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Abstract. The order of submanifolds was introduced in Part IV
of this series several years ago. In that paper, this notion was used
to obtain a best possible lower bound of total mean curvature, In this
paper, we will use this concept of order of submanifolds to study
submanifolds of finite type. Such submanifolds can be regarded as a
natural generalization of minimal submanifolds of spheres, Many
fundamental results on submanifolds of finite type will be obtained in
this paper. By applying our results, we will also obtain a best possible
upper bound of total mean curvature, Some other related inequalities
and applications will also be given.

1. Introduction. Let x :M — E™ be an isometric immersion
of an #-dimensional closed Riemannian manifold M into a
Euclidean m-space E™ Then the mean curvature & of M satisfies
the following inequality [3, I]

(1.1) | fM & dV = ¢,

where ¢, is the volume of a unit ﬂésphere. The equality sign of
(1.1 holds if and only if M is imbedded as a convex plane curve
when # = 1 and as an ordinary #s-sphere when > 1. This result
generalized the famous inequalityv of Fenchel-Borsuk and also
Willmore [8]. ' ‘ '

In ﬂle 1973 AMS Symposium. on Differential Geometry held at
Stan_ford University (see, p. 17 of [5], for instance) the author
proposed the following.
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PrROBLEM. Let M be a closed Riemannian - manifold and
r: M —E™ an isometric immersion from A into E™ What can

we say about the total mean curvature f a"dVvV of x and the
Riemannian manifold M? ‘

In Part IV of this series [3, IV], the author used the
Laplace-Beltrami operator A of M to introduce the concept of
order of immersion. In that paper, he used this concept to prove
that if x: M — E™ is of order = p, then the total mean curvature
of z satisfies

12 S av = (L) vor ),

with equality holding when and only when 2 is of order p. It
should be remarked that every immersion can be assumed to be of
order =1. By applying (1.2) and the conformal invariance of
f o dV, the author obtained in 1979 [4] a best possible estimate on
41 of A. In particular, he showed that if M is a conformal square
torus (i.e., a conformal Clifford torus in E™), then '

(13) . 2 vol(M) < 4z2,

with equality holding when and only when M is a square torus.

In this paper, we shall use the idea of order of immersions to
introduce the notion of submanifolds of ﬁm’té type. This notion can
be regarded as a natural generalization of the notion of minimal
submanifolds in both E™ and S™

In §3, we shall give the general theory of immersions of ﬁmte
type. A characterization of such immersions will be obtained.
Using this we can relate Fourier series to immersions of ﬁmte type
(Theorem 3.). .

In §4, we shall use the idea of immersion of finite type to
obtain a best possible upper bound of total mean curvature. -Some
of its applications will also be given here.

In the last section, several related 1ntegra1 inequalities will be
. obtamed



1983] ON THE TOTAL CURVATURE OF IMMERSED MANIFOLDS, VI 311

REMARK. A portion of this paper was dop_e while the author
was a visiting professor at University of Notre Dame. The author
would like to express his many thanks to his colleagues there for
their hospitality. Especially, he would like to express his hearty‘
- thanks to Professor T. Nagano for his constant enc’ouragement
and guidance through many years.

2. The concept of order of submanifolds. It is well-known
that an algebraic manifold ‘or variety is deﬁned by - algebraic
equations. Thus, one may define the mnotion of degree of an
algébraic manfiold (which can also be defined by using homology).
The concept of degree is both important and fundamental in
algebraic geometry. On the contrary, one cannot talk about the
degree .for arbitrary closed submanifolds in E”. However, by using
the Riemannian structure of a closed submanifold M (induced by
E™), the author had introduced in Part IV of this series the notion
of order of immersion for arbitrary closed submanifolds in E™ to
correspond to the notion of degree for algebraic manifolds. In fact,
for an isometric immersion of a compact rank one symmetric space
the notion of order of immersion coincides with the notion of degree
of polynomials. (see, the Remark after Theorem 5). Moreover, for
closed curves in E3, our notion of order of immersions coincides
with the order of covering. (Theorem 5).

In this paper, we will use our notion of order of immersions
to introduce submanifolds of finite type. By applying the theory,

we may obtain a best possible upper bound of total mean curvature.

