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1. Introduction. Let H, be the Siegel upper-half space of
degree #: : ' '

H,={ZeM(C)|Z=1Z,ImZ>0}.

Here Mn(C) is the ring of 7 X # matrices over C. Thé real
symplectic group of degree 2z, Sp (n, R), acts transtively on H,,
as a group of holomorp}uc automorphisms by the action,

M(Z) = (AZ + BY(CZ + D), M — [A B

LC D
Let Sp (%, Z) = Sp (#, R) N Mzu(Z) be the discrete modular sub.
group of Sp (s, R). A holomorphic function S defined on H, is
called a modular form of weight 2 and degree 7 with respect to
Sp(n, Z) if f sat1sﬁes the following condition: (n=2)

] in Sp (%, R).

L f(M(Z))——[det(CZTD)]kf(Z) for all M = ég in
Sp (», Z).

The modular form f is called a cusp form 1f it satisfies the further
condltmn :

2. Suppose that X a(7)exp [2246(TZ)] is the Fourier ex-
~pansion of f; then a(T)=0 if rank 7T <z Here the
- summation is over all half integral matrices 7T such that
T >0 and o(TZ) = trace of TZ -
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Denote by S(k; Sp (%, Z)) the vector space of holomorphic
cusp forms of weight %2 and degree # with respect to Sp (n, Z).
If k>2n+3 and #>2, the d1menS10n of S(k Sp (n, Z)) over
C is given by Selberg’s trace formula as foilows [5]:

dim¢ S(k; Sp (n, z))
= C(%, %)/ Z[det( - M(Z)))]
x det (CZ ¥ D)~* (det )+ gX Y,
where |

1. Clk, m) = 2-%(2m) @072 « T T (R — (= i~ 1)/2) |
IR T —n+ i/2)17,
2. F is a fundamental domain on H; for Sp (n, Z).
3. In the summation A ranges over aH matrices [C D] in
Sp (%, Z)/{il}

ThlS paper is devoted to our evaluation of dim¢S(k; Sp (2, Z )
and to presentmc an effective procedure for the computation of
all the terms necessary in the determination of dim¢S (k Sp (8, Z))
via Selbergs trace formula when k& is sufficiently large.

‘Though the dimension formula for I';(N) had been known
earlier from paners of U. Christian [2, 3], Y. Morita [14], T.
Shintani [17] and T. Yamazaki [20], a2 dimension formula for
Sp (2; Z) ‘was pot known until 1981 when one was supplied by K.
Hashimoto. Here we obtain the dimension formula for Sp (2, Z)
by a method different in important respect from Hashimoto’s.

As for the dimension formula for I's=Sp (3, Z) and its
prmmpal congruence subgroups I's(N), R. Tsushima [19] obtained
a formula for I's(N), when N =3, by using the R1emann—Roch
Hirzebruch. _Theorem. In this theS1s, we compute all possible
nonzero contributions from conjugacy classes in Sp (3, Z ) by
selecting suitable representatives in Sp (3, Z) from each conjugacy
classes. Once the conjugacy classes of Sp (3, Z) have been given
exphcﬂ:ly, we can then write down the dimension formula with
respect to Sp (3, Z) exphcztiy as we have done in the case 7= 2.
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I am grateful to my advisor Professor Baily W.L. Jr. for
helpful discussions in the beginning, for vauluable suggestions

during the preparation, and for checkmg the final formulas in the
final manuscript.

2. Main results of the case 2 = 9. We identify the group of
unitary matrices of size #, U(n), with the maximal compact
subgroup of Sp (%, B) via the mapping

A+Bi——>[A B]

—B At

In Chapter, I,‘ we add the conjugacy classes of finite order elements
in Sp(2, Z) and their combinations with parabolic elements of
Sp (2, Z)’ to the conjugacy classes of I';(N) as already determined
in [14] and obtain all conjugacy classes of Sp (2, Z). Contributions

from conjugacy classes of Sp (2, Z) are calculated in Chapter II.
The main results are Theorem 1 to Theorem 10 as follows.

