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0. Let ® be a connected Lie group with Lie algebra G. In
general, the exponential map exp:G—® is not onto. Following
Goto [3], for g € &, we define the index (of the exponential map)
ind (g) of g to be the smallest positive integer g such that
g? € exp G if it exists, Otherwise, ind(¢) = co. The indx ind(®)
of & is defined to be the least common multiple of all ind (g)
(g € G).

In Lai [7], the author proved that ind(®) is finite when ® is a
connected semisimple Lie group with finite center. On the other
hand, consider the universal covering group of SL(2, R), which has
an infinite cyclic center, we found an element with infinite index.

The results in [3], [7], [8] suggest that in a connected simple
Lie group with infinite center, we may find an element with
infinite index. It turns out that this conjecture is not true. In
this paper, using the result in Djokovi¢ [2], we will show that
ind(g) < o for any g € ®, when the Lie algebra G of ® is of type
ANII(p, q) =su(p, q) (p>g=1) or of type DII(n) = s0*(2#)
(2 odd, > 3), even when ® contains central elements of inﬁnite
order. (We follow Cartan’s notation as used in Helgason [6].)
Indeed, we will show that, for a connected simple Lie group of
classical type, ind(g) << oo for any g € @, if and only if either i)
® has finite center, or ii) the Lie algebra G of & is of type
ATII(p, g) (p>q) or DIIl(n) (2 odd).

1. A real simple Lie algebra G of classical type is one of the
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complex Lie algebras sl(#n, C), so(zn, C), sp(n, C) or one of their
real forms. When G is one of the complex simple Lie algebras, &
a connected Lie group with G as its Lie algebra, we have determined
{ind(g)|g € ®} completely in [8]. In case & is compact, it is
well-known that exp : G— @& is always onto. So we only have to
consider the noncompact real forms of sl(z, C), sp(#n, C), so(n, C).
From now on, by a simple Lie algebra &G, we always mean one
of the noncompact real simple Lie algebras of classical type,
unless otherwise stated; ® (§, ®,---) a connected Lie group whose
Lie algebra we denote by G(H, K,---).
Given a simple Lie algebra G, if the maximal compact
subalgebra of G is semisimple, then & always has finite center, so
the result in [7] implies that ind(®) < co in this case. - This
' happens when G-is one of the following: ‘

Alln) =sl(n, BR) (> 3),
All(n) = su*(2n),
BDI(p, g) =s0(p, @) {p=4q, D52, g+2),

or

CII(p, q) - sp(?, 9).

Notation. TFor an element z in a Lie algebra G, we define
its centralizer in G, ® to be ze(x) = {ye Giloe, vy] =0} and
Zs(z) = {g € ®|Adg - 2 = 2} respectively. Clearly, zs(2) is the
Lie algebra of Zz(x). We shall denote the connected component of
Zs(z) containing the identity element by Z%(x). The center of &
will be denoted by Z(®). '

2. When G is the normal real form of the corresponding
complex simple Lie algebra &°. There exists a subalgebra H of G
whose complexification H° is a Cartan subalgebra of G°. Denote by
A the root system of G° with respect to H° we can choose the
root vector e, from G for any @€ A. Consider 2= Jseat €,
which is a nilpotent element of &, regular in G°  According to
Steinberg [9] (pp. 110-112), zs°(x) (and hence zg(x)) consists
only of nilpotent elements.
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Let c€ Z(®), g=cexpr s ® (x as above). If ¢g*=expy
for some y e G, then y=s+ nx with s G semisimple and
[s, 21 =0 (because exp is one to one on the set of nilpotent
elements). This can happen only when s=0, i.e. g € exp G if
and only if ¢* = 1.

THEOREM. When & is a connected real simple Lie group whose
“Lie algebra G is the normal real form of G°, we can find x <€ G,
such that for any central element ¢ of order r, ind (cexpzx) = 7.
In particular, if Z(®) is infinite, we can choose a central element ¢
of infinite order, and ind (c exp x) = o,

This happens when G is either AI(2) =sl(2, BR) or Cl(#)
= sp(n, R).

3. There remains to consider the case when G is one of the
following:

AII(p, q) =su(p, @) (p=4q),
BDI(p, 2) = so(p, 2) (p F#2),
DIII(#n) = so*(2n) (= 3).