Our definition of immersions of finite type is based on the spectral
decomposition of immersions which we already considered in Part
IV of this series (also in [5]). We recall such concept as follows.

Let M be a closed Riemannian manifold and A the Laplace-
Beltrami operator acting on differentiable functions in C=(M). It
is well-known that A is an elliptic operator and it has an infinite
discrete sequence of eigenvalues;

CAY, D=l < A <<-ve << Ap<<-- - ] oo.
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TLet Vi={f € C°(M)]|A f = 2 f} be the eigenspace of "A" with

the eigenvalue 1;. Then the dimension of each V3 is finite. If we
define an inner product on C*(M) by

(2:2) o= [ foav,

for f, g € C*(M), then the decomposition 5.V is orthogonal
with respect to this structure. Moreover, .50 V: is dense in
C°5(M ) (in L?-sense). Since M is closed, V), is one-dimensidnal and
it consists only of constant functions.

For each function f € C*(M), let f; be the projection of f
onto the subspace V; ‘(t =0,1, 2,---). Then we have the following
spectral decompositioﬁ; ‘ ‘ :

2.3) F=3fi (in L*sense).

, Because V, is l:dimensional, for any non-constant function
f e C°(M), there is a positive integer p > 1 such that f, 0 and

(2.4) | F—fo=X.f:.

izp

If there are infinite /; which are nonzero, we put ¢ = . Otherwise,
there is an integer ¢ = p such that f,=0 and f—fo= X, f:. In
both cases, we may write

(2.5) ‘ , _ f—'fozzq__:ft
7

where ¢ is either an integer or. oo, If the first case occurs, f is
said to be of finite order.
For an isometric immersion @ : M — E™, we put

-~ (2.6) = (L1, Tm),

where x; is the ¢-th coordinate function of x. For each =z, we
have as (2.5),

@n zi— (@)oo=, (@): i=1 2, m.
=5,

We put
(2.8) p=inf{p:}, g =supia
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where ¢ ranges among all Z=1, 2,---, m such that z; — (2:)¢ 7= 0.
Then p is an integer > 1 and ¢ is either an integer or oo. It is
easy to check that p and ¢ are independent of the choice of
Euclidean coordinate system (&1,---, n). Thus p and q are
well-defined. And we say that the immersion x (or the submanifold
M) is of order [P, q]. In particular, if g is finite, we say that
or M is of finite type. Otherwise, 2 or M is said to be of infinite
type. '

For an immersion « of oider [p, 9], we sometime simply say
that = is of order > p if ¢ is not considered. (Or we say that z
is of order <q if p is not considered.)

' By using (2.7), we have the following spectral decomposition (in
vector form); ' A ‘

(2.9) T =20+ > 5.
. . t=p

An immersion 2 is sometime said to be of mono-order (bi-order,

tri-order, ---,) if there are only' 1(2, 3,---)'0}5 -x, which is (are)
non-zero. If p =g, we just say that z is order p.
, If one chooses the center of gravity of x as the origin of E"’,
then oy, = 0. In [3, 1IV], the author showed that the total mean
curvature is very closely related to the order of immersion. In fact
he proved that if & is of order > p, then the total mean curvature
admits the following best possible lower bound;

(2.10) [ arav = (%)”/2 vol(M),

with equality hbldirig when and only when & is of order p. (See
also [2,6]).

~ 3. Fourier series expansion and immersion of finite type.
First, we rephrase a result of Takahashi [7] in the following form.

THEOREM A. Let x: M — E™ be an isomelvic immersion of an
n-dimensional (not necessarily closed) Riemannian manifold M inlo
Em  Then x is of mono-order if and only if M is either o minimal
submanifold of E™ or a minimal submanifold of a hypersphere S™!
of E™ , .
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From this theorem, we see that if M is a minimal submanifold
of S#-1 centered at the origin, then we have

(38.1) Az = 2, leR.

'Because Ax = —nH (H is the mean curvature ’vecitor of x), (8.1)
implies ‘ ‘

(3.2) , - AH =H.

In view of this, we give the foilowing characterization of
immersions of finite type.

TuporeM 1. Let x: M — E™ be an isometric immersion of a
closed Riemannian manifold M into E™. Then z is of finite type if
and only if H satisfies

(3.3) AYH + o AP YH + oo+ cp1 AH 4 ¢:H =0,
for some integer k=1 and some real numbers C1, Ca,°" "5 Ch.

