ON THE ADJOINT OF SPECTRAL OPERATORS

BY

MAW-DING JEAN (簡茂丁)

Abstract. If T^* is a prespectral operator with resolution of the identity $E^*(\cdot)$ of class X, we prove that T is a spectral operator with resolution of the identity $E(\cdot)$. An example is also given to show that if T^* is a prespectral operator with resolution of the identity $F(\cdot)$ which are not predual then T need not be spectral.

It is shown in [3] that if T is a spectral operator on a Banach space X with resolution of the identity $E(\cdot)$ then the adjoint T^* of T is a prespectral operator with resolution of the identity $E^*(\cdot)$ of class X, where $E^*(\cdot)$ is the adjoint operator of $E(\cdot)$ in L(X). The converse part of this result is proved in this note. Namely, if T^* is a prespectral operator with resolution of the identity $E^*(\cdot)$ of class X then T is a spectral operator with resolution of the identity $E(\cdot)$. An example is also given to show that if T^* is a prespectral operator with resolution of the identity $F(\cdot)$ which are not the adjoint of some operators in L(X) then T need not be a spectral operator.

We use here the notations and definitions of [2]. Let X be a complex Banach space with dual space X^* . Operator means bounded linear operator. The Banach algebra of operators on X is denoted by L(X). A family $\Gamma \subset X^*$ is called total if $y \in X$ and f(y) = 0 for all $f \in \Gamma$, then y = 0. If Σ is a σ -algebra of subsets of an arbitrary set A, suppose that a mapping $E(\cdot)$ from Σ into a Boolean algebra of projections on X satisfying the following conditions:

- (1) $E(\delta_1) + E(\delta_2) E(\delta_1) E(\delta_2) = E(\delta_1 \cup \delta_2)$,
- (2) $E(\delta_1) E(\delta_2) = E(\delta_1 \cap \delta_2),$
- (3) $E(A-\delta) = I E(\delta)$,

Received by the editors November 16, 1981 and in revised form Feburary 3, 1983.

- $(4) \quad E(A) = I,$
- (5) there is a M > 0 such that $||E(\delta)|| < M$ for all $\delta \in \Sigma$,
- (6) there is a total linear subspace Γ of X^* such that $(E(\cdot)x, y)$ is countably additive on Σ , for each x in X and y in Γ . Then $E(\cdot)$ is called a spectral measure of class (Σ, Γ) .

An operator $T \in L(X)$ is called a prespectral operator of class Γ if there is a spectral measure $E(\cdot)$ of class (\sum_{p}, Γ) with value in L(X) such that $TE(\delta) = E(\delta)T$, and $\sigma(T|E(\delta)X) \subset \overline{\delta}$, where \sum_{p} is the σ -algebra of Borel subsets of complex plane. The spectral measure $E(\cdot)$ is called a resolution of the identity of class Γ for T. If $\Gamma = X^*$, T is called a spectral operator.

THEOREM. Let T be an operator on X and let $E(\delta)$ be an operator on X for every $\delta \in \Sigma_p$. Then T is a spectral operator with resolution of the identity $E(\cdot)$ if and only if T^* is a prespectral operator with resolution of the identity $E^*(\cdot)$ of class X.

Proof. The necessity is proved by Dunford [3, Lemma 6].

Conversely, if T^* is a prespectral operator with resolution of the identity $E^*(\cdot)$ of class X. Since $E^*(\cdot)$ is a spectral measure of class (Σ_p, X) , it follows that $E(\cdot)$ is a spectral measure of class (Σ_p, X^*) by taking the second adjoint operator $E^{**}(\cdot)$ and restricting to X as a subspace of X^{**} .

We shall prove that T is a prespectral operator with resolution of the identity $E(\cdot)$ of calss X^* , and T is therefore a spectral operator.

Since $T^*E^*(\delta) = E^*(\delta) T^*$, thus $TE(\delta) = E(\delta) T$.