In the next three sections, we shall prove a result similar to the
above theorem when G is of type AIII(p, p), BDI(p, 2), or DIII(%)
(n even). Then in §7, we shall show that ind(g) (g ®) is
always finite when G is of type DII(%) (2 odd, # = 3), and do the
same thing when G is of type AIII(p, q) (p>qg=1) in §8.

Before we go on, note the following: Given any element x in
a semisimple Lie algebra &, # has a unique decomposition
2= 2. + 2, + 2, satisfying [x., 2] = [2:, 2] = [2,, 2.1 =0 where
the linear transformations ad x. is nilpotent, ad 2, R-diagonalizable
on G, and ad 2. semisimple on G° with purely imaginary eigenvalues.
For simplicity, we call x., %,, £» the compact, R-diagonalizable, and
nilpotent parts of x respectively. It is not difficult to see that for
any connected Lie group & with G as its Lie algebra, exp is one
to one on the set of nilpotent elements as well -as on the set of
R-diagonalizable elements. ‘
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In the following, we denote by E,; the square matrix whose
(7j) entry is 0is ;¢

4 We conS1der G = AIlI(p, p) in this section, we shall find
an R-d1agonahzab1e element which play the same role as the regular
nilpotent element £ we chose in §2.

G =su(p, p) = {x = (tl 22)121, 23 € u(p),
” 3

22

& € €1, ©), tr(z +2) =0}

When p =1, su(l, 1) ==sl(2, R), which has been discussed in §2.

Assume that p>2. The Cartan decomposition G=K®dP
may be chosen in such a way that = {z € G|z = 0}
=s(u(p)Pu(p)) and P={x € G|z, = 23 = 0} A maximal abelian
subalgebra of P is given by ‘

A= ;R<Ejﬁ+j + Eyii).

Let ¢ = 221 2;(Ej 4+; + Esij ;) € A be chosen in such a way
that 23 are all distinct p031t1ve reals First we porve that a is
regular in A. '

If

Z Z ZU i p+J + z]z Eb+z] EP (Zij S C)

i,5=

commutes w1th a, since

dZ Z Aj (Zz] Ejz + Z]; Ep+] p+z)

and .

Za= Z ii(zij Bij + Zji Epsi prj)s
‘ o :

so we ‘have  1; Zji = Aj Zij and  1; Z;; = A; Zji. When i%j,*the
assumption 1} =~ 2} implies that z;; = Z;; =0. When ¢ = ], i = 2i1,
ie. z;; € R.. Therefore Z € A4, i.e. a is regular in A. '

Next, we like to compute zg(e), which is clearly equal to

zx(a) @ A, because a is regular in A and [K, PI]c P, [P, PlC K
To find zx(a), consider
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.
X = Z (%:; E;; + Yij Epei p+j) € K,

i
computation shows that
aX= ZJ 2009 E; ;¥ 215 Epes j) :
and |
Xa= Z, 352 B yos + Vi Epet ) -
So that [ X, ¢] = 0 if a’nd only if for ¢, j=1,---, p, -
2Yi;=2;2:; and A; ;5= 2;¥;; hold.

When ¢ j, we have x;; = 9:;; = 0 because 2254 2%. When i =4, we
get xi;; = Y for i =1,---, p. Therefore

b 5 )
X = Z Yi(E;j; + Epsjprj), with Y; €EIR and Z y; = 0.
i=1 j=1

Hence |
e ={o= (1 ) v=diagtiys -, i) < su()} < su(p) D oulp)
and |

zg(a) = zx(a) D A

(direct sum of abelian ideals). Notice that su(p) @sulp) is
(compact) semisimple when »>1, so zx(e) is contained in a
compact semisimple subalgebra of G.

REMARK. For 's-u( b, q9) (p>gq), we may choose a regular
element ¢ in similar way, computation shows that zx(a) consists
of

q
X =73 Yi(E;;+Esjsuj) +Z with y;<iR, Zeulp—gq)
j=1
and
q ) :
2>y, +trZ=0,
i=1

it is no longer ture that zx(¢) is contained in a semisimple
subalgebra of G.

Notice that @ is a real symmetric matrix, so ¢ and hence ada
(considered as a linear operator on gl(2p, C)) is semisimple with
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all eignvalues real. Since G is a subalgebra of gl(2p, C)and a € G
(so that G is invariant under ad @), we conclude that ad « is
R-diagonalizable as a linear operator on G.

