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Abstract, A binary triangle T(a;+--ay) or T, of order # is a
double series {d” N<i<n 1<7<n—4i+1) of nln+1)/2 binary
numbers satisfying a;=a; for 1<j<n and Gij =@i-y, 5+ Bi-yy j41
(mod 2) for i>1. The present paper studies the number of ones of
a binary triangle, which is denoted by #7'(q-- *@n) or ¥T,, and deter-
mines all binary triangles having the first four or the last two possible
numbers of ones, '

In [5] and [6], it was shown that ogﬂ:T,,g[(n’ +nt 1)/3] for
any binary triangle T,, where [#] denotes the greatest integer less
than or equal to . But $7, does not cover all integers between 0 and
[(#* + 7%+ 1)/3]. The smallest possibility of #7T, is 0, the second
smallest jumps to #, then z—1 +[#/2], then #—1+ [(» -+ 1)/2],
then 27 — 4 or 2z — 3, No other integer less than 2% — 3 can be #T .
On the othér hand, the largest ﬁossibility of 7T, is (2 + 2+ 1)/31,
then [(#* + #)/3] which equals the former or less than it by 1, then
drops to [(#? + 2)/3]. No other integer greatér than [(#* + 2)/3] can
be §T,. Also, all binary triangles with #T, =0, n,n—1 +[n/2],
#—1+[(n+1)/2], [(#* +n)/3] or [(+2® + 2 + 1)/3] are determined.

By computer calculation, a table of all possible T, for 1 <220
is-established. Observing the table, it is found that if 2 = 2% — 2, then
#T, is always even. This is proved as Theorem 1 and was also proved
in [2, p. 77]. Also, numbers of thektype 2% — 2 form critical points of
distribution of #T%, i.e. for each # such that 2% — 2 < 5 < 2F+1 _ 2,

. $T, always distribute certain type of numbers. It remains open to
characterize all distribution of £7°,. :

1. Introduction. Given an #-digits ‘binary number a;ax- - -a,,
if under every two consecutive digits we write their sum mod 2
and continue this process as in Figure 1, we determine a binary
triangle of order n with n(n + 1)/2 digits. Denote this binary
triangle by T (ai@.---a.) or T, for short. There are 2* different
binary triangles of order 7. ’
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FIGURE 1

Let a;;, 1<i<#n 1< j<m—i+1, denote the j-th digit in
the i-th row of T (@12-- -a.), then

(11) ‘ ai; = a;, 1_<_]_<_n,
and
(1.2) @ij = Ai-1,; + Gi-1,j+1 (mod 2), i>1.

The number of ones in T (a as---as) -will be denoted by
BT (a10: @) or §T» for short. Let T*(a1a:--as) denote the
binary triangle inverse to T(aias - -ax), i.e. T (ax a,,_l--k-ql). Then
we have #T% = §7Tn | v |

Harborth [5] proved, in answer to a question of Steinhaus
[8, p. 47-48], that for = 0 or 3 (mod 4) there exist at least four
binary triangles of order # in which the number of ones is equal
to the number of zeros. Graphs formed from binary triangles are
extensively studied in [2], [3], [4], [7]. In this paper we study
the possible number of ones in a binary triangle of order # and
determine aH possible binary triahgles havingv the first four and the
last two possibie numbers of ones. ‘ ' '

2. Some speclal binary triangles. To | indicate periodicity
properties we use the overbar in a manner suggested by its use
for circulating decimals. Thus T(110) denotes the b1nary triangles
with @s1:1 = @sise =1 and @ =0, where it is not necessary that
s =3k for some k Again, T'(110) denotes the binary triangle
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with @1 =a; =1 and @; =0 for all other z, and T(011) denotes
T*(110)- -

Suppose [.73] denotes the greatest integer not exceeding . Let
fin=11f =i (mod 4), else fir=0. Then the reader may verify
the following equalities.