THEOREM 1. Supposp M <Sp(n Z) is con]ugate in Sp (n, R)
10° a unitary matviz U = diag [21, 22,---, 2.1, where |2:| =1 and
22; %1 for all i, j; then the contmbutw% of elements in Sp (n Z)
which are comugate in Sp(n, Z)/{x1} to M is given by

ey N{M}—‘CMzi“IH/I” H (I —2:2;)t.

=1 igigign

Here Cy.z is the centralizer of M in Sp (nn, Z)/{x1} and |Cy.z| -
" denotes its order,

For an element as in Theorem 1, it has an isolated fixed point
inthe half. space H,. It was pointed out in [6] that the possible
isolated fixed points of finite order elements in Sp (2, Z) are
Sp (2, Z)-equivalent to one of the following: '

(1) Zi=iE, (2) Zi=pEs,
& o+ S K G Yt
‘ 21
B) Zy= 7? [1 2] ) (6) Zs = diag [z o].
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Here

p=e"id, ¢=e"/5 and 82_1_4:“21/22.

3

Let Gy (£=1,2,3,4,5 6) denote the isotropy group in
Sp (2, Z)/{+1} at Z; (i=1, 2, 3, 4, 5, 6) respectively. Then their
order are 16, 36, 5, 12, 12. From these groups, we obtain 22 con-
jugacy classes of elliptic elements in Sp (2, Z) and hence Theorem
1 applies.

The total contribution from conjugacy classes of finite order
elements is M + M, with

277373 x [1131, 229, —229, —1131, 427, —571, 123,

N, = —203, 203, —123, 571, —427]
if 2=1[0,1,2 3 4,5,6,7 8,9, 10, 11] (mod 12).
[5* if k=0 (mod 5), -5 if k=3 (mod 5)
M —

B lO otherwise .

Here N; is the total contribution from elements of order 5.
Elements [_g :é and [% _2‘)] of SlL;(Z) are considered as
elements of Sp (2, Z2) through the embedding

a 0 b O
a b 0 1 00

2 : N
@ {cd] ¢c 0 d 0
0 0 0 1

For conjugacy classes of such kind, the contribution are computed
by the following theorem.

THEOREM 2. Let M be an element of the form (2) in Sp (2, Z).
Suppose that M is conjugate in Sp (2, R) to diagl[l, 1], 15 £1,
then the coniribution of elements im Sp (2, Z) which are conjugate
in Sp (2, Z)/{£1} to M is

9-tg-1 7 2k — 3 1
) :é'x“{u—?)(l—m * (1—7)3}’

where G is the centralizer of [* 5] in PSL. (Z) = SL. (2)/(1)

with |G| as its ordey.



1923] ' DIMENSION FORMULAS 285

We also get

THEOREM 3. Let

0 & 0j
1 0 ss
0 d 01’

0o 0 0 1J

a, b, ¢, d integers and ab—cd =1.

a b1 . . . . cosd sin6 .
Suppose that [c d] is conjugate in SLs (R) to [—sin 0 cos 6] with

1= e == +1, then the contribution of elements in Sp (2, Z) which
are conjugate in Sp (2, R) to M’s as s ranges over g discrele
subset 2 of R'— {0} is

92 }k a1 BT . ‘ s N (lee) . —
w Ga-®Ha-D % Z (is) i=v 1.

With Theorem 2 and Theorem 3, we are able to compute
contributions from comjugacy classes in I'? which is the semi-
direct product of

1 0 0 s a 0 b 0
P 1l s 8 0 1 0 0O
and
0 0 1 —» ¢c 0 d 0
00 0 1. 0 0 0 =*1
with 2, sz, S, @, b, ¢, d integers and ad —bc=1. The total con-

tribution is
(9-53-3% x [17k — 294, —25k + 325, —25k + 254, 17k — 261,
N = 17k — 86, —F + 53, —k — 42, —7k + 91,
s } —Th+ 2, —k—27, —k + 166, 17k — 181]
'if B=100,1,2 34,5 6,7 8 9,10, 111 (mod 12) .

