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1. Introduction. Let E be a real Banach space with a
norm || ||, B,(2) = {xEE lz —2||< 7} for all xeE and
J=1[0T]c R. In this paper we con31der the ex1stence of a
local solution for the 1n1t1a1 value problem

1.1 o= ft @), 20) =z

where f : J x B,(x,) — E is uniformly continuous. It is well-known
(for example, see Deimling [3]) that if f is either Lipschitzian or
dissipative then (1.1) has a solution. Browder [1] shows the
existence of (1.1) for the case that f is o-Lipschitz and Cellina [2]
shows the existence for \the case that ’f is oa-dissipative.' More
recently, Li [5] shows the existence for the case that f is
c-Lip-dissipative. Here we show that if f is «@-w:dissipative then
(1.1) has a solution.

2.~ Notations and definitions. - Let E* denote thie dual space of
E. The duality mapping F of E into the class of subsets of E*
is defined as follows: ~

F(z) = {2* € E* : 2*() = |z|* = ¥ 7} for zcE

and for each (y, x) € FE x E, we denote inf {x*(y) : 2* EF(:L-)}
and sup {z*(y) : z* € F(x)} by <y, £>- and <y, x>+ reSpectwely
It is obvious that for x, %, 2z € E we have

(2.1) Y+ 2z, 2> <<y, x>0 + 2]l .
Let 2% be the family of all bounded subsets of E. We define a
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real valued function « on 2E as follows

o(B) = inf{d > 0 : B can be covered by finitely
4. many of'sets of diameter< d}, =

where diameter of A = "su‘f){"“‘di —al; a, ‘a; € A} is denoted by
diam A, such « is known to be a measure of noncompactness
which is first defined by Kuratowski [4]. Some properties of « will
be used in the sequel, we list them as the: following '

LEMMA 21 (1) a(A) =0 if and only if A s compact
) a(Bla) <27
(i) @(14) = [2]e(A) and a(Ar + As) < (A + a<A2>
‘ (iV) A c A zmplzes oa(Al) <a(dy)

(V) If {@n}, {Bs} ave bounded sequence then

a({as}) — a({b:}) < a({as — ba}) .
Oﬁe may see t3], ahdﬂ[f)i]“fer t‘he“pfoof.‘

DEFINITION 21. A functlon o (0 T]x R+ —R is said to be
of class U 1f for each &> 0, there ex1st o> 0, a sequence 1 ——>0+
and a sequence of contmuous functlons o: : [ts, T] — R W1th

(2.2) p:(#:) = 6t:, DB:(2) > o2, p:(2)), 0 <p0:(®) L e in (@:, T1;

o is said to be of class U, if w is of class U and for each
t [0, T} the function (¢, *) : R.— R is upper semicontinuous.

REMARK. It is clear that if o satisfies either-the Lipschitz
cond1t1on o(t, #) =Lr for some L= 0 or Nagumo qondition
co(t 7) = 7/t then o is of the class U.. "

Let Db [0 T] X Bb(xo) and f: Dy—FE contmuous where T;
is chosen such that |f]| < 8/T = M on D; (we may assume that
M >1).

- DEFINITION 2.2, A mapping f of 'Db into E is said to be
a-o-dissipative if for each ¢>0 there exist a finite covering (2;)
of D; such that
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<f(t’ xl) — f(ta w2)1 Ly — $2>—

< ot o — 22D l®r — 22|l + ellwr — 23]

for (¢, 1) and (2, ) are in same 2;.

3. Existence theorems. In this' section we prove. our main
results in this paper, first we state our first theorem.

THEOREM 31. If f:D,—> E is uniformly continuous, o is of
the class U and gi(t, )= 2 —hf (¢, 2) for k>0, zf we assume
further that for any subset X CBy(x0), >0, telo, T] the followmg
(3.1) a(g(t, X)) = a(X) — ho(t, (X))
holds, then equation (1.1) has at least one solutzon on [0, T ]

In order to show theorem 3.1 we need the following lemmas.
The first lemma is Well known, ‘for example, onn may fined in
Deimling[3].