(2.1) #7(0) =0

(2.2) #T (1) = 4T (10) = »

(2.3) $T(01) =4T(010) =2 — 1 + [m/2]
@4 $TA0) = 4T A1) =2 —1 + [(n + 1)/2]
(25)  $7(TI00) = 47 (1010) = 2% — 2 — f,,

(2.6) $7 (0110) = ﬁil‘(ouﬁ) —om—2—f,

2.7 #7(1001) = $7°(1110) = 2% — 2 — fu,

(2.8) BT (0011) = #7(0010) = 272 — 3 — £,

(29)  $T(01) =4T(101) =21 — 2

(2.10) $T(001) = §7(001) = 22 — 4 + [(n — 1)/2]
(2.11) $7°(110) = #7(101) = 2% — 3 + [#/2]
(2.12) $7T(011) = [(#* + 2)/3]

(2.13) $7 (110) = #7 (101) = [(#* + n + 1)/3]

If a certain row is known, then all rows below it are completely.
determined. Conversely, there are only two possibilities for the
row immediately above. So there are two possible binary. triangles
with a given second row, e. g. if the second row is 1, then the binary
triangle may be 7'(01) or T'(10). Similarly, there are four possible
binary triangles with a given third row, e.g. 7 (1100), T (0110),
7(1001) and 7 (0011) have the same th1rd row 1, and 2i-1
possibilities with a given i-th row. o

Binary triangles of order # =2¢— 2 are very special. They
always have an even number of ones. ' '

THEOREM 1.

BT (2105 a) -3 {'” + 1)‘— 1}a,,, (rﬁéd 2).

=W\ m

Every $T, is even if and only if n= 2% — 2 for some k.
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Proof. From (1.1) and (1.2) it is easy to get

(2.14) — (’ - 1) ms; (mod 2),

m=0 ni

so that

n  n—it1 i+i-—1

BT, = Z > Z("“l)am (mod 2).

=7
Tet yr=m—j+1and s=7+ j—m — 1 then
1<i<n, 1<j<n—2i+1, j€Sfm<i+j—1
is equivalent to
1< m< 1L r<m, 0<s<un-—m.

Hence

4Ty = E;}mj S (7711 %) an (mod 2.

Using the equality >, (” :; w) = (w + 1+ ”) twice, we get

s w+ 1
(215) t7o= 2 {(" 1) — 1} aw (mod .
Suppose # = 2F — 2 for some k. For each 1<m <=
n+l1\ _Tr2t2—1%
(2.16) (" nt) =I5

For each 1<i<m let i =25 with s<<k and j odd, then the
equality # + 2 — i = 25(2¢~* — j) implies that ¢ and # + 2 —{ are
divisible by the same power of 2. So (” ;;1) is odd by (2.16) and
then #7T, is always even by (2.15). On the other hand if # is not
of the form 2% — 2, there exists at least one 7 such that (n : 1) is
even. If we set @, = 1 and the other @, =0, then #7, is odd by
(2.15).

"REMARK. Theorem 1 was also proved in [2, p. 77].

3. Binary triangles with a small number of omes. Let 7;
denote the number of ones in the i-th row of a binary triangle 7.
The binary triangles Tr.i, Tn-» and T, ; are the binary triangles
obtained by rejecting the first row, the first two rows, and the
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first three rows of T, respectively. Let @i; denote the j-th digit of
the i-th row of T, and set a;= a1, Then we have @i = dis1,;
and @; = a,;- - - etc., and similarly for @y, @}, aif and a;".

The j-th right column of T, is the column containing all the
digits @;; with 1< i<z + 1 — j and the j-th left column containing
all @, 411 with 1 <2< 4. If @11 = @542 =-+-= @;44, then we write
@1+ @; Q31 @jriv1” "B as.an abbreviation of @1+ @; @j11- - @jri Bjrin

<@y, So T(0710°) denotes the binary triangle of order v + s+ 1
such that a,.1 = 1 and all other a; = 0.

LEMMA 1. If n=7+s+128, >3 and s=3, then ﬂT(O’lOS)
> 22 — 3 except that #T(0°10") =47 (0710%) = 18 = 2n — 4.