THEOREM, Let & be a commected Lie group with Lie algebra
G =su(p, p) (p=2). Assume that Z(®) is infinite, ¢ be a central
element of infinite ovder, then ind (¢ - exp a) = © (@ as above).

Proof. Let g=c expa. If ¢"=exp x for some x € G (n a
positive integer), then

¢" exp na = exp (Lc + L, + Xn) = XD T * EXP Xy * €XD Tn ,

where 2., %,, £» have the usual meanings. Then x.=0, z, = na,
and 2. + 2, € zg(a) = zx(a) @ A. Since 2. is a compact
element, we have &< zx(e) < su(p) D su(p). Therefore,
exp Rz. C exp (zx(@)) C exp (su(p) @ su(p), the later is a compact
subgroup of & because su(p) @ su(p) is compact semisimple, But
¢* exp N2 = exD & » exp na implies that ¢* = expx.. Therefore the
discrete central subgroup {c™|m € Z} (C exp (su(p) Dsu(p)))
must have compact closure, which is absurd because ¢ is of infinite
order and z# # 0.

We conclude that (cexpa)’ ¢ expG for any positive integer
#, i.e. ind(cexpa) = co.

5. When G is of type BDI(®, ¢) =so(p, ¢)(p =q=1). The
maximal compact subalgebra so(p) @ so(g) is not semisimple only
when p=2,¢g=1or p=qg=2 But BDI(2, 1) = Al(2), BDI(3, 2)
— CI(2), BDI(4,2) = AIII(2, 2), which we have discussed in §2, 4,
and BDI(2, 2) is not simple (== AI(2) x AI(2), although our
argument works for this case too). So we may and shall assume
that p =5, ¢ = 2.

G =so(p, 2)= {X = (fB z)‘w € so(p),
y e 50(2), B p by 2 real matrix}

has a Cartan decomposition G = K @ P, where K ={X e G |B = 0}
and P ={X e G|z =y =0}. A maximal abelian subalgebra A of P
is given by , - : ‘
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. 2 .
A= Z Ri(Ej p¥i T Ep+j j) .
j=1 . .

Let ¢ = 251 2;(Ej 445+ Eysj ;) € A, where 21542} are positive
reals. .Computation shows that ¢ is regular in A. ‘Indeed, for
¥4

2
b= Z Z bii(E; prj + Eprji) € P,

=1 J=1

we have

‘ b 2 2 : ’
ab = Z Z A3 bi; Eji + Z i bz‘jEp+i b+
i=1 j=2 i,7=1
and ‘
‘ ’ 4 2 o P . ) -
ba = Z szbiJEi]_!_ Z Az bijEﬁ+j'P'+".
i=1 j=1 i.d=1
So ab = ba happens exactly when ‘

2;0:;=0 (£=3) and 21812 = 23 ba1, 1y bay = 25 g,

i.e. b:;j=0 ({=3), biz= by = 0 (because 1154 12), and & € A.
To find z¢(a), which is clearly equal to zx(az) @ A, consider

? : )
X = Z xijEij + C(EIHI p+2 Ep+2 p+1) e K
(i.e. (z:;) €'s0(p)).

Then
14 ’ ’ P
aX = A1 Z X1j Elz+1 7 + 22 Z L2j Eﬁ.,.z i
i=1 o i=1
+ lic Ey pv2— A2 CE3 54,
and

)
Xa = ZLZ 251 By per + 22
i=1

»
iz E; p4s
i=1

— MCEpa1+ 22€Epuss.
So [e, X] =0 when ﬁand only when
BBy =hdy = hTn=len=0 @ j>3),
ATy = Xz =0," "
LA Z1e = s C, Ag Tor = — M€, -

A1 &1 = — A2¢, Ao X1z = A€
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This is equivalent to @11 = Xse = T1j = &ej = Tn1 = T2 = 0 (4, i=3),
and the assumption i} 5= 23 implies that 2= 22 =¢=0, i e

0 0 O
X =10 y 0] so(p)Dso(2), so yeso(p—2).
0 0 O

We conclude that zg(e) = K1 @ A (direct sum of ideals), where
K, = zx(a) is a subalgebra of K, isomorphic with so(p — 2), and
K, is (compact) semisimple when »=5 (zg(a) = A when
p=2 3). '

THEOREM. Assume that © is a commected Lie group with Lie
algebra G = so(p, 2), with infinite center Z (®). Let ¢ be a central
element of infinite order, a as above. Then ind(cexpa) = co.