Proof. If the isometric immersion x : M — E™ is of finite type,
then we have the following spectral decomposition; ‘

q
(3.4) xXr — o — Z ¢, Ax; = A XLt
t=p

for some integers p and ¢. Thus, we find

[4
(35) —nATH = 3z, i=0,1,2---.
) I=p
By a straight-forward computation, we may obtain from (3.5) that -
APH — oy AV H + g AF2H — -+ (— 1)k, H = 0,
(3.6) ‘

E=qg—p.
where oy = 1115 +"'+ Xq, Og = Zt<s/2'fls, cee L, Op — Rp”-lq are the
elementary symmetric functions of 1,,---, 2.

Conversely, if H satisfies equation (3.3) for some % and
¢, €3, -+, €, then by using the following spectral decomposition of x;
(3.7) | xr = Z L,
=0

"We obtain, from (3.3), that -

38 e a4k e ki er) #:=0.
i=1 ’ .



1983] ON THE TOTAL CURVATURE OF IMMERSED MANIFOLDS, VI 315

For each positive integer s, (3.8) implies

(3.9) DA+ T+ G ke ) (@, ®,) =0
=1 :

Since (x;, x;) = f(x,, 2> dV =0 for t+s, we obtain

(3.10) | G +eadit+ -+l +e)ad=0,
where

(3.11) @ = (2., z.) = [|z*av.

If z,7#0, (810) implies .

(3.12) Rted '+t ter=0.

Because (3.12) has at most % solutions and (3.10) holds for any
s>1, we see that at most & of s are nonzero. This shows that
the spectral decomposition (3.7) is in fact a finite sum. Thus the
immersion is of finite type.

By using a similar argument, we can also characterize
immersions of mono-orvder, bi-order, tri-order,..., and so on. For
example, we have the following.

PROPOSITION 2. Let x : M — E™ be an isomelyic immersion from
@ closed Riemannian manifold M into E™ Then x is of mono-order
(respectively, of bi-order,---, etc.) if and only if H satisfies the

Jollowing equation:
(3.13) AH + ¢ H =0 A
L (respectively, A°’H + ¢, AH + ¢; H = 0,-- -, etc.)

Jor some non-zero constants c,, cs- - -.

. Let f(s) be a periodic continuous function with period 2z
Then it is well-known that f(s) has a Fourier series expansion
given by

f(s) = % + by cos (—;—) + ¢1sin (—s—)

(3.14) it

+ b; cos (—-zi) + ¢z sin (&)4_ cee,
. r 7

where b, and ¢; are the Fourier coefficients defined by
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(315) b= [T f(srcos () a5, k=01, 200,
v ny V-t 7 :

zY
(316)  exn=— [ f(s)sin (-’ﬁ) ds, k=12,
gy J-arT 7

By using the concept of Fourier series expansion, we obtain the
following classification of immersions of finite type for 1-dimensional
Riemannian manifold in E™. '

THEOREM 3. Let C be a closed curve of lengih 2zv. Then an
isometric immersion x : C— E™ is of finite lype if and ownly if the
Fourier series expanmsion of each coordinate Sunction z; has only
finite non-zero terms. ' |

Proof. vWe put

v . dixe
. 7 . Gy — &~ &~ .
(817) x o
Because A = — d?/ds* for # =1, we have
(3.18) CAH = (= Dz, j=0,1,2 .

If = is of finite type, Theorem 1 implies that each coordinate
function z:; satisfies the following homogeneous ordinary differential
equation with constant coefficients; ‘

| (3.19) 2D 4 e @t e P+ 2= 0,

‘:1? 2,...’ m’

for some integer £>1 and constants ¢i,---, & Because our
solutions x; of (3.19) are periodic solutions with period Zzr, each
‘2; is a finite linear combination of the following particular
solutions;
(8.20) ‘1‘, cos (—”i>, sin <;"ﬁ-s—), n,m; € Z.

7. Va

Therefore, each x; is of the following forf,n
q
(3.21) ¢ + Z {bA cosﬁs— + ¢casin -é}
a= 7 v

for some suitable constants ¢, bA, c,;, A=p, -, q, and:iﬁteger.s
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$, q. Thus each x; has a Fourier series expansion of finite sum.
The converse is easy to verify. ‘

By using Theorem 3, we obtain the following.