Proof. For the case of » = 3, then s > 4. Denote ¢; the number
of ones in the i-th left column, then it is observed that ¢4 =4,
Ciir1 = Ciirz =2 and ¢ia =1 for £>1. But §77(0*10°) = X7.uc;. It
is easy to check inductively that $7(0*10%) > 2# — 3 =2s + 5 except
for the case of s =7; in that case, #7(0°10°) =18 =22 —4 =2s + 4.

For the case of s = 3, by symmetry we have §7(0710®) > 2%# — 3
=2+ 5 except $7T(0°10%®) =18 =20 — 4 =27 + 4.

For the case of » > 4 and s> 4. The first 7 + 4 left columns
form 7(0710%*) and the last s+ 4 right columns form 7 (0°10°%);
their intersection is 7 (0°10°) with #7(0°10%)=9 as in Figure 2. So

......... 0001000
601100
010610
1111
000
00

T(0716%) T(0°10%)

FIGURE 2
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ﬁT(O’ 10°) = #7°(0°10°) + $7°(0710%) — $7 (0° 103)
= (2s +4) + (27 +4) -9
=2n—3.

LEMMA 2. If =1, then T, is one of the following.

(1) T0) or T (01) and in this case $Ts=n.
(2) T(010) or T(010) and #T.=n—1+ [n/2].
(3) T(0010) or T(0100) and $T.= 2% — 3 — fon
4) n=17 T010°) and $T,=9=n—1+[#/21=2n—5. .
(5) m=11, T(0°10") or T (0710°) and $Ts =18 = 2n — 4.
(6) =8, T(0710°) with >3 and s=3 but not the one in

(5). . In this case #T, > 2n — 3.

Proof. Since 71 =1, then T, =T (0" 10S) Therlemma follows
from (2.2), (2.3), (2.8) and Lemma 1

LEMMA 3. If n=7r+s+2 with v,s=1, then #$T(07110°)
> 2% —3 except #T(001100) =8=2n—4. If n=r+s+3 =4, then
7 (071010°) = 27 — - 3 except #7°(01010) = 6 = 21 — 4. :

Proof. T (07 1105) (vs T(O’ 10103)) is Jjust the binary tnangie
obtained by rejecting the first row of T (07+*10°*) (vsT (O'+1 110”1))
By (3) to (6) of Lemma 2 we have

T (0 1103) = i‘FT(O“’1 110”1) -1z 2(11 +1)—4—-1=2n—3,

except the case of r=s= 2 and in this case #T(OOllOO) =8 =2n—4.
And hence

$7 (07 1010°) = #T(0’+11103+1) —222(n + D—38—2=2n-3,

~ except the case of » = s = 1 and in this case ﬁ T(01010) = 6 = 21 — 4.

LEMMA 4. If 71 = 2, then $T. = 2n — 3 except the following cases:
(1) T (110) or T(011); and in thzs case $T,=n—1+[(n+1)/2].

(2) T(OOllOO), T(01010) or T(OOOlOOOlOOO), and in thzs case

Proof. Since =2, then T,=7(0710°10?) with #n=r+s+£{+2.
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If s=0, then the case of ## =0 which is (1) of this lemma
follows from (2.4), the case of #£>1 follows from Lemma 3.

If s =1, then this lemma follows from Lemma 3.

If s> 2, then the first 7 + 3 left columns form 7°(07100) and
the last £ + 3 right colums form 7°(0010?); and the intersection of
the first » + s + 2 left columns and the last s + ¢ + 2 right columns
is T'(10°1). But by (2.8) and (2.9) we have

3.1 $T (0" 100) =2(r+3)—3—forra =27 +3—fa,
(3.2) #T(OOIO*) =2(t+3)—3—foi3=2t+3— fgf,
(3.3) T =2(s+2) ——2—2s+2

There are 6 ones in 7, cougted twice in the above three binary
triangles, see Figure 3, so

BT.> (27 +3—f3,) + (2t+3 Sar) + (2s+2) ——6—!—#12
=20 —2—f3, — far + ﬂ:R
where ¥R is the number of ones in »
 R= TAT (0" I00\T (0010\T (10°1).
So #T,>=2n—3 except for the case of r=2=3 (mod 4), i.e.
Jir =far=1. For the case of y =¢# =3 (mod 4), we will find some -
a;; in R such that a;; = 1 except for the case of » = s =1¢=3; and
so §T% =22 — 3 except for the case of #7°(00010001000) = 2z — 4.