LEMMA 31. Let f:[0, T] x Bo(awo) > E is conmtinuous and
1f(t )| £b6/T =M on Ds. Then for each >0 there is a
continuous differventiable function z. : [0, T] — By(x0) such that

re(t) = (@, z.(8)) + y.(8), 2.(0) = =0

(3:2). and |y <e om [0, T1.

Such an 2. is called an c-approximation solution of (1.1).
In the following we denote x, as an 1/z#-approximation solution of
J, then it follows from (3.2) that for any &€ N

33)  low® — @@l < (M + L)1t -7 <2Mi2 -7,

Hence we have
(84) - . . {ms} is equicontinuous.
LeEMMA 32. Let w and f satisfy the hypothesis in Theorem 3.1

and let {x.} be defined as above. If X(t) = {z4(2) :n>1} and
Pp(t) = a(X () for each t € [0, T] then

D=p(#) < w(2, p(#))
Jor all t € [0, T].
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Proof. It is due to the uniform continuity of f on Dj, for
each ¢ > 0 there exist an 6>0 such that [[f(Z z) — f(& DI /4
whenever |2 — ] <6 and [z — y] <o.

The fact that {x.} is equicontinuous, we have that for >0
there is a real number %, with 0 <</ <& such that o000

”-'L'n(t) it -'lm(t)" <9
for u—u <h0 ‘and for all .

It follows from (V) of Lemma 21 and (3 1) that for te [O T]
and 0<h < h, we have o

hw(t P(t)) = w(X(t)) - oz(gh(t X))
Coze(X@) - a(X(@E—h)) :
35 . = Lalg(t, X(@))) -—-o;(X(t-—h))]
oL ) >p(t)—p(t——h)
— a({za(t)—2a(t— h) hf(t xn)t)), nZl})

By the choice of 8 and ko, we have -
" Hwn(‘t) — za(t — k) — Bf (L, 2a(D))]]
=L o) = 1 o) — vty as |

(36) < UG ) = 7 mlds + [ )l ds

Rt

n :

<&
4
2 B

whenever #> 4/ e and 0<7 < ho. The 1nequaht1es (3. 5) and (3 6)

imply that hco(t p(t)) > p(d) — ﬂ(t —k)—ch for O0<h< h,
Therefore

o(t, 5(£)) = lim sup. (t),-,—_if(t =k —Dpt)—c

Bt

and o

D) < o, D).

LEMMA 3.3. For each 7> 0 there is t, > 0 such that
p@) <t forall te]0,¢,]1.



19821 SOLUTIONS OF INITIAL VALUED PROBLEM 313

Proof. Since f is uniformly continuous on D, we have that-
for each 7> 0 there is a ¢ >0 such that

17, @) = £t Pl < -

whenever 0 <?<<20 and [z — ¥| < 26. , Lo .
For the equicontinuity of {x,} there is £, >0, and ¢, <4 such
that llx,,(t) — 2D < for |2 — t|<t and for all #.
Take ¢ € [0, £,] we have

l2a(t) — 2W(®)]| < < Nl = oll + lzw — ol <28

for all m and #. Choose ko such that &y = 4/ 7. Then for m, n. > ko

I2s(t) — 2wl = | [ (5, 2x()) + () s

_ f I8, Zu(8))+Yn(s) dsu
SRRk
<.

Then p() = a({x.(t); n>1}) = a({z.(2); n= E}) < 4t for all ¢
in [0, ¢,].

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By the definition of » being of class U,
for given ¢>0, we may choose §>0, a sequence ¢; — 0" and a
sequence of continuous functlons 0i [t,, T] — R satlsfymg (2.2).
By Lemma 3.3, there is # >0 such that p(t) < (8/2)t for all
t e [0, 4]. :

For sufficiently large i, we have t; <t, and p(t ) < pi(t;). We
assert that p(Z) <p:(2) on [¢;, T]. For if not, then there is a
first time T = ¢* > ¢; with p:;(#*) = p(#*) then p(*#) >0 and thus,
by Lemma 3.2 that ‘

D=p(*) < o(#*, p(#*)) = o(#*, p:(2*)) <D~ p,(z‘*)

However, it is impossible since p(#) < p,(t) for all te [t,, 1*).
Hence p(2) < p:(¢) for all t & [#;, T] and then p(2) < e in [#, T]
for all 7 and arbirtrary ¢>0. That is, p(2) =0 or {x.(2); =1}
is ré'Iativer compact for all £ € [0, T1.
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Since {a,} is equicontinuous, Ascoli-Arzela :theorem -asserts
that {ax.} is relatively compact in C([0, T]1, E), the space of
continuous functions on [0, T] into FE with superior norm.
Therefore there is a uniformly convergent subsequence {x} of

{2z} on [0, T], say « as its limit then x is a solution of (1.1).