THEOREM 4. Let C be a closed curve of length 2zv. If
z:C—E™ is an isomelyic immersion of finite type, them C is
immeysed into a hypersphere S™'(a) of E™ with radius a for
some a, ie., C is of spherical type. |

Proof. Let x#:C— E” bé of finite type. Then Theorem 3
implies that each coordinate function takes the following form

(322)  @i=ei+ ; {a,-’(j) cos (_ffi) + B:(f) sin (l;_)}

for some suitable constants a;(7), 8:(j) and ¢, 1=1,---, m. In
particular, (3.22) gives

(3.23) Zj{—-a,(])sm( )—I—b(])cos(] )}

Ty
Because s is the arc length of C, {dz/ds, dx/ds> =1. Thus (3.23)

implies

B20) 3 @) ) = 3 5 bR = 3 @) bi(k)

i=1 i=1 i=1

= S b ak) =0, for j+k,

325) S @)= bGYF=e(), for j=l:-q

(3.26) S a(Dbi(j) =0, for j=1---, ¢
where e(j), 7 =1,---, ¢, are constants.

From (3.23), (3.24), (3.25), and (3.26) we may conclude that

Z(x,—c,)z—ie(])z{cosz(]r)—i—sm (]s>} Ze(])2 '

i=p

This proves the theorem.

If m = 3, we have the following stronger result.
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THEOREM 5. Let C be a closed curve of length 2zv. Then

(a) If an isomelric immersion x . C— E*® is of finite type, then
x is of mono-order, say of order p.

(b) The order p of the immersion x is equal to the order of
natural covering map; C— S*(r/p) C E%, where S'(v/D) is a plane
circle of radius r/p. And

(¢c) Every isometyic imbedding from C into E® of finite lype is
the standard imbedding from C into a circle S§'(r) C E*.

Proof. Since z : C— E® is of finite type, &1, 22 and z: take
the form (3.22) for some suitable ¢;, @:;(¢), and b;(¢). Because s is
_ the arc length of C, {dz/ds, dx/ds>=1. Using (3.24) — (3.26)
for m = 3, we can in fact prove that x; = ¢; and 2, x: are of the
following fornis;

(3.27) T =6 + ‘/ — g sin (—j;i) +a cos( bs ),

(3.28) .’L‘z——cg:F’/, azsln<1:§)+a31n(j)s>,

for some positive integer p and real number @, 0 <a < 1/p* for
suitable i, X2, 3. This proves the theorem.

REMARK. Let z: 8%(1) — E** be the standard imbedding from
S*(1) into E"+'. Then we have '

(3.29) ' x4+t +22a=0.

Let o :8%(1) — E™ be an isometric immersion from 87(1) info
E”, Then we have the following equations;

(3.30) '!JA = yA($17' ) xn+1)y ‘ A = 17‘ Ty m

It is well-known that the eigenspace V; of S” is spanned by
homogeneous polynomials of degree k (in terms of zy,- - -, Tne1) [11.
Thus, we may conclude that the immersion is of order [p, ¢] for
some integers p, g if and only if ¥4 are polynomials in &1,- -+, Lus1
with lowest degree p and highest degree g (except constént terms).
Thus, in this case, the noiion of order of immersion and the notlion
of degree of polynomials coincide. In fact, similar relation also
holds for other rank one symmetric spaces.
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We state the following Propositions. Their proofs are trivial.
So we omit them. '

PROPOSITION 6. Let z:M — E™ and & : M — E™ be two isometric
immeysions of closed manifolds. Then the product immeysion
(%, &) : M x M — E™™ is of finite type if and only if both = and
Z are of finite type.

 PROPOSITION 7. Let z: M — E™ and & : M — E™ be two isomelric
immersions of a closed Riemannian manifold M into E™ and E™,
respectively. Then the normalized diagonal immersion % : M — Em+m;
y— (/v 2). (2(¥), 2(y)) is of finite type if and only if both x and
% are of finite type.

By using these two Propositions, one can construct infinitely
many submanifolds of finite type. For  example, the standard
imbedding from S'(e) x S'(6) in E* is of bi-order if a==b. Of
course, there exist many submanifolds of finite type which are not
of -the types given by Propositions 6 and 7. For example, one can
isometrically imbed S'(@) x S'(b), a==b, in E°® as a surface of
bi-order which is not of either type.