If s =2, choose a;, in R, then by (2.14) in the proof of Theorem 1

we have
4

asr = ;j(,‘,‘z)ammm # a0 =0+ 1=1 (mod 2).
If s=3 and »+#3 (or £+ 3 up to symmetric), then r > 7. Choose
@,r—s in R, then

Go.r-s = ,,,i (3)amrs=ars+ams=0+1=1 (mod 2).
If s 2>4, 6ho¥>§e @sr in R,,tﬁen , B | |

. - 5 , AN
CQer = Z (m Cmir = Gy + Qri1+ Qris + @pys

m=0.

=0+1+0+0=1 (mod 2)

So the proof is complete.
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FIGURE 3

There is exactly one binary triangle of order # such that
BT, =0, i.e. T (D) itself, which is called the zero triangle.

THEOREM 2. If #T.>0, then $T.>n. 4T, = n if and only if
T, is ome of the following: (1) T (1), (2) T'(10) or T(01), (3) » =3,
T (010). ‘

Proof. The cases of # =1, 2 are clear. Suppose # >3 and
the theorem holds for any #' <.

If $7... =0, we know that the second row of T is 0 and then
T, is either T(0) or T(). T.= T (0) is impossible since #7, >0
and T,= T(I) implies §7, = n by (2.2).

If #1=1, then by Lemma 2 we know that either $#T, > #n or
47T, = n; and #7T, = » only when T, = T (10) or T(01) as in (1) of
Lemma 2, or else T, = T(010) as in (2) of Lemma 2 with # =

If otherwise #75-1>0 and 7 > 2, then by induction hypothes1s
$7r1=n—1 and soy-ﬁT,,:n + #Trazn+1>n ;

So, in any case, #7, >0 implies #7, = # and #7, = # implies
that T, is one of the listed binary triangles. On the other hand,
it is clear that all listed binary triangles satisfy §7% =%

THEOREM 3. . If §T>n>4, thenw #Tn=n—1+ [#/2]. The
equality holds if and only if Tu is one of the following: (1) T(01),
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(2) T(010) or T(010), (3) n even, T(10), or T (110) or T (011),
(4) m=6, T(001100) or T (001000) or T(000100), (5) =7,
T (0001000). : |

. Proof. If w=4, then éz.——'l + [#n/2] — n+1 so BT, >n
implies § T > =n -1 + [#/2]. By actual computation, we can show
the equality holds only when T, is (1), (2) or (3). Suppose n>5
and the theorem holds for any #’ < #.

I ﬁT _1—0 ‘then 7T, is either T(O) or T(I). In this case
8T < . '

If #T-n-lz # — 1, we know by Theorem 2 that the second row
of T»is 1, 10 or 01. There are several possibilities for Ty, namely
T(01), T(10), T(10), T(01) and the binary triangles inverse to
them. By (2.2), (2.3), (24) and (2.9), then the theorem holds. -

If 71 =1, then by Lemma 2 we know that either #7,>#n—1
+ [#/2] or $T, = % — 1 + [#/2]; and the equality holds only when
T, is T(010) or T(010) as in (2) of Lemma 3, 7'(001000) or
7 (000100) as in (3) of Lemma 3 W1th 7 = 6, or else T(OOOIOOO) as
in (4) of Lemma 3. o

If =2, then by Lemma 4 we know that either §7T, >n—1-
+ [#/2] or 4T, =n — 1 + [#/2]; and the equaiity holds only when

T, is T(10) or T(®11) with # even as in (1) of Lemma 4,
T (001100)- or 7(01010) as in (2) of Lemma 4.