If $\delta \in \Sigma_{\mathfrak{p}}$, and $\lambda \in C - \overline{\delta}$. Since $(T^*|E^*(\delta)X^*) \subset \overline{\delta}$ so that $(\lambda I^* - T^*|E^*(\delta)X^*)^{-1}$ exists, and is denoted by R_{δ} , then $R_{\delta} \in L(E^*(\delta)X^*)$. Set $P_{\delta} = R_{\delta}(E^*(\delta))$ which is in $L(X^*)$. Then $E^*(\delta)P_{\delta} = E^*(\delta)R_{\delta}E^*(\delta) = R_{\delta}E^*(\delta) = P_{\delta}$ and

$$P_{\delta} E^*(\delta) = R_{\delta} E^*(\delta) E^*(\delta) = R_{\delta} E^*(\delta) = P_{\delta}.$$

Therefore, $E^*(\delta) P_{\delta} = P_{\delta} E^*(\delta)$, and thus $E^{**}(\delta) P_{\delta}^* = P_{\delta}^* E^{**}(\delta)$. Hence P_{δ}^* maps $E^{**}(\delta) X^{**}$ into $E^{**}(\delta) X^{**}$. Since

$$(\lambda I^* - T^*) P_{\delta} = E^*(\delta) = P_{\delta}(\lambda I^* - T^*),$$

it follows that $(\lambda I^{**}-T^{**})\,P^*_\delta=P^*_\delta\,(\lambda I^{**}-T^{**})=E^{**}(\delta)$.

Therefore, $(\lambda I^{**} - T^{**}|E^{**}(\delta) X^{**})^{-1}$ exists and equals $P_{\delta}^*|E^{**}(\delta) X^{**}$. By regarding X as subspace of X^{**} , there obtains

$$\begin{aligned} ((\lambda I^{**} - T^{**}) | E^{**}(\delta) X)^{-1} &= ((\lambda I^{**} - T^{**}) | E(\delta) X)^{-1} \\ &= ((\lambda I - T) | E(\delta) X)^{-1}. \end{aligned}$$

Hence $\lambda \notin \sigma(T | E(\delta) X)$, thus $\sigma(T | E(\delta) X) \subset \overline{\delta}$.

Therefore T is a prespectral operator with resolution of the identity $E(\cdot)$ of class X^* , and the proof is complete.

LEMMA. Let K be a compact Hausdorff space and let ϕ be a continuous algebra homomorphism of C(K) into L(X) with $\phi(I) = I$. Then for every S in $\phi(C(K))$, S^* is a prespectral operator with a resolution of the identity of class X.

(Cf. [1] and [2; Th. 5.21.]).

EXAMPLE. Let X = C([0, 1]), define (Tf)(t) = tf(t), $t \in [0, 1]$ and $f \in X$. Then $\sigma(T) = [0, 1]$, define

$$\phi: X = C(\sigma(T)) \longrightarrow L(X)$$

by $\phi(g) f = g f$. Then ϕ is a bicontinuous algebra isomorphism from X into L(X) such that $\phi(g_0) = I$ and $\phi(g_1) = T$, where $g_0(t) = 1$, and $g_1(t) = t$. By the Lemma above, T^* is therefore a prespectral operator with resolution of the identity of class X.

Suppose that $E^2 = E$ in L(X) and TE = ET. Since for very $h \in X$, (TE)(h)(t) = (ET)(h)(t), it follows that

(*)
$$t(Eh)(t) = E(Th)(t)$$
 $t \in [0, 1],$
(**) $I \cdot (Eh) = E(I \cdot h).$

Claim that $Ef = (Eg_0) \cdot f$ for $f(t) = t^n$, $n = 0, 1, \cdots$. By induction, for n = 0, $f = g_0$, thus $Ef = (Eg_0) \cdot f$.

If
$$g(t) = t^{n+1}$$
, and $f(t) = t^n$, then $g = I \cdot f$, and $(Eg)(t) = (E(I \cdot f))(t) = (I \cdot (Ef))(t)$, by $(**)$

$$= I(t)(Ef)(t)$$

$$= t(Ef)(t)$$

$$= t(Eg_0)(t) f(t)$$
, by induction
$$= (Eg_0)(t) g(t)$$
.

Thus $Ef = (Eg_0) \cdot f$. This proves the claim.

By Stone-Weierstrass theorem, $Ef = (Eg_0) \cdot f$, for all $f \in X$. Choose $f = Eg_0$, then $(Eg_0)^2 = Eg_0$, and thus $Eg_0 = 0$ or I. It follows that E = 0 or I.

This shows that T is not a prespectral operator of any class, and therefore T is not spectral, but T^* is a prespectral operator with resolution of the identity of class X, and provides an example of the kind required.

REFERENCES

- 1. E. Berkson and H.R. Dowson, *Prespectral operators*, Illinois J. Math. 13 (1969) 291-315.
 - 2. H.R. Dowson, Spectral theory of linear operators, London: Academic Press (1978).
- 3. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc., 64 (1958) 217-274.

DEPARTMENT OF MATHEMATICS, SOOCHOW UNIVERSITY, TAIPEI, TAIWAN.