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0. Introduction. Let

={(z, ) ]2, yeR, -+ <z <+ lwl+ly <1}
and

2={oloec[-1 11559 |u(s) — o(t)]
<ls—¢ (Is], [t £1}.
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©-n .
Both X and £ are compact metric spaces—with uniform approxi-
matjion in £—and thus bear natural Baire-Borel structures. All
measures on these structures will be tamtly understood as- non-
negative measures ‘with finite total mass. Every o€ 2 has a
rectifiable plane curve as its graph. Let P(w, «) denote the arc
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length measure living on the intersection of X and that graph.y P
is thus a kernel form £ to X. It transports measures g from £
to X, and bounded measurable functions from X to £ in the usual
fashion. Let ¢ >0 be any measure on X. The main problem with
which we will deal in this paper is the following

Among all measures g in 2 fulfilling
(%) , wP<c

find one with maximal total mass sl.

To this problem, the following interpretation may be_given. Let
Q=(-1,0), S=(1,0); animals are Wandering from @ to S
along paths w € 2; a measuie ¢ in £ is a flow. of such animals;
the animal which takes path o feeds along the graph of o accord-
ing to arc length; the overall result of this feeding is the measure
¢P in X; c¢ represents the distribution of food available in X; the
condition #P < ¢ is to be obeyed; what is the maximal possible
flow under this condition? x1 is to be maximized.

Our problem is thus a measure-theoretical linear program. The
dual program is: ' ‘

Minimize, for a given measure ¢ in X, the expression cf
() . while obeying the condition Pf>1, with f >0 varying
in a suitable class of bounded measurable functions on X.

Moreovér, problem (%) is a measure-theoretical generalization of
a max-flow problem in a finite network. It is most natural to ask
whether there is any analogoh_ to the max-flow-min-cut theorem of
Ford-Fulkerson [1962] (see also Jacobs [19691).

o ThisA paper is"subdivided into vthree sections. In §1\We,1ist
continuity and compactness properties of the‘fr‘amework fbr problem
(*),—In §2 we investigate the. question to. which extent classical
optimality theorems . (Holmes [1972], Rockafellar [1966], [1970],
[1966a], [1968], Ky Fan [1953], [1964], [1972], Sion [1958], Nikaidé
[1953], [1954], Moreau [1964], Koénig [1968]) can be applied to our
problem (*); t_he answer is generally negative, ‘because our problem’
(%) doesn’t have sufficient continuity and compactﬁess properties;
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a lot of examples are demonstrative for this.—In §3 we try to
imitate the cbncept of a cut, as familiar in finite network theory
(Ford-Fulkerson [1962], Jacobs [1969]), in our present context. Our
imitations are not overall successful but help to determine solutions
of (%) in various spec1a] cases.

We plan to continue this paper with another part on approxi-
mation. The present paper is based to a large extent on Seiffert
[1981]. Partial results have been announced in Jacobs [1979].

1. Continuity and compactness. Since 2 and X are compact
metric spaces, every norm bounded set of measures in one of these
spaces is weakly conditionally compact, even sequentially.

THEOREM 11. For every continuous f > O on X, the function
Pf is lower semicontinuous on 2.

Proof. If w,— o in 2, then for any interval [e, 1S [—+%, 4],
the arc length of o, over [a, 8] is > (arc Jength of o over
[a, 8]) — ¢ if n is sufficiently large. Approximating (Pf)(w)
= f P(w, dv) f(x) and (Pf)(0s) by Riemann sums, the desired

result follows easﬂy

As a matter of fact the onIy contmurty pomts of Pl are those

o for which (P1)(0) =12, i.e. », as a function of & [—4, %7,
has slope *1 almost everywhere. We leave the proof as an exercise
to the reader.

THEOREM 1.2, If pa, v are measures on 2, and c., ¢ are
measures on X such that
'  m—u (weakly)
Chn—>C . (weakly)
P < en (m=1,2--)
then R
uP < c .

Proof. Let 0<f e C(X, R). We have to show Pf<¢f
Choose any ¢>0 and find a continuous 0< ¢ € C(2, R) such that
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¢ < Pf, ng > uPf —e. Choose z such that p.9 = p#p —e Then

PPf S pp+ e S o+ 2 S pPf 42
LS F 2 <cf + 3e,

if we choose, in addition, # large enough to ensuré e f <cf +e.
As ¢ >0 was arbitrary, the desired inequality Pf < c¢f follows.
COROLLARY 1.3. For every measure ¢ on X, the set =
{ule is a measure on 2 and wP < ¢}

is convex and weakly compact.