Proof. First note that ad @ is R-diagonalizable on G, because
@ is a real symmetric matrix and (e¢€)G is a subalgebra of
gl(p + 2, C).

If (cexpa)*=expx for some x € G, (% a positive integer),
then 2 can be decomposed into # = x. + #na, [x., #na] = 0. Therefore
2. is a compact element in zg(ma) = zs(a) = KiD A. But K; is
the (unique) maximal compact subalgebra of z¢(a), so that
2. € Ki==so(p —2). Therefore exp R2. C exp Ki, which is compact
because so(p — 2) is compact semisimple (p =5). On the other
hand, the equation ¢”exp#nz=expx.+expna implies that ¢*=expa..
Thus the discrete . central subgroup {c™|m € Z} C exp Ki must
have compact closure, which is absurd in case z # 0.

We have prove that (cexpa)” & exp G for any positive integer
n, i.e. ind(cexpa) = co.

6. Consider the Lie algebra G of type DIII(n) = so*(2#n)
(2> 38). We prove in this section a result similar to that in §4, 5
when # is even, = 2m (m = 2).

G=sw@m={(

21 22

— 22 Z1

H%%eymcx

2, skew, 2z Hermitian}

" has a Cartan decomposition G = K @ P, where we can choose K
to be , : - BRI P
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x Yy ‘
K= {(__ o, .,L)! x € so(#n), ¥ SYmmetric}gu(n) via
— o +
and
TN
P = {’(,y _m)!&, ye So(n)}

(Helgason [6] p. 453). A maximal abelian subalgebra of P is given
by (recall that % = 2m).

A= {Z 12;((Ezj-12; — Ezjoj-1) — (Env2j-1 nezj
- En»l—zj n+2j—1)>[;uj S R} .

Let @ = A be chosen such that 2} are all distinct, direct computation
shows that a is regular in 4, hence zg(a) = zx(a) @ A.

To find zx(a). Let z— ( Z Y
- xr

if br=2b and by = — yb, where b= T7, 2j(Eaj-12j — Esj2j-1).
Since 2 €so(z) and b is regular in so(s:), we see immediately
that & = XPi12;(Esje1 25— Ezj2;-1). On the other hand, for symmetric
y, computation shows that by = — yb happens if and only if
Yii= — Y22, Y3 = — Ysss" " ", Yn-1n-1= — Y, and ¥;; =0 if 7>7 + 1.
In particular, trx =try = 0. If we identify z with 2 + 7y € u(n),
this implies that « + 7y € zx(e&) can happen only when tr(z + iy)
=0, i.e. lies in. su(s). Therefore z¢(a) =zx(a) DA=K @ A4,
where K, is a subalgebra of su(z).

) € K. Then azv= za if and only

THEOREM. Let & be a connected Lie group whose Lie algebra
G is of type DUI(n), n even. If Z (@5) is infinite, and ¢ a central
element of infinite order, then for the R-diagonabizable element a we
have chosen above, ind (cexpa) = oo. '

The proof is the same as what we did for AIII(p, p) in §4, so
we omit the details, note that su(s#) (#>4) is semisimple, and
hence exp(su(#)) is a compact subgroup of &.
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REMARK. When # =2m + 1. For x + iy € zx(a), computation
shows that %.. can be arbitrary, so that tr(y) 0, and zx(a) does
not lie in a semisimple subalgebra of K (please see the following
section). '

7. Now consider the Lie algebra G of type DIII(%) = so*(2#n),
2% odd (= 3). We shall prove that ind(g) (¢ € ®) is always finite.
For this purpose, we may and shall assume ‘that © is simply
connected. In this case, the center Z(®) is free cyclic with one
generator (say c¢), see Goto-Kobayashi [5]. ‘

Denote by exp: G- ® and Exp: G — SO*(2%) the exponential
maps on & and the corresponding classical group SO*(2%)
respectively, z : @ — SO*(2%#) the covering map. Note that SO*(2#n)
has nontrival center {& 1}, so that =z—'(— 1) = {2+l p € Z}.

According to Djokovi¢ [2] (7.1), Exp is surjective. To prove
that ind(g) is finite for any ¢ € &, it suffices to consider. elements
of the form ¢ = ¢” expx, where z € Zand z € G.

