Representation of Abstract (M)-Spaces, Annals of Math., 42 (1941), 994-1024.
 - 4. W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces, Vol. I, North-Holland 1971.
 - 5. H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag 1974.

and section for the about the control of the contro

ngi di kalangia kalangan ang kalangan pang kalang di sasaran dalang sasaran si

ACADEMIA SINICA & NATIONAL TAIWAN UNIVERSITY