ReEMARK. Theorem 1 and Proposition 2 also hold if one réplaces
H by the position vector of the submanifold. Their proofs are
given in the same way.

REMARK. Submanifolds of finite type will be treated in more
details in a forthcoming book of the author.

4. An upper bound of total mean curvature. Throughout this
paper, we assume that M is an #z-dimensional closed Riemannian
manifold and x : M — E™” an isometric immersion from M into E™.
We denote by V and ¥ the Riemannian connections on M and E™,
respectively. And denote by A, 2 and H the Weingarten map, the
second fundamental form and the mean curvature vector of x. The
mean curvature e« is given by « =[H|=<H, H>'/2, where {,> is
the inner product on both M and E™. ‘ ,

By using the spectral decomposition, we have the following.
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" TueEOREM 8. Let x : M — E™ be an isomelric imbeddz‘%g of o?’def
< gq. Then we have '

(4.1) fMak av < (%)’"2 vol(M),

for E=1,2 8, 4. The equality sign holds if and only if x is of
order q. /

Proof. Assume z : M — E™ is an isometric imbedding of order
< g. For any fixed vector e in E™, we put

2 f =<H, a).
Then, for any tangent vector X in TM, we have
(4.3) Xf=<VxH a>=—<Ap X, o> +<{Dx H, o>,

where D is the normal connection on the normal bundle‘ T+ M.
Thus, for any Y € TM, we have

YXf = —<Vy(AuX), a> +<Vy Dx H, a>
- <VY (AH Y)’ a> "— <h(Y7 AHX): ﬂ>
—<Ap.nY, a> + <Dy Dx H, a).

Therefore, the Laplace-Bletrami operator A of M satisfies

AH, @)=~ 3 E:E<H a>+ 3, (V5 E:)X}H, >

(4.4) =3 {(Ve,An) Ei + Ap, nE: + h(E;, ArEy), @
| +<{APH, a),

where Ey,---, E, form an o’rthonormai frame in T and

45) . APH = Y (Dq, s, H— Dz Dy H}.

AP is nothing but the Laplacian of the normal bundle.
Since (4.4) holds for any constant vector ¢ in E™, we find

(4.5)‘ AH = APH + Z {R(E;, ApE:) + ADE.HEz’ + (V‘Ei A E;}.

'Regard VAg and Apy as (1, 2)-tensors in T*M QT*M Q TM
which are defined by
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(46) (VARD(X, Y) = (Vx 4n) Y,
(4.7) App(X, Y) =Ap unY.

If we put
(4.8)  VAp=VAn+ Apn

then we obtain
(49) te(VAm) = 3 (A, #Fs + (V5,Am) Ei} ..

On the other hand, if &, -, ém—» form an orthonormal frame
in T4 M so that & H, then we also have

(4.10) A2 B + a(H) = 3 W(E:, AnEs),

where [Ai]? = tr(A4% ) and

(@1D) a(H) = 3. (tr AnAs)) £

7 =2

is the so-called allied mean ‘curvature vector of M in E™. By
combining (4.5), (49), and (4.11), we obtain

(4.12) AH = APH + |A*H + a(H) + tr VAg .
Consequently, we find /

(4.18) (AH, B> = (APH, B> + |4l
It is Well-knovvn.that

(4.14) Az = — nH.

Thus, we have
(4.15) #w [ afdV = (Az, Az).

Assume that x: M — E™ is an isometric imbedding of order
< gq. Then we have

(4.16) z=> =, Az = 2 2s .

t<q

Thus, we get from (3.15) that

(4.17) ' 7 f a2 dV = Z 1,
i—p
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where a = f {#;, 2:>dV =0 as defined in [31V, 5]. Similarly, we

also have

(4.18) w [<H AH>aV =3 id,
(419) —a [<o, HYaV =) 1 di.
t=p
We put

A= [<H AH>av

(4.20) |
—# + 1)+ [araV —miy 2, [<@, HYav.

From (4.17), (4.18), and (4.19), we obtain

(4.21) 4= 2 (= 2) =29 @} <0,

i=p+1

with equality holding when and only when 2 is of bi-order p A q.
Consequently, we have '

99) n [ <H, AH>QV < n(1p+2,) - ferav
42 ;
+ 252, [<x, H>av.