The rest of contributions are from conjugacy classes in I't which
consists of elements of the form

[f); gj[g] t[J(‘r)—l] =[S, U],

with S=1S in M(Z) and U in GL:(Z).

THEOREM 4. The contvibution of elements in Sp (2, Z) which
are conjugate in Sp (2, Z)/{+1} o Eg], S=18 in Mo(Z), is
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9-9 3-35-1(2k — 2)(2k — 3) (2k — 4)

®) — 2753722k —3) +27*371.

THEOREM 5.  The contribution of elements im Sp (2, Z) which
are comjugate in Sp (2, Z)/{x1} to [S, Ul with S = diag[si, s
in My(Z) and U = [(1) _({] 0 the dimension formula is

(6) (—DF[27°372(2k — 2)(%k — 4) — 27°871(2k — 3) + 27°].

THROREM 6. The contyibution of elements in Sp (2, Z) which
are conjugate in Sp (2, Z)/{+1} to [S, Ul with

4 .
sy 17 .
s_[l SJ and U = diag 1, fl]

to the dimension formule is
8 (=DF[278371(2k — 2) (2k — 4) — 2728 — 3) + 27°].
TurOR:EM 7. The contvibution of clemenis im Sp (2, Z) which

are conjugate in Sp (2, Z)/{x1} to [S, U] with S =1S in M (Z),
det S0 and U = [g é], to the dimension formula is

(8) : ; (—1)k2-5.

THEOREM 8. The contribution of elemenzs' in Sp (2, Z) which
‘are conjugate in Sp (2, Z)/{£1} o [S, U] with S =diagls, 0], s
integer and U = [_g (1)] 10 the dimension formula is
9 , 2-63-1(2% — 3) — 27¢.

THEOREM 9. The contribution of elements in Sp (2, Z) .whz'ch-
are conjugate in Sp (2, Z)/{x1} to [S, Ul with

S ———[i g], U= {__2 ;], s integer ;
to the dimension formula is ‘
(10) 2-"(2k — 3) — 2.
THEOREN 10. The contribution of elements in Sp (2, Z) which
are conjugate in Sp (2, Z)/{+1} to [S, Ul with §=18 in M(Z)
and U = [% —%] to the dimension Jormula is '
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if ‘£ is even,
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(11) 2-13-3(2k — 3) — 271371,
Note that
Ni=(B)+6)+ (M + B8+ (9 + (10) + (11)
(12) _ [27737*57(2F° + 96K — 52k — 3231)

T l2-73-35-1(2%° — 1145 + 2018% — 9051)

MaiNn THEOREM L.
cusp forms of degree 2 and weight k=>7T with
is

(13)

REMARK. The above formula is also true

Here is a table of dim¢S(%; Sp(2, Z)) when

if £ is odd.

The dimension of the vector space of Siegel’s

respect to Sp (2, Z)

dimeS(&; Sp (2, Z)) =Ny + N, + Na + Ni.

for k=4, 5 and 6.
k. < 50.

15~

E : 4 5 6 7 8 9 10 11 12 13 14
dimgS: 0 0 0 00 0 1 0 1 0 1 0
B : 16 17 18 19 20 21 22 23 24 25 26 27
,dimcS: 2 0 2 0 3 0 4 0 5 0 5 0
B : 28 29 30 31 32 33 3¢ 35 36 37 38 39
dimeS: 7 0 8 0 9 0 11 1 13 0 13 1
B 40 41 42 43 44 A5 46 47 48 49 50
dimS: 17 1 18 1 20 2 23 3 26 3 27
3. Main résults of the case #=3. To save our space, we

identify SL: (B) x Sp (2, B) with a subgroup
embedding ‘ '

i a 0 b
[a”b]X[P Q]__%OIP 0
c d R sl c 0 d

16 R O

of Sp (3, R) via the

Also we identify Sp (2, B) x SLy(R) and SL:(R) X SL: (R) X SL: (R)
with subgroups of Sp (3, R) via similar embeddings.