If otherwise #7..,>#-—1 and 7 >3, then by induction
hypothesis #7,..=> % — 2 + [(n — 1)/2] and hence :!:FT,, = #Tn 17
>n+1+[(n—1)/2]>n——-1+[n/2] v A
| So in any case, #7, > # implies #7, > % — 1 + [#/2] and equality
holds implies that 7, is one of the listed binary triangles. On- the
other hand, it is clear that the listed binary trlangIes satisfy
ﬁT,, =n—1+ [n/Z]

In section 2 we saw that there are binary triangles with
8T, =2 — 1+ [(,+1)/2]. This number is equal to # — 1 + [922/2]
or greater than'it by 1, depending on whether # is even or- odd,
Similar fo Theorem 3 we have Theorem 4.
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' T',TEEOREM 4. For odd n>3, $T =n—1+ [(z+1)/2] if and
only if T, is one of the following: (1) T (10) = T*(10),(2) T(110)
or T(011), (3) » =5, T(00100), 7 (01100) or T (00110).

THEOREM 5. If =7 and #Ts>n =1+ [(n + 1)/2], then

m—4 ifn=2 (mod 4) or n=11,
on—3  otherwise. ' ‘

#T,,z{

Proof. The case of #="7 is clear since #—1 + [(+1)/21=10
and 2% —3=11. Suppose # =>8 and the theorem holds for alil
n <.

If #7T%..<#—2+ [#/2], then by Theorem 2, 3 and 4, the
second row of T, is 0, 1, 10, 01, 10, 010, 110, 0001000 or their inverse.
So T, is T(0), T(1), T(10), T(01), T(10), T(01), T(---1100---),
7 (001), T(110), T (010), T (101), T(01%), T(1*0*), or their inverse.
in any case the theorem holds. '

If 7 =1, then by Lemma 2 the theorem holds.

If #, =2, then by Lemma 4 the theorem holds. ,

If otherwise #1 >3 and §77-1= 22— 6, then $Tn =7 + #T,._l

= 2n—3. ‘ '

4. Binary triangles with a 1(arge number of ones. From the
above section, T (aia; --- a,) denotes a binary triangle T, having
periodical first row @1 ¢z --a». We know that ;

T(a; i1 An Q1B Gi_1)

= T (@ Giss i e @), =12, n
For convenience we write T(--- aias- az Y or T( - a:@1°""
Gy Q1 dz -+ @i~ ) to denote any one of the ”n trlangles :
" LEMMA 5. If Thls=T(:- --), then there are four posszbz-
lities for Ty ' . '
@ T --),’in . this case 71+ 72 + 73 = 20— 2;
(2 T(--' --2), im this case #T.<[(#*+2)/3] and

it +r3s (b — 2)/3;
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(3) " T(---001110 - --), iz this case 7, + 7, + 73 < (31 — 1Y/2;
(4). -T(-~- 000101111010 - - -), in this case ri+r+7 < (dn+4)/3.

Proof. Since the fourth row of 7% is --- 110 ---, so the third

~TOW s either --- 110 --- or - - - (ﬁ-—--,the-second row is --- 110 ---,
++-010--- or ---001110---, and the first row is ---110---,
--010---, --- 001110 --- or --- 000101111010 - :

The equality in (1) is clear. For (2),
BT =7 + §Ta < [+ 2)/3] +[(# — 2 + 1)/3] = [(#* + 2)/3].