By using (4.13), (4.22), and the following Minkowski-Hsiung’s
formula;

” f dV = (dz, dz) = (=, 6dz)

(4.23) ,
= (2, Az) = —nf(:r, H>dv .
we find -
02 7 [ <APH, HydV +
(4.24) :

w’ 'f”AHHZdV —#?(2, + zq)foﬂ AV + niy 2, de.
Since M is closed, the Hopf lemma implies
(4.25) f<arH Hyav = [|DH|PaV.

Let Ai,-- -, ks be the eigenvalues of AH Then it is easy to see
the foliowing identity;
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(4.26) | Aul® = mert + L3 (e — 2

: i<d
Combining (4.24), (4.25), (4.26) and Schwartz’s inequality, we find

02 [IDHPaV +n [ 3 (i~ k)2 av + [ atav

— w4+ 1) [@2aV +ar,a, [av
w2y =w [IDHEGV +2 [T (b —k)Pav

i<j

+ (foﬂdV)z/de
— 2% + 1) [ aV +m,2, [ av.

Hence, we obtain

(azgy OZTTLOD JADEE + o) [ 3 (s — 2t av

+ (nfvoade— zpvol(M)><nfoz2dV — 2 VOI(M)).

Because we have foaz dV = 21,vol (M)/n (see [3], or (5.7)). We
obtain from (4.28) that

(4.29) [erav < (o) vl (a).
n
~ Thus, by (4.27), we get
w [ dV <n(1, + 1) [ dV = 1,2, [ @V < ol (M) .
This proves
(430) fatav < (it)z vol (M) .
Y 72
Thus, by using Hélder’s inequality, we find
o ’ / \ R4 1-B/4
(as) [atav < ([ aav) (fdv) ,

for <4, In particular, by setting =1, 2, or 3 and by using
(4.30), we obtaininequality (4.1).

If the equality sign of (4.1) holds, then all the inequalities
above become equalities, In particular, from (4.28), we see that H
is parallel and M is pseudo-umbilical. Thus, by applying a result
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of Yano-Chen [9], we conclude that x is of order ¢g. The converse

of this is easy to verify.

As an immediate consequence of Theorem 8, we obtain the
following.

THEOREM 9. Let z2: M — E™ be an isometﬁc imbedding of
order < q. If o is consiant, then '

(4.32) | [ arav < (%)”’2 vol (M) .

The equality sign holds if and only if x is of order q.

REMARK. To author’s knownledge,' inequalities (4.1) and (4.23) ,
give the first upper bound of total mean curvature.

By using Theorem 8, we may obtain the following best possibie
estimates on 2.

Prorosition 10. Let z: M — Sp(ly ¢ E™ be an isometric
imbedding of M into the unit hypersphere S™ of E™*'. If = is of
order [ p, ql, then

(4.33) ‘ L <n<,.
In particular, if 2, = n (respectively, 2, = n), then z is of order P k

(respectively, of order q.)

Proof. Let & be the mean curvature of M in S™. Then we
have o> = 1 + &®. Thus, from Theorem 8, we obtain

vol (M) < foaz av < (—;L) vol (M) .

This shows that 2, >#. If # =1, then & =0 and z is of order ¢
up to tramslations of E”*!. The converse of this is clear.

If p=0, then 2, <% is trivial. So we assume that p > 1.
From (4.19) and (4.23), we find

(4.34) n‘fd'V=—-nf<x, H)dT‘('=i2fa3221,Zq:af.‘
t=p t=p

Since M lies in the unit hypershpere St(1) centered at 0, we have
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(4.35) nvol (M) 221,](.?3, x>dV = 1, vol (M) .

This proves # > 2,. If == 1, (4.34) and (4.35) imply that x is of
order p. ' :

Proposition 10 implies immediately the following.
CorOLLARY 11. Let x:M — Sy(1) c E™** be an isomelric

immersion. If the center of gravily is at the center of St (1), then

(4.36) W= 1.

The equality sign holds if end only if x is of order 1.

Other immediate consequences of (1.2) and Theorem 8 are the
following.