A conjugacy class {M} of the element

M in Sp (8, Z) has

a possible nonzerc contribution to the dimension formula only if

(1) M is an element of finite order,
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or
(2) M is an element of infinite order and conjugate in

Sp (8, R) to an element of the form M’ - [g g , where

M’ is an element of finite order which has a positive
dimensional fixed subvariety.

In the first case, M is conjugate in Sb (3, R) to a diagonal
element U of U(3) and the contribution from the conjugate class
{M} is given by
N = a(k) « vol (Cy,2\Cu.»)

. fc P(M, Z)-* (det Y)**dX dY .

.k 3

(14)

Here Cuy.z and Cu,x ‘are centralizers of M in Sp(3, Z) and
Sp (8, R) respectively. And ‘

P(M, Z) = [det (1 (Z — M(Z))) | det (CZ + D)
| : 2
A B]
Cc DIV’
If My and M, are conjugate in Sp (3, R) but not in Sp (3, Z),
then we have ) ,

if M=[

P(M,, Z) % (detY ) *dXdY
(15) Jll,R\H3

= fc P(M,, Z)-* (det Y)*dX dY

, i RN
Hence the ratio of their contribution to the dimension formula is
vol (Cp,,2\Cut,. 1) : VOl (Cyr,, 2\Cis,. ).
Let M be an element of finite order in Sp (3, Z). Suppose

that M is conjugate in Sp (3, R) to U =diag [y, 4, 2s] of U(3)
and ‘ '

L={ZeH |MZ)=2}.
Then £ is a nonempty set and is holomorphic to
H={WeD | W="1UWU}.

According to the complex dimension of £, we have following cases
for conjugacy classes of finite order.
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1D U=[111], dim2=6. |
(2) U=[1,1, —-11, dime@=4.
(® U=1I[11 2], dimyg=3. .
4) U=I[1 -1, 2], dimc2=2. ‘
B) U =], 1,7], dimg2 = 2.,
6) U=1I1,. 11, dime 2 = 2,
() U=1I1, 11, 2], dimc2=1. _
(8) U=1[2, 2, %], dime¢2=1; 2,52 and 522
(9 U ="[i, 2 4], dime2=0.

In the above, we have 22, 2, 2;%1 for all i< 4. The corresponding
contribution is given by N; (£=0,1,2 3 4,5,6,7, 8 as follows.

(@) U=1[1,1,11, dime2=6 and M — Es.
(16)  N=g-13-o5-2 771(2k — 2) (2% — 3) (2k — 4)? (2k — 5) (2% — 6) .
(Theorem .3, 5.3; Chapter V)

) U=I[1,1, ~11, dimg@ = 4;
(17)  Ni=c-2-13-45-1(% — 2) (2% — 4)* (2 —6) .
(c=1 ‘if M =diag[1,1, —1,1,1, —1], Theorem 4, 5.3; Chapter V)
(c) U=111, 1], dim,@ = 3:

N, =c.278-57 2¢f (2k —(135%—( f)fzz’a) —5)

(18) + 3Qk—4)(2k—5) 6%k —4)
; SO a-n+ A -2y

(¢~'=order of the centralizer of [(e;z g] in PSL. (Z) if M =E4><[:;Z g ,
Theorem 4, 44; Chapter IV)

(2k—4)(2k—6) | 4(2k—4)
(1—-22)° 1-—2%))"

(19) Ny—c-2-932 7k{

(c-* = order of centralizer of [& é’ in PSL:(Z) if M= [é g]
x [—%g_—] x [? g], Theorem 20, 4.5; Chapter IV) .
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(&) U=1I4 2 7], dime®=2;

(20) Ni=c¢-27%7 - 1)3(1_22).