And 71 + 7 + 7 < (52 + ¢)/3 for some constant ¢ since any three
consecutive right columns of the first three rows have exactly 5
ones. ¢ is determined by testing all possiblek cases for n =3, 4,"5
and the first row begins with 010 , 100---, 001---. Similarly for
the cases of (3) and (4) '

LEMMA 6. For any binary triangle T,, we have 71t7+7<2n—2.
IFn+n+rn=2m—2 then Ty=T( - ), or T = T(0),
or else theve are thyee consecutive zeros in the Sfirst vow of T.'s. If
i+ retrn=2n—3, then there are no three consecutive zeros in the"
Sirst row ~of T,

Proof. To prove 71+ +7<22—2 we want to prove that
any trapezoid part of 7T, as in Figure 4 has at most 22 — 2 ones by
induction on . - For the case of = =2, 3, it is obwous that
71+ 7+ 27 < 2% — 2. Suppose 2#>4 and the lemma holds for all
n' <n In Figure 4, if a=b=c=1, then d—~e—0 By induction
hypothesis, there are at mort 2(n —2) — 2 ones in the trapezoid
marked *’s. So

‘ r1+rg+r3<2(n—-2)——2+4——2n—2
If @, b, ¢ are not all ones, there are at most 2(—2) —2 ones in

the trapezoid marked d, ¢, / and *’s. So again 7, + 7 + #s <Zn — 2.
Thus 71 + 73 + 73 < 2 — 2 for any binary triangle.

adEx - %% R B AR
bexx--%%x * kecok kY Or Y K ke-ex %
Cf % %% % koK ok % 2 Z % Eeeok ok

FIGURE 4 . S - .- FIGURE 5
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By a similar argument, any parallelogram part of T, as in
Figure 5 has at most 2z ones under the condition that #, ¥, z are
not all ones. :

Suppose .71 + 72 + 75— 921 —2. If there is run of 7 cb;isecutive
ones in the first row of T, as in Figure 6. There are at most 2s

\/ \/ﬂ—f“—s\

* --*0 0*-- *
* 00 *

- FIGURE 6

ones in the left parallelogram part and at most 2(s# — 7 — s) ones
in the right parallelogram part. Therefore 2 — 2=+ 7 + 7
<% +2#n—7—s)+7 which implies that <2 Also it is
impossible the --- 010 - -- appears in the ﬁrst row, as can be shown
‘ 010
by replacing the trapezoid part of Flgure 6 by 11 and get
i : , 0 B
2 —2=9+7 +7<2s+2(n—3—s) +3 which is a contradiction.
So we have

(1) every run of ones in the first row of T, has length at

most 2; and exactly 2 except the beginning .run and the
ending run. D ‘
S1m11arly we can prove

(2) every run of zeros in the first row of T, has ]ength at
most 2; exactly 1 for the first run and endmg run. ‘

3) If » + 9y + 7 =21 — 3, then every run of zeros has
length at most 2.

Now if there are not two consecutive zeros in the first row of
Ty, then T =T(-- -2} by (1) and (2). Otherwise 1001 appears
as in Figure 7. Suppose T;"a#T(O) There is a one in the
fourth row of 7T, assume it is in the right parallelogram part
without loss generality. By (1), then ¢=1 and 'so 6=0, ¢=1,
x=0. By (1) again, then d =0 and so e= f =1, ¥y = 0. So there
are three consecutive zeros in the fourth row of T, i.e. the first
row of T'.la.

The last statement follows from (2) and (3)
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FIGURE 7

THEOREM 6. ﬁT,, <[+ n+ 1)/3] for any binary triangle T,
The equalzty nolds if and only if T,, is T(110) T (101) or 7T (011)
with n==1 (mod 3).

Proof. The theorem is obvious for # =1, 2, 3. Suppose #2 > 4
and the theorem holds for all #’ <#. By the induction hypothesis
we have- o , .
T <[((n—3)+#—3+1)/3]

(4.1) =[(#+n+1)/31— @n—2).

_'By Lemma 6 we have 71 + 72 + 7 < 21 — 2 So
BTa=r+ 7+ 7+ T2 < [(F + 2 + 1)/3]

The equality holds only when 71+ 9 + 9 = 2% — 2 and the equality
holds in (4.1). By Lemma 6, T, = T (-- <) or Ts=T(0)
which is impossible, or else there are three consecutive zeros in the
first row of T..s WhICh contradicts to the induction hypothesis.
Thus T,. = T(-- ---). But from (2.12) and (2. 13) we have

$7 (011) = 4T (101) = [(#* + 7 + 1)/3]
and
BT (011) = [(#® + 2)/3] = [(#* + = + 1)/3]
whenever #2551 (mod 3).