COROLLARY 1.4. For every measure ¢ on X, problem (%) has at
least one solulion.

. The mapping x#— #P is not weakly continuous, as is shov#n by
ExamMPLE 15. Let o =0-and op,— o uniformlﬁr, Ploy, 1)=v2.
Let generally e, denote point mass 1 at » € 2. Then
k | 'emn — ¢, (weakly)
but .
lim ¢, PL = lim P(oy, X) = v/ 2>1=P(o, X) = e, P1,
hence e, P — ¢, P is false. But we have the B

THEOREM 1.6. Lei 0 feCX, R) and u., n measures on £
such that p.— v (weakly). Then '

lim inf u. Pf > nPf.

7n—00

Proof. Pf is lower semicontinuous. For any ¢>0 find
0<¢oe C(2 R) such that ¢ < Pf, up=upPf—ec. Then for =
sufficiently large we have - ' '

UPF <y + ¢ < pn¢ + 2 < pw PF + 2

which proves the desired resuit.

THEOREM 1.7. For any measure ¢ on X let

m(c) = max [pllpP < c}.
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Then the mapping ¢ m(c) is upper semicontinuous, i, e. c¢,— c

(weakly) implies

lim 1 Sup M(c,,) < m(c) )

Proof. Let u; P < Cs, wP <e, pl= m(c,,) pl = m(c) We
We may assume g, — s, . (weakly), for some 9. By Theorem 12
we have u4, P <¢, hence u,1< m(c) Clearly lim,m(c,) = limy s 1
=l <m(c). o ’

We now turn to questions of buect1v1ty The mapping x— uP
is not one-to-one, as is shown by ’

ExAMPLE 1.8. Equidistribute

1) mass 1 over all paths

V (continuously)

2) mass 1/v'2 over all paths

(continuously) .

This yields two different measures z, v in £ such that P = uP
= 2-dimensional Lebesgue measure in X N {R X H[ %+, X1

But We have

THEOREM 1.9. The mapping P : C(X, R) — RS is one-10-0ne,
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Proof. Let f e C(X, R) be constant in the discD & X.
Parametrize the paths of shape ' S

.
.

by their arc length ¢ inside D :o0—o°. Then (d/da) Plw®, f)
= the constant value of f in D. By nearly obvious approximation
arguments we see how we can recover a continuous f on X from
the function Pf on £. TFinally we shall establish a necessary
condition for a measure in X to be representable as x#P for some
measure in P. In order to set the stage, let z : R* > R denote the
first-component projection: =z(x, ¥) = z (z, y € R); moreoever let
M denote the set of all measures p in [—+%, ] such that p <2

= linear Lebesgue measure, with a density o fulfilling .

esssupo < V2 essinfo.

THEOREM 1.10. 1) Let p be a measure on 2. Then z(uP)eM.
2) Let p€M. Then there is a nonnegative finite measure on v
such that L B
a) n lives on a single o < 2.
b) z(uP)=L,. )

Proof. 1) The statementv surely holds if u sits on a single
w € 2 If o has mass one, then the statement holds again since
averaging (the ,measurabilit_y problems involved here are easy-to
soivej lifts ess inf and lowers ess sup at most. The general case
follows from this by multiplication by a constant. T

2y Letpe M. Put ..o . o L ol




&
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0 for —1<t< ~Z
o(t) = L p([—l,t> for ~L<rcl
| 20—+ 31 "L 73 % 7
1 _ (-1 1<
151 o L<t<t,

Then »= (1/2/0([—%, 1)) eo fulfils p =z (uP).

2. The non-applicability of some standard theorems from’
optimization theory. In dealing with problems (%), (#x) we easily
obtain the inequality g ‘

sup vl < inf ¢f

120
p.P<c sz1

from pl < pPf<cf(n, f=>0, uP < ¢, P> 1) It would be desirable
to obtain equality here ' V

In this section we investigate the possibility of applying standard
theorems from hnear and convex optimization theory to that effect,
The overall result is negative, and the reason lies, roughly speakmg,
in the fact that our problem has semlcontmmty only where  con-
tinuity is required,

1. The Duality Theo,re'm

- Following  Holmes [1972] we consider a Banach - space E and
its dual space E*. For any convex function F :E—R U {eo} let

domF {erlF($)<w}
and let the comvex comugate F* E* —> R U {} be deﬁned by
F*(.z-*) =sup {{z, 2*>— F(2) |z e dom F}

where {z, 2*> denotes the value of x*€E* at x€ E. For concave

functions G : E — {—co} UR (i.e. functions G such that —G is

- convex) the concave conjugate G+ : E* = {—co} U R is defined by
G+(x* ) = 1nf {<o, *>— G(x) |z e dom G}.