COROLLARY 12. Let x: M — E™ be an isometric imbedding of
order = p (respectively, < q). If « is constant, then

(4.37) Ay < nedt {(respectively, 1, = no®) .

In particular, 2, = na® (vespectively, i, = na®) if and only if z is
of order p (vespectively, of order q).

COROLLARY 138. Let M be an n-dimensional closed Riemanwian
manifold with 1, <. Then every ‘isomeiric  imbedding
@: M —S™(1) C E™t of order <q is a minimal imbedding into
S™(1). Moyeover, we have 2, = 2. ‘

5. Some related inequalities. In this section, we will obtain
“many inequalities related to inequality (4.1).

PROPOSITION 14. Let x:M — E™ be an isometric immersion.
Then we have

(5.1) flamirav =L [ {3 n—n0+ 0 ot av.
7 ,
The equality sign holds if and only if = is of order [1, 2].

Proof. By using the spectral decomposition of x, we obtain

(5.2) w2 (AH, H) = (A*z, Az) = > Aid,

[ 333
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(53) w'(H, H) = (Az, Az) = Y i d,
’ tz1
(5.3) - —n(e, H) =(z, Az) = > hal.
- 21
Thus, we find o
W (AH, H) — #*(21 + 22) (H, H) — 02y 22(, H)
(54) = Z lf(x, - h)(lf _ 12) df =0.

>3

On the other hand, we also have
(5.5) " (AH, H) = (3dH, H) = (dH, dH) .

Thus, by using (4.23), (5.4), and (55), we obtain (5.1). If the
equality sign of (5.1) holds, then, from (5.4), we obtain @; =0 for
t > 3. Thus & is of order < 2. The converse of this is trivial.

ProPOSITION 15. Let = :M — E™ be an isometric immersion of -
order = p. Then. ‘

(5.6) fiatmir av = (%) vol (M),
(5.7) [laarmzir av = (%._) vol (M),

Jor r>1 and k=0, 1, 2,---, where A°H = H, The equality sign of
(5.6) or (5.7) holds Jor some r and k if and only if % is an
 imbedding of order p.

Proof. Because Az = —#nH, the spectral decomposition of =
gives

(58)  # [|APH[ QY = w(ARH, A H) = 3 ¥4,

tzp

(5.9) | w [av = —u(x H) = 1d.

tzp

Thus, we find

n* [Ia% HI? @V — i+ vol (1)

= > (AT — 2 L, at > 0.

tzp+1

(5.10)

‘This shows that
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(5.11) Siarmpay = (B2 vl (1) .

By applying Hélder’s inequality, we obtain (5.6).
For (5.7), we consider ‘

#*(dAF H, dA* H) = n*(A* H, 3dAHH)
(5.12) = (A RH, AMLUE) = (AF1p, AR g)

=3 gl

izp

By using (5.9) and (5.12), we obtain (5.7) for =1 Theh, by
using Hélder’s inequality, we obtain (5.7) ior any =1 The
equality sign can be verified in a similar way as before.

Since every immersion can be chosen to be of order >1 and
both sides of (5.6) and (5.7) are independent of the choice of the -
origin of E™, Proposition 15 implies immediately the icllowing.

PrOPOSITION 16, Let x:M — E™ be an isomelric immersion.
Then we have

(5.13) Jrarmirav = (E2) vor o),
b/
(514) [lant Hipr av = ( 2 ) vol (1),
% N
Jor » > 1 and k',= 0, 1, 2,---. The equality sign of (513) or (5.14)

holds for some v and if and only if x is an imbedding of ovder 1.
ReMARK. If =0 and 7 =1, (5.13) is due to [26].

By similar argument as given in the proof of Proposition 15,
we may _also obtain the following.

PROPOSITION 17. Let # : M — E™ be an isomelric imbedding of
order < q. Then we have

(5.15) JrarHpav < (457 vot ),

(5.16) deA’”H!IZdV<< ; )vol (M),
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for k - 0,1, 2,---. The equality sign of (5.15) or (5.16) for some
k holds if and oxnly if x is of order q.

From Proposition 15 we obtain immediately the following.

COROLLARY 18. If M is a closed submanifold of Ef”, thesn
A*H+<0,k=0,1,2,--

If £=0, this says that there is no closed minimal submanifolds
in E™ which is well-known. ‘
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