‘So the proof of this theorem is complete.

The first statement of Theorem 6 was also proved in [5] and
[6]. In section 2, we have #$7(011) =-[(#* + %)/3], which is equal
to [(#* + n + 1)/3] or less than it by 1 when # =1 (mod 3). Here
we have the following theorem.

THEOREM 7. If 4T, =[(m +n+1)/31 —1, then T, is one of
the following: (1) n=1, T(0), (2) =3, T(111), T (010), T (100),
T(001), (3) ==4, T(0110),. 7 (1001), T (11106), T (0111), (4) = =15,
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T(01110), 7(01011), T (11101), T'(01001) and the binary triangles
inverse to them, (5) =1 (mod 3), T (011) = T*(011). ‘

Proof. The cases of # <5 hold by examining all possible
binary triangles. For the case of z =6, since [(#* +# +1)/3] -1
= 13, by Theorem 1, it is impossible to have a triangle such that
#T, = 13. Suppose z > 7 and the theorem holds for all #’ <.

. By Lemma 6 and Theorem 6, either 71 + 7o + 7 =20 — 3 and
BT s =[((#—3)* + (2 —3) +1)/3] or else 1’1+?’2+?’3—2% - 2 '
and #7.:=[((n—3)*+ (n —3)+1)/31—1. In the first case,

the fourth row of T, is --- ~110---, so by Lemma 5 we have~
r1+r2 +:5'37'é2n—3 except for the ‘case of #=7" and

=7T(- -+), in this case ﬁT,, < 17 <18=1[(#* + n + 1)/3] —=1.
In the second case, Tu="T¢(-- -) or This= T(O) or else

there are three consecutive zeros in the fourth row of 7, But
$T(---110--) =[(#* +n)/3]1=[(#* + +1)/3] —1 only when
n =1 (mod 3) and T, = T (011) = T*(011); and if Tis=T (@) or
the first row of 7', s has three consecutive zeros, then it contradicts
‘the induction hypothes1s ‘Thus - the proof of this theorem is
combplete. ' ~ o

‘ THEOREM 8. If n> 6 and Tn+7T(-- 110 ---), i.e 4Ta
<[ +n+1)/31—1 then $T,<[(m*+ 2)/3] CIf HT.
= [(#? + 2)/3], then there are no three consecutive zeros in the first
yow of Tx except T (110001), 7" (110001110) and their inverse triangles.

Proof. For the case of =6, 7, 8, since [(#* +n+1)/3]
= [(#* + 2)/3] + 2, S0’ BT <[Cn* +n+1)/3] —1 implies
$T, <[22 +2)/3]. If $T,=[(#*+ 2)/3], then by examining all
triangles we know that there are no three consecutive zercs in the

first row of T, except 7 (110001) and 7'(100011). Suppose #>9
‘and the theorem holds for all #’ with 6 < w < n s :

4T > [((# =3+ (#—3) +1)/3] — 1, then the first row
of Ty 'is +-- 110 --+ by Theorem 6 and 7. By Theorem 6

BT <[((#—3) + (n—38) +1)/31=[( +n + 1)/3] —2n+ 2
, = [(#* +2)/3] + [n/3] — 2.+ 2,
__andthen. S ; SR .
(34) #T—[(#+2)/8]1<n+rn+rtn/3]l—2n+2.
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By Lemma'5, there are only three possibilities for T, since
Tw=T(---110---). TFor the case of Ty=7T(---010---),
$T. < [(#* + 2)/3] and there are no three consecutive zeros in the
first row of T, For the case of Ty, = T(---001110---), 71 + 75 + 75
< (@Bn-—1)/2. So by (34) and the fact that GBn-—1)/2
+[#/3]1 —2n+2<0 for any #>=9, then $7, < [(2® +2)/3]. If
$T = [(2% + 2)/3], then (32 —1)/2 + [#/3] — 2% + 2 = 0 and hence
#=9 and 71+ 7+ =13 It is easy to check that 7T, or
Tr = T(110001110). For the case of T, = T(---000101111010---),
rnt+r+r<{An+4)/3. So by (34) and the fact that
(n+4)/3+ [#/3]1 —22 +2<1/3 for any n>9, then #T.,
<[ +2)/3]. I $T.=[(#* + 2)/3], then 0< (40 + 4)/3 + [0/3]
— 22 +2<1/3 and hence #=9 and 7 + 7 + 3= 13. It is easy to
check that T, or T'¥ = 7'(010111101) and so there are no three
consecutive zeros in the first row of T. ' ,