Given z € G, decompose it as usual x =2 + & + 2, Write
2’ = 2, + 2. Consider the centralizer zg(z’) of 2’ in G, and the
centralizer of 2’ in SO*(2z): {¢g € SO*(2%)|Adg-2’ = 2’}, whose
connected component containing the identity we denoted by §.

Since Exp: G — S0*(2%) is onto, we can find ¥y € G such that
Expy = — Exp .2,' Decompoese y as usual, we see that ¥y =9, + &’
with ¥ € 2¢(2’) and Expy. = — 1. Therefore —1 € §.

For the given element x =z, + 2 in G (2. € z¢(x') the
compact part of ), we may choose a maximal compact subgroup
f; of $ containing Exp x., then — 1€ & because —1< §. and
—1 is central in §. Let K; be the (compact) subalgebra of ze(2')
such that Exp Ki= 1, K a maximal compact subalgebra of G
containing Ki. Denote by z, the central element in K satisfying
exp 2z =c. Note that (Expix)~(—1) = {pzo + z|p odd integer,
ze [K, K] and exp z = 1} because Z(®) is infinite cyclic generated
by ¢.

Now, both — 1 and Exp z. lie in 8, we can find y., 21 € Ky
= zx(2')= z¢(2’) N K such that Exp y. = — 1 and Exp x:= — Exp ..
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Hence 9. = 72, + 2 with expz =1, and 21 = qz0 + v, Where Yy may
be chosen such that exp ¥ = exp x..

Since 7. and 2 lie in the same compact subalgebra K, we may
find g=Expaec & (a¢< K;) such that [Adg - v, 2:] = 0, denote
Adg - y. by ¥’. Since both 2’ and 2z, lie in the center of K;, we
have Adg - 2’ = 2’ and Adg - 20 = 2. Therefore ' '

v, 2]1=[Adg - y., Adg+2’']= Adg+[y., 2’1=Adg-0=0,

ie.
Y =Adg-y. =72+ 2 €z¢(2’) N K = K,

where expz’ =exp Adg+z = (expa)~! expz(expa) =1. We have
gzo + Y1, 720 + 2’ € K, so that ry, — g2’ € K. '
In the above discussion, replace z’ by — 2’ if mnecessary

(z¢(x’) = 26(— x')), we may assume that # is a positive integer.
Now we have

(c*exp x)"
= ¢" - eXp 7. * €Xp X’
= ¢*" « eXP 71 * exp 7z’ (because exp 2. = exp ¥1)
= ¢* exp(7ry1 — q2’) exp ra’
(0= [y, ¥']1=[gz0 + 9, 720 + 2'] = [, 2’],
and expz' =1)
=exp #(#7zo + 2’) - exp (ry1 — q2z’ + 7r2’)
(because 7y, — g2z’ € K; C z¢(a'))
= exp (n(rzo + 2') + 2y, — g2’ + 72’)
(because 7zy + 2z’ € Ki
and 0=[7z + 2/, ry1 — gz’ = 2[2/, viD).

Hence ind(¢*exp x) <7 for any n € Z.
This proves the following:

THEOREM. Let & be a connected Lie group with Lie algebra
G = s0*(2n), # 0dd (= 3). Then ind (g) < © for any g = ®.

REMARKS 1. In the above discussion, z 0 in general. Because
if G is a simple Lie algebra whose maximal compact subalgebra K
has nontrivial center Rz, then we can show that z¢(2,) = K.
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2. We have shown that ind(¢) <o for any g€ &, but we
still cannot determine whether ind(®) = L c.m. {ind(g)ig € &} is
also finite, i.e. whether {ind(g)|g € ®} is bounded form above.
For this problem, we have to study whether the set of positive
integers # for which ¢" € Zy(x) (2 € &) is bounded. (Of course,
we only have to consider those x € G with compact part x.=0.)
The auther has no idea about it.

3. In case # is even, Z(®)=~2Z x Z, for simply connected &
(Goto-Kobayashi [5]). Given 2’ as above, it may happen that
Z%(x') N Z(®) contains only torsion elements (which also maps to
—1 by z). Indeed, this must happen since we have found an
R-diagonalizable element ¢ € G in §6 satisfying ind(c¢ exp @) = co.