Now we shall make use of Theorem 3.1 to show the followmg
theorem.

THEOREM 3.2. Let f : Dy — E be o-o-dissipative and uniformly
continuous where » is 0f class U.. Then Equation (1.1) has a local
solution on [0, T1. ' ‘ ‘ '

Proof. Due to Thebrem 3.1, it suffices to show that (3.1) holds
in our case.

Now let 2> 0 be fixed. By the deﬁnition «, for any X € By(ao)
and for given « > 0 there is a covering {C;; 1 <i <#n} of g.(¢, X)
with diam C; < a(gi(?, X)) + ¢/4 '

Ai=lzoeceE . 2—hf ) Cl, 1<i<n.
‘We have
Y4

For f being «-w-dissipative, there is a finite covermg {O; 4 Tt
or [0 T]1 % By(xo) such that

(I ) = ), sz|>
C < ho(t, |2y — 221D +~T ‘

for (¥, 1) and (¢, x:) in same O;, 1 < j < m and =1~ 2.

For 0<t< 7, define Aj={x<cE; ({, z) €0;}, 1<j<m It
follows from the definition of U, that o is upper sem1cont1nuous
and there is 7 W1th 0 <7< &/2 such that

ot 1) < o, (X)) + - for @)= 1 <r<a(X) +1,
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Let {AY} be a finite covering of X 'with max{diam. Ay:1 <k <1}
<a(X) + 7, and .Ai,j,k =A;NA;NAY for 1<i<#n 1<j<m
and 1< k</ Then U{Aijs; 1<i<n 1<j<m 1<k<I/}2X
and there are 0<% <% 1<j7H<m and 1<k <! with
a(X) < diam A4;,, ;0 <a(X) + 7. Hence there are &, 2% in
A"o'io'ko with o ' ‘ =

a(X) — g <l|at—al <a(X) +7
and then o {2l — 23 < w(?, a(X)) + ¢/4. Since 2% 2% are in

Ay jor, © As, N Aj, we have

y 0N~ £(F. el x — x5 R 8 0 €
| (z(f(t,,,x‘-l)\ S o), o) < et et —al) &

lat — ol — hot, Jlof — atl) — <

<(lat—Br ) — et = hf G o), BB
3  E) =t e
< ”gh(t, wg) - gh(t’ xg) ” < diam C,-o

g a(gi(t, X)) +,—Z—.
o Thus ‘
(X)) — ho(t, (X)) < algi(t, X))+ e“+:% n.
For e‘b‘eing arbitféry; we gef' | \ | %
 a(X) — ho(t, @(X)) < algi(t, X)),

As a result of Theorem 32 and Remark in Section 2, ‘w_é -have
the following Corollary:

COROLLARY 3.1. Let f : Dy— E be uniformly continuous satisfying
either of the following two conditions:

(1) There exists L. >0 such that any givem >0 there is a/
finite covering {O°} of D? with

<f(t, -171) - f(t, .Z'g), 21— x> < L“-’L'l —_ -%'2"2 + 6”-%‘1 — 22|

whenever (&, x1), (¢, x2) in same O°.
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(ii) For any given ¢ >0 there is a finite covering {O°} of D3

Ftws) — F(&, @), 21— Tap < Iz = 2l o oy —

ivhenever (2, 21), (X, ) in same O°.

Then equation (1.1) of f has a local solutiqu or [0, T1.

‘REMARK 1. - The part (i) of Corollary 3.1 generalized the
proposition (3.1) in Li [5].

REMARK: 2. Theorem 3.2 is also true for the case that o is a
Kamke function in the sense of Li [6]. The proof will followed
easily.

REMARK 3. Theorem 3.1 is proved for the case that o is a
Kamke function in the sense of Li.
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