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Abstract.  We prove that a homegeneous space M = G/H carries
" a G-invariant metric with strictly positive Ricci curvatures if and only’
if M allows a compact semisimple group S acts transitively on it. .

L Introductibn; Let M be a Riemannian manifold on which
a connected Lie group G acts transitively, so that M is a
homogeneous space G/H, where H is the isotropy subgroup at
',\s'ome fixed point. We like to study the problem when does M
carry a G-invariant metric with strictly positive Ricci curvatur.e?' ‘
‘ According. to the classical theorem of Myers, such a
homogeneoué space must be compact with finite fundamental group.
In case M =G is a connected Lie group, this implies that G musii
be compact semisimple, it is well known that the converse is also
true. The purpose of this note is to prbve that a similar result
holds for G/H to admit G-invariant metric of positive Ricci
curvature:

THEOREM. Let G be a connected Lie group, H a closed subgroup.
Then M = G/H admits an invariant melric with strictly positive
Ricci curvatures if and only if M allows a compact semisimple group
S acts transitively on it.

We consider a similar problem for M = G/H to carry an
invariant metric with nonnegative Ricci curvature. Goto-Uesu [3]
gives a complete answer for the case M = G is a Lie group, using
the decomposition theorem of