Then we have the

THEOREM 2.1. (Duality Theorem of Fenchel Rockafellar) - Let
E, E*, F, G, F*, G* be as above and assume that one of the functions



&

268 KONRAD JACOBS AND GERTA SEIFFERT ' [June
F, G is continuous at some % € (dom F ) n (dom G). Then

¢ inf (F — G)(:v)‘ sup. (G — F*)(z*) .

xek P

For a proof see Holmes [1972].

Let us now specialize to our problems (*), (#%). Thus let
: E=CX, R). |
Then E* is the set of all finite signed measures on X Let us

denote the elements of E by f rather than by . For any meéasure
¢ on X define ’ ’ Lk

_fef it =20
‘ , ’ 140 else.
Then F is convex, and dom F = C.(X, R). Define.

PSS S

l— oo else.

F()

Then G is concave and domG = {f |feCX R), Pf21}. We
now find : ;
inf (F—G)(f)=infef,
.  FeCX, B ey
which means precisely our problem (+x). Now what does the right
member of (1) look like in our special case? We find (exercise!)
max (G* — F*)(m) = max [ inf mf]

meC (X, R) medom gt P2
: mLe

(dom F) N (dorﬁGi ’ {flO<fe C(X, R), Pf=1}

and G is contmuous e.g.at f =2 Thus Theorem 2.1 applies and

ylelds

inf ¢f = max [inf mf].
e 2 meemg ;
& ms¢

The question is e.g. what dom G+ looks like. It is a set “of
measures contammg all measures of the form gP; the question
whether dom G+ equals the set of all xP is open; a modification
of our procedure which makes the right member of (1) correspond
to our original problem () leads into still greater difficulties (see
Seiffert- [1981] for details). ' '
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2. The Minimax Theorem.

For () and (**) the following inequalities are easy to prove

max /.41 < sup inf 4P < 1nf sup uPf < mf cf.
y.P<c u“1’><ec Fid fzol Pf>1 /.c.P2<c szl

The question is whether a known minimax theorem may be applied
to #Pf as a function of z and f in order to obtain equality instead
of the middle inequality. In Seiffert [1981] the minimax theorems
from the foiidwing papers are checked for this: Nikaidé [1953],
[1954], Ky Fan [1953], [19641, [1972], Sion {19581, Moreau [1964],
Kénig [1968]. All these theorems don’t apply in our situation
because we have semicontinuity oniy where the theorems require
continuity, and semicontinuity in the false direction (not corrigible
by changing signs) where semincontinuity is required. ‘

3. Lagrange Measuzes.

In Rockafellar [1968] the well-known Kuhn-Tucker theory of
Lagrange parameters is carried over to an infinite dimensional
situation. As is shown in Seiffert [1981], Rockafellar’s theorem
~ doesn’t apply in the situation of (%) and (%) since Pf is semi-
continuous and not continuous fOr continuous f on X, except in
very special cases.

3. Cut-type estimates. -In the theory of Ford-Fulkerson [1962]
of flows in finite networks the notion of a cut is fundamental, and
the basic theorem is the max-flow-min-cut theorem, proved with
the help of the marking algorithm. _

In this section we try, following Seiffert [1981‘], various
possibilities of defining the notion of a cut for problem (*). We
don’t achieve a max-flow-min-cut theorem but find cut-type
estimates helpful in proving the maximality of special flows for
special measures ¢ in X,

1. Cuts as subsets of X.

DEerFINITION 3.1. A closed subset C of X is called a cut if for
every o € £ the intersection of C with the graph of » is non-
empty. '
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For any ¢>0 and any subset C of X we denote by C. the
e-neighborhood of the set C:

C.= {(x 'y) | there is (%o, ¥o) € C such that
V(@ —m) + W=7 <el.

:Cléariy, if C is closed, hence compact, every C. is compact as well.
It is easy to prove ‘

LEMMA 32. - A closed set CC X is a cut if and only if
lim inf.o+0 (1/2¢) Po, C.) =1 for all o € 2 such that the graph
of o hits C in an inner point of X, (1/e) P(w, C.) =1 for all
other . € Q.

Let 90X denote the boundary of X and int X = X\6X the
interior of X. ‘ R

DrFINITION 3.3. Let CC X he a cut and ¢ a measure on X,
‘then - 5

¢(C) ~ lim inf [51- (Gt X) N C).) + L e(((6X) n C)e)]
&=>0+0 E - R & .
is called the c-capacity of the cut C.

Qux Lemma 3.2 and our definition 3.3 are split into  two . cases
only due to problems occurring at the boundary of X. In practical
cases these problems are mostly easily settled, as we shall see.