(Theorem 23, 4.7; Chapter IV)
) U=1I1, 1 ,z] dimg 2 = 2;

o 2k —3)(2k—5)
= Ne=e- 2 mna-na-ma—a

(Theorem 14, 5.5; Chapter IV)

(g) U=I1, 1, %], dime2=1;

M= €278 (L)
(22) A=A -2 A =) . :
{ 2k — 4 4 21— 71 2) }
A-wA-%) (A=) A -2}

(é*l = order of centralizer of [R S] in Sp (2, Z) if M E; X[
Theorem 2, 4.3; Chapter IV)

(h) U=1[X, 2, 2], dimg 2 = 1;

';czzxk

= Q- -0 —n

(23)

{amma—s W - AR
1 4z 1 Az 212202 (3 — X1 22)
(Theorem 21, 4.6; Chapter IV)

G U= [21, 22, 23], dim¢®2 = 0;
(24) No=|Cizl™ Qo) T[T A —7:7)".

1<isj<3

(Theorem‘ 1, 4.2; Chapter 1V)

In the above formulas, ¢ is a rational number depends only oh
vol (Ca.z\Cu.r). This gives a complete treatment of computation
of contributionsi from conjugacy classes of finite order elements in
Sp (3, 2).

‘For the second case, we have to chocse a suitable famﬂy of S
for each fixed M’ so that the total contributions from such famlly
of conjugacy classes is given by L '
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N’ = a(k) fim f
€0 ; Car,z \Hs

s P(M, Z, §)-F (det Y')’J*4 (coﬁvergeﬁce)"f axdy .
factor

(25)

Here are some typical examples 'vvhichappear in our calcuiation.
(3) M =[S, Es]. The total contributions is

(1) 0 if rankS =1,
(26) (2) —2793-25-1(2k —4) if rankS =2,
(3) 27733 (mod 2-%3-*5-17-1) if rankS = 3.

(Theorem 5, 6, 12; Chapter V)
(k) M =[S, U] with

S1 S12 0

S
s:[ t 0]: s12 8 0| and U =11, 1, —1].
0 s 0 s - :

The total contributions is

(1) —27'%3-35-1(2%k —3)(2k—4)(2k —5) if Si=0 and
s rumns over all nonzero integers, v

: (2) —27"3"%(2k—3)(2k—5) if rankS; =1 and s=0;

(27 (3) 27937%(2k —4) if rankS;=1 and s runs over all

i “nonzero integers,

(4) 2713722k —4) if rankS; =2 and s=0,

(5) —2783~! if rankS; =2 and s runs over ali nonzero
integers. '

(Theorem 7, 8, 9, 10, 5.4; Chapter V)
() M= I:g g] X [g" g] with [Z 5] is conjugate in SL, (R)

cos # sin @ s s e .
to [——sin_ 0 cosgl A= ¢ (sin @ 52 0). The total contributions is

—2 '3 2 Sk—4 1 :
W G| {(1——})3(1@_7) + (I_D,;}Alf .
(28) ~ ‘ rank S =1,

27831 7% 1
2 if kS =2,
(2 el A=Dra+n if ran

(Theorem 11, 4.3, Chapter IV)
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(m) M= [Z g] X [% Sll:lx[_% _iz:l with [g 5] as in previous
case. The contribution offconjugacy classes represented by M’s is
' —2—73-12k{ 2k — 4 1 }
: — + — —
D - 1G] 1-—2%)? @-=-21+2
and s; runs over all nonzero integers,

. AL el L 28 — 4 1 . _
(29) 2 G {<1—12>2 T <1—z>(1+z)3} i 51=0

and s, runs over all nonzero integers,

if sa=10

‘(3) T@l—z(:lf% if s; and s; run over all mnonzero

integers,

(Theorem 20, 4.5; Chapter 1V)

(n) M= [é ﬂ X [z g] with [g g] is conjugate in Sp (2, R)
to [A1, 221, 2%, 2122, 2351 and has cetralizer G in Sp (2, Z). The
total contribution as s runs over alJl nonzero integers is =
—27% (24 A2)*

