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ON THE ADJOINT OF SPECTRAL OPERATORS

BY

MAW-DING JEAN (f%T)

Abstract. If T* is a prespectral operator with resolution of the ;
identity E*(+) of class X, we prove that T is a spectral operator with
resolution of the identity E(+). An example is alsd given to show that
if T* is a prespectral operator with resolution of the identity F(. )
which are not predual then T need not be spectral,

It is shown in [3] that if T is a Spectral operator on a Banach
space X with resolution of the identity E(+) then the adjoint T*
of T is a prespectral operator with resolution of the identity E*(+)
of class X, where E*(-) is the adjoint operator of E(-) in L(X).
The converse part of this result is proved in this note. Namely,
if T* is a prespectral operator with resolution of the identity
E*(+) of class X then T is a spectral operator with resolution of
the identity E(-). An example is also given to show that if 7T'*
’is a prespectral operator with resolution of the identity F(-) which
are not the adjoint of some operators in L(X ) then. T need not be
a spectral operator.

We use here the notatjons and-‘deﬁnitions of [2]. Let X bea
complex Banach space with dual space X*. Operator means bounded
linear operator. The Banach ialgebra of operators on X is denoted
by L(X). A family I' © X* is called total if ye X and f(¥) =0
for all f T, then y=0. If X is a c-algebra of subsets of an
arbitrarjr set 'A, suppose that a mapping E(:) from 3 into a
Boolean algebra of projections on X satisfying the following
conditions: -

(L) E(51) + E(8:) — E(8:1) E(8;) = E(51 U 0s),

(2) E(61) E(0:2) = E (81 N 82),

(3) E(A—08)=1I—E(5),
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4) EA) =

(5) there is a M >0 sueh that [[E(8)|| <M for all 6 € X,

(6) there is a total linear subspace I of X* such that
(E(-)z, ¥) is countably additive on 2], for each x in X and ¥ in I.
Then E(-) is called a spectral measure of class (X, I').

An operator T € L(X) is called a prespectral operator of class
I' if there is a spectral measure E(+) of class (X, I') with value
in L(X) such that TE(8) = E(®)T, and o(T|E(X) C 5, where
>, is the c-algebra of Borel subsets of complex plane. The spectral -
measure E(+) is called a resolution of the identity of class I' for
T. ¥ I'=X* T is called a spectral operator.

TuroreM. Let T be an operator on X and let E(3) be an
operator on X for every € % ». Then T is a spectral operator with
fesolutzon of the identity E(-) if and only if T* is a preépectral
opemtor with resolutzon of the identity E*( *) of class X. ‘ '

Proof. The necess1ty is proved by Dunford [3, Lemma 6]

Conversely, if T* is a prespectral operator with res.olutxon of
the identity E*(+) of class X. Since E*(-) is a spectral measure of
class (X, X), it follows that E(-) is a spectral measure of " class
(X, X*) by taking the second adjoint operator E**(¢) and
restricting to X as a subspace of X**. ,

We shall prove that T is a prespectral operator with resolution
of the identity E(-) of calss X* and T is therefore a spectral
operator.

Since T'* E*(8) = E*(a)T*, thus TE(8) = E(a) T.

If 6, and 1 C—45. Since (T*|E*(3)X*) C§ so that
(lI*‘f-— T*|E*(3) X*)~! exists, and is denoted by R, then
R, € L(E*(8)X*). Set P; = R;(E*(5)) which is in L(X*). Then
E*(9)P, = E*(9) Ry E*(3) = R, E*(5) = P, and '

P, E*(8) =R, E*(6) E*(d) =R; E*(a) =
Therefore, E*(9) P, = P; E*(9), and thus E**(3) P¥ = P E**(3).
Hence P¥ maps E**(8) X** into E**(5) X**. Since
(AI* —T*) P, = E*(8) = P,(I[* = T*),
it . follows that (AI** — T**) P§=P; (" —T*") =E**(3).
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Therefore,  (AI** — T**|E**(6) X**)-'.  exists and‘ “equals
Pi|E**(8) X**. By regarding X as subspace of X**, there obtains

(QI** = T*)|B**(3) X)t = (™ = T*) | E@) X))~
= (A — T)IE(b‘) X) -t

Hence A& a(TlE(c?) X) thus o(TIE(o)X) c 6 : .
Therefore T is a prespectral operator with resolution of -the
identity E(+) of class X*, and the proof is complete.

LeMMA. Let K be a compact Hausdmfﬁ‘ space and let ¢ be a
continuous algebra homomorphism of C(K) into L(X ) with ¢(I) =
Then for every S in ¢(C(K)), S*z's a pfesjrectml opemtar wzth a
resolution of the identity of class X.

(Cf. [1] and [2; Th. 5.21.7).

) EXAMPLE Let X = C([0, 1D, deﬁne (Tf)(t) —tf(t) te [0, 1]
and f € X. Then o(T) = [0, 1], define

¢: X =C(o(T)) — L(X)

by ¢(9) f=¢f Then ¢ is a bicontinuous algebra isomorphism
from X into L(X) such that ¢(g,) =7 and ¢(g) = T, where
0,(¢) =1, and ¢:(¢) =% By the Lemma above, T* is therefore a
prespectral operator with resolution of the identity of class X.
Suppose that E?=FE in L(X) and TE = ET. Since for very

he X, (TE)(h)(t) = (ET)(R)(?), it follows that

(x) t(ER)(t) = E(Th)() te [0, 1],
(%) T« (ER) =E(I + k).
Claim that Ef = (Eg)-f for f() = #=0,1---. By

induction, for =0, f = ¢,, thus Ef = (Eg,) - f.
If g(t) =¢*+, and f(¢) =, then g =17 - f, and
(E)(@®) = (EW - f))(@) = (T « (Ef)) (D), by (**)
=TI (Ef) (@)
= t(Ef)(?)
= t(Eg,) (¢) (1), by induction
= (Eg,) () 9(8) .

Thus Ef = (Eg,) - f. This proves the claim.
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By Stone-Weierstrass theorem, Ef = (Eg,) «f, for all f € X.
Choose f = Ego, then (Eg,)?= Eg, and thus Eg,=0 or I, It
follows that E =0 or I

This shows that T is not'a prespectral operator of any class,
"and therefore T is not spectral, but 7'* is a prespectral operator
with resolution of the identity of class X, and prov1des an example
of the kind required.
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