THEOREM 34.. Let p be a measure in 2, ¢ a measure in X
and CS X a cut. Then pP <c implies

1l <c(C).
‘Proof. Write | | |
D=Cn (intX) 2p = {w | the graph of o hits D}
" E=Cn (8X) 2r=2\2p
Choose any 1>06>0 and find ¢ >0 such that 0<e _<_‘eo implies

ﬂ({w j 2%1)(% D)=1-— a}) ’zkﬂ(gp‘)f—- 5.

Then 0 < e < e implies also
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2l = p(82) = p(2p) + p(2g)

<ulfo] Lre Dy z1-d)+s

callo] Lrw m=1))

= 1—5 215 fp(co,sz)‘/«t(dcu) + —%j'P(o), E.) u(dw)

1 1 , 1
< [Lwmwy+1ep @]

A

L[ Lewo+ Lew).

Varying ¢ and ¢ suitably, our theorem follows.

EXAMPLE 35. Let a finite network in the sense of the Ford-
Fulkerson theory be given such that it can be represented by a
planar drawing with (—1, 0) = @ as the source and S = (1, 0) as
the sink. Modifying the drawing, we can assume that the drawing
consists of finitely many -sections of graphs of points o € £, and
the capacity destribution over the network is represented by some
measure ¢ in X living ’on these sections and being nonnegative
multiples of arc length measure on them. A cut in the usual sense
of the Ford-Fulkerson theory can then be represented by a cut
C<S X in the sense of Definition 3.1, and ¢(C) equals the Ford-
Fulkerson capacity of the: 'represeﬁted Ford-Fulkerson cut. Thus
the cut theory of'Ford-Fquerson' appears as a special case of our

present approach, up to problems of pianar representability.

ExAMPLE 3.6. Let ¢ be a. measure on X which is abso]ﬁtely
continuous with respect to planar Lebesgue measure 22 such that
the density (dc/dl®)(x, y) depends on ¥ only, and may thus be’
written o(9). Assume p(y) =0 (ly| =3%). Thene.g.

C = {(x, v | (2, ¥) € X, x='_é—}

is a cut with capacity
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1/2 '
0 = [, o ay
and this is z1 for the g distributed over all paths of the form
2y(t+1) for —1<t¢ s-—%

wy(®) =9 - for —%-Sté%'

\loy(1=t)  for _;.stg

according to p. Thus g is a solution of (%) in this case.

ExAMPLE 3.7. Let ¢ be as in example 3.6, but o depend on 2
alone instead of y alone. Then every
C: = {(z, ¥) | (z, ¥) € X}
is a cut, and

inf  ¢(C;) = essinf p(x).
—1/2=4=1/2 : —1/2=x51/2

Equidistributing exactly this amount of mass over the paths o,

considered in example 3.6 we obtain'a solution # 6f ().

[bll 612]’
brl' brz

be a #.2-matrix with nonnegati\?e entries and let —+ =9y < y1<<---
<%, =+%. Define '

ExXAMPLE 3.8. Let

by, . for ’-—~1~£m<0, Yo1 <Y<Y

‘ 2
p(x ‘y) = { Dpo for  0<x <= yk—1<y<‘yk

» 2 ?
) ’ (k =‘1’...’V 7»)

10 else m X

and let ¢ be the measure in X with 21%-density p.
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2 \\
0
Y, : :
br! _b}Z
Yr-a
?Jz . sz_ bzz
Ys »
bl}. blo

Yo
_ \ 0

The picture shows how to zigzag a cut curve (closer and closer
to the w-axis), the zigzag being dependent on which of &, b is
smaller: the curve’s vertical parts always choose the lower levels
of p. We may thus bring ¢(C) down to

) | S (Us — Yo-) min (Bes, bro)

as close as we want. Equidistributing mass (Yr — Yr_1) mm {bkl, br2}
 over those o, (see example 3.6) which have 1<y << and
summing up the results, we obtain a 2z with #P <c¢ and vl = (2)
thus solving (*).—In a similar way some more cases of "chessboard-
like” ¢’s can be settled.