8. Finally, we consider the case when G is of type
ANII(p, @) =su(p, q) (p>q=1). Following a discussion similar
to the one we did in the last section, we shall prove that ind(g)
is also finite for any ¢ € &. For our purpose, we only have to
consider the case when @& is simply connected. In this case,
Z(®)=Z x Z; with d =G.C.D. (p, q), we fix a generator « for
the free part and g for the torsion part of Z(®) respectively. To
prove that ind(g) < co, by taking a (finite) power if necessary, we
only have to consider the case g = o expxr (me Z, xe€G).

Again denote by exp, Exp the exponential maps on & and the
corresponding classical group SU(p, ¢) respéctively, 7 &— SU(p, ¢)
the covering map. The center of SU(p, q) is isomorphic to Z,.,,
generated by v = €?%i/2+¢ J note that z(pB) = v?'* (p = p'd, g=q'd)
generates Z(SU(p)) n Z(SU(g)).

According to Djokovié [2] (8.7), ind: SU(p, ¢) —» Z consists of
positive integers G.C.D. (Py,--+, Ps), Where py=-- -> P, are
positive integers satisfying ‘

C Dt ps=1f>{rq and [—%L]++[ gs]stz.

In case p>gq,it is clear that ind(g)<p+¢g for any
g € SU(p, g). In particular, ind (v Expa) < p +.¢ for any 2 € G.
Therefore, for any 2 € G, Zl, o(x) contains some nontrivial
central element. ' L
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Given any x < G, decompose it in the wusual fashion:
=+ X + 2wy write 2’ =2, + 2. If we can prove that
o € Zy(x’) for some positive integer #, then an argument
similar to the one in the preceeding section will show that
ind(e”exp ) < 7. So our problem reduces to the following: Given
2’ = x, + x» as above, can we find nonzero integer 7 such that
ar e Zy(x')?

As we noted earlier, Zlr(;, o»(2’) contains some nontrivial central
element, i.e. we can find y. € zp(2’) such that expy. is a
nontriviai central element in ®. If we can show that exp Y. is not
torsion, then we are done (by taking a pbwer if necessary). Note
that the central element exp ¥. is torsion only when . lies in
[K, K] (==su(p) Dsulg)), where K (=~ s(u(p) Dulqg))) is any
maximal compact subalgebra of G containing y.. '

Assume that 7 = ind(» Exp #’), the only case we have to worry
is when v” € {z(B)), so that md is a multiple of p + q.

It v»=Expy (y€z¢(x’)) is given in such a way that
Y=y +vy. with kyl € Ki=su(p), ¥: € Kx==su(g). Check the
argument in Djokovié [2] (p. 80), we see that such thing can
happen only when p=pi+---+ p,,qg=¢,+---+¢q;, m=G.C.D.
(P1,---, br, q1,7+-, q;) satisfying mlp:, mlq;. In  particular,
- m|d = G.C.D.(p, q). Write p r—imd’p', g=md’q’, where d = md’
and 1= G.C.D.(p’, ¢’). The fact that (p + q)imd implies that
(P’ +q')jm, and our assumption p>g implies that p’ — ¢’ > 1.
Consider the condition

[-2:] oo [-2=]+ [%] et [QT] <q.

For any positive integer %k, we have [2/2] > (2 —1)/2. So the above
inequality implies that

md’ q'

'QZ%(?I—].'!‘"'"!‘ pr_1+q1—1.'+""'+QS"'1>
=%<md'<p'+q'> — (r +5)),

hence .
r+szmd'(p—q)=(p' +q)d =(p+aq)/m.
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But m| p; and m|g; imply that » + s <(p + ¢)/m, and we conclude
that py=---= P, =¢q1 =---= g; = m, it is also easy to see that m
must be odd. (For example, (, ) = (6, 3), (12, 6), (15, 10)---.)

Now, the integers fi,---, £, as chosen in [2] (p. 81) to satisfy
tr (A) =0 can have many choices, the only condition they need
to satisfy is &/ +---+ &= - g(I'). It is clear that we may change
these integers so that ¥ € zg(2') N (Expix)~'(v™) does not lie in
[K, K], i.e. exp ¥ € Zs(2") is not a torsion element.

TueOREM. Let & be a commected Lie group with Lie algebra
G =su(p, Q)(p>q=1) then ind(g) < for any g € G.

We have proved that «” € Zy(x') for some positive integer 7,
the rest of the proof is similar to the one in §7.
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