30 Gl A-BHA-hi - DA —id i

Combining results in (16), (17), (26) and (27); we obtain

MAIN THEOREM II. The dimension formula for the principal
congruence subgroup I's(2) of I's=Sp (3, Z) is

dimc¢ S(k; I's(2))
' = [I's : I's(2) ] _
x [2-153-65-27~1(2k - 2) (2k — 3) (2k — 4)* (2k — 5)(2k — 6)
4+ 271434 5-1(0k — 2)(2k — 4)® (2k — 6)
— 9-143-45-1(2k — 3) (2k — 4)(2k — 5)
L —9-133-3(9k — 3)(2k —5) — 271372571 (2k — 4)
4 2718371(2k — 4) — 2712371 + 271933 x]
for an even integer k=9, where [T's:T3(2)]1=2°3"+35 and the
final teyrm % is determined wmodulo an integral | multiple of
2-93-457t 71,

MAIN THEOREM III. The dimension formula for the principal
congruence subgroup I's(N) (N =3) of I's is given by -+
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dlmcs(k, F3(N))
= [I's : I's(N)]
X [27198795727-1(2% — 2) (2k — 3) (2% — 4)* (2k — 5) (2% — 6
—2793-25-1(9% — 4) N5 4 2-73-8 -6 *],

where k is an even integer > 9, [T I’é(N )] =4 N%.
Hpyn A =00@A = p~)(A — 7% (p : prime) and the final term *
is determined modulo an integral multiple of 2733-45-17-t N-6,

REMARK. Here we are unable to give precise formulas for these
two Theorems directly since it is difficult to compute the con-
tribution &(0) (as defined in [17]) coming from conjugacy classes
of the form [S, E] with rank S =3. In our calculation, we obtain
only that £(0) =2-73"%+17.2-23-45-17-t (/ an integer). Main
Theorem III is less precise that given in [19] where R. Tsushima

gave the dimension formula for the principal congruence subgroup
I's(N) in the form

dim¢ S(&; I's(N))
=[I;: I':s(N)]
X [271%3765"27-1(2k — 2) (2k — 3) (2k — 4)® (2k — 5) (2k — 6)
— 2793251 (2k —4) N-5 + 2-73-3 N-9] .

However, we may compare this formula with the formula in
Main Theorem III. This allows us to infer that &(0) = 2-73-% (a
result‘ that hitherto defied direct verification), and therefore to
eliminate the integral multiples indicated by our asterisk in Main
Theorem II and IIL

| For the remaining case [S, U] with U is conjugate in GL; (R)

to
1 0 0
0 cosf sinéd (sin@ +#0) ,
0 —sind cosd

we have .

THEOREM 11. The cahtrz'bution of elements in Sp (3, Z) whick
are conjugate in Sp (3, Z)/{+1} to [S, U] witk '
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1 0 0
S = diag[sy, s, s2] and U =10 0 1},
‘ 0 —1 0

s: and s; are inlegers, is
9-10 3-2(9k — 8) (2% — 5) — 2-103-1(2k — 4)
—99g1(2k —4) + 270,
TrporeM 19. The contribution of clements in Sp (3, Z) which

are conjugate in Sp (3, Z)/{+1} to [S, U]l with §='S in My(Z)
and ' -

10 0
U=10 1-1 |,
01 0

is
95342k — 8)(2k — 5) — 2-33-3(2k — 4)
' —9-43-2(2k — 4) + 2381,

-

4. Remark: To get an explicit dimension formula for the
modular group Sp (3, Z), it remains

(1) to find all elliptic conjugacy classes of Sp (3, Z) and
determine the order of each conjugacy class.

(2) to find all conjugacy classes of finite order elements in
Sp (38, Z) which have a positive dimensional set of fixed

- points and determine vol (Cu.2z\Cu.,z) for each such
conjugacy class {A}.

A recent communication form Dr. K. Hashimoto informed the
author that it is unnecessary to classify the elliptic conjugacy
classes of Sp (3, Z) in order to compute the total contributions
from them. Hence it is hopeful to solved (1) in this way.

For the case # = 2, elements of finite order in Sp (2, Z) which
have a positive dimensicnal set of fixed points are conjugate in
Sp (2, Z) to elements in the stablizers of cup

{zl >rJ and [z‘oo‘ *J
% foo L%k dood
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It is optimistic to expect this property holds for the case # =3 so
that (2) can be solved.
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