EXAMPLE 39. Let the 2%-density p of ¢ be giVen by

.6.3{ o (1] 1

0441 1 111 1

0.3 1 i1} 0
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Now draw a cut curve C according to

We find

e(C) =V o 0 4 =v4+16 1
(%) (0, 2) 0, 4) 70 73
For any —4 < a <0 define

{204(t+1) for —1<t< —-

|
na(t) = ié (t + é—) + o {for —

1

2
(oo LY = 1<
2\oc+2)(1 H  for L<i<1

and equidistribute mass 1/v'5 over these 7, € 2. This yields a 2
- in £ which is easily seen to fulfil pP <e¢. It follows that px
solves (). '

ExaMPLE 3.10. Let de/di? be given in X according to one of
the following two pictures

10

%
|
!
t
i
|
1
i
!
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Here no o € 2 can—we content ourselves with a visual argument
here—avoid passing through some, however short, interval where
there is “no food”. Thus =0 is the solution to (%) in these
cases.

ExamprLe 3.11. Let dec/di* be given according to the following
picture

The picture contains a cut curve C. If we let it approach the
diagonal, its capacity ¢(C) goes down to 1. Obvious equidistribution
of mass 1 over the family of paths from in each of the following
pictures ‘

~
~

0 3
7\

vields a ¢ in £ with 21 =1 and xP <¢, and thus two solutions
to (%).

ExAMPLE 3.12. Let u; be equidistribution of mass 1 on the
paths o, (example 3.6) and s be equidistribution of mass 1/v 5
on the paths 7, (example 3.9), and
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c=wmP+mP.
The density dc/di® is to be seen in the following picture

N
Ve

~

2 -
&

- R A

~ R4
N e

depending upon an angle 5. . If we put s=tan 8, we get a capacity

T
s+14;a1/21+s 0<t<co).

Differentiation yields a minimum at

_8—v19
$= "5
which corresponds to

o =13.7° (approximately)

[June
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v

and yields a cut capacity

3+v/19 w1, 1
5 ' v'5

The following picture displays a ¢ with xz1= (3 + v 19)/5

)
r == 1
1 | %éj ?
Z =1 /192
% =3 °
192 [= |
5 %E = —=1 1
?5/ 2
1= ‘ |
2 {\?/" ]

The detail® are left to the reader (see Seiffert [1981]).

ExXAMPLE 3.13. Let dc/dl* be given in X according to the
- following picture

5’
]
28
: !
26 {
C
T N

[

with variables 6 >0 and N >0 such that the C in the picture
yields a cut with minimai

(3) (C)=1—25+v 1—85 + 205°
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In view of the fact that any ¢ has to live on the Lip: paths we€ g,
no x with 2P <c¢ and z1=¢(C) can exist. We get a lower
bound than ¢(C) for xl if we split £ into

2, = all o passing through 7'’ and T/ in the above picture,
== the rest of £.

Now the o € £; pass through the parallelogram R in the above
picture with an arc length >2v 2 §, i.e. with

Plo, R) =2V 2 5.
Let # be a solution to (%) for our ¢, and

11 = the restriction of o to £i,

us = the restriction of £ to 2.

Then
pml = 5{}125 fglzm 5 n(dw)
< ~2717~3— [ #(dw) P(o, B)
=, Vlzgmpxze)
< E;/—- —— ¢(R)
_ <12:/225>2° Ve (% 9).

Taking (S'\T’) U (S8\T"") as a “cut for u” (picture!) we find
1< 2(; - a) ,

and thus

,¢1<<2+1/2>\ ,,,,, —o)

which is smaller than (3) of ¢ is sufficiently small. A x, with
wl=(2+ v 2)(4 — 8) can, however, be given by uo = ot + fos,
where

so1 = equidistribution of mass v 2 (4 — &) over the paths in
the following picture
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vl

N\
)

)

sa(3-9

and

 moz = equidistribution of mass 2(% — &) over the paths in
the following picture

RCYES
|
o

.

1S |
|
ke

|

It is easy to verify (see Seiffert [19811) that ueP <e¢. Thus uo
solves (k).

2. Cuts as. continuous functions.

Given a measure ¢ on X, we know that sP<¢, Pf<1=p1<cf.
Hence in trying to solve (%), i.e. to lift #1 as much as possible
(under pP <c¢) we may try to bring ¢/ down as far as possible by
proper choice of f >0 with Pf>1, ie. to solve (#%). If pl=cf
occurs with some f >0, Pf>1, we know that g solves (%) (and
f solves (#x)). Now what does (%) mean? Visually, we have to
try to find a “canyon” or “wadi” in ¢ which brings ¢f down as far
as possible, Sure such a “canyon” should be interpreted as sort of
a cut. The difficulty in solving (%) results from the fact that
there is not enough compactness in C(X, R).

The examples in subsection 1 contain cuts as subsets which
can be approximated by continuous functions /=0 on X - with
Pf =1 quite easily such that the solutions z of (%) given there
fulfil 1 = inf%gl ¢f, except in example 3.13. TFor details, see
Seiffert [1981].
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