I #4T.0:<[((#—3)%+ (#n—3)+1]—1, then by induction
hypothesis $7T,.s < [((22—3)2 4+ 2)/3] =[(#* + 2)/3] — 20 + 3. If
rnt+rt+r<22—3, then §T.=n+rn+rn+il.<[(#*+2)/3]
If 71+ 7+ %= 2n — 2, then by Lemma 6 either 7.7s= T(0) and
hence #7,=2n—2<[(#®+2)/3], or else there are three
consecutive zeros in the first row of 7'.”; in this case by induction
hypothesis $#T << [((22 — 3)% + 2)/3] and so still have
BT <[ +2)/3]. M §T.=[(92 + 2)/3], then 71 + 7, + 7. = 2% — 3.
By Lemma 6, there are no three consecutive zeros in the first row
of Tw ‘

The proof of this theorem is complete,

5. Conclusion. From the above results we know that
0L T <[(#* + n + 1)/3] for any binary tfiangle T, but not any
number between 0 and [(#® + 2 +1)/3] is:a value of some #7T..
The smallest possibility of #7, is 0, next ‘ jumps to #, then
n— 1+ [#/2], then # —1 + [(#2 + 1)/2], and then 2% — 4 or 2z — 3.
There is no integer other than the above numbers ~which can be
$7, such that #7,<2%x—3. On the other hand, the greatest
possibility of #7% is [(#* + # +.1)/3], then [(#* + #)/3], and then
drops to [(#? + 2)/3]. There is no integer other than these three
numbers which can be  §7T, such that #7, > [(#® + 2)/3]. The
possible values of #7% between 27 — 3 and [(#* + 2)/3] are more



224 GERARD J. CHANG ’ [June

complicated, and left as open problems. It is interesting that any
integer between #z and [(#2 +# + 1)/3] is a value of some #7%
when 1 <# <5. Any integer between 22— 3 and [(#% + 2)/3] is
a value of some #7, when 7 <2 <13. By using a ‘computer, we
get a table for all possible values of #7, up to #=20. It seems
that any integer of the form 2” — 2 is a critical point of a certain
kind of distribution of #7% Now we have the following table. (In
[2, 85], a table for # < 12 is given, where the possible numbers of
ones so as the numbers of triangles achieving these numbers of
ones are Jisted.) . R

7 ail possiblg #T,
1 0 1
2 0 2
3 03 4
4 104567
5 056789 10
6. 06 8 10 12 14
7 07 9 10---18 19
8 08 11 13 14---21 22 24
9. | 09 12 13 15 16---26 27 30
10 0 10 14 16 17---33 34 36 37
1 0 11 15 16 18 19---40 41 44
12 0 12 17 21 22---47 48 52
13 | 013 18 19 23 24--56 57 60 61
14 -0 ‘14 20 24 26---even numbers---64 66 70
15 | 0 15 21 22 27 28 30 33 34.--74 75 80
% | o 16 2z o0 30 a1 32 3 &7 38 --85 i 90 o1
17 0 17 24 25 31 32 33 34 35 38 39--.94 95 97 102
18 0 18 26 32 34 35 37 40 41.--103 104 106 108 114
19 019 27 28 35 36 39 43 44.--117 118 120 121 126 127
20 | o 20 20 37 3 40 41 45 47 48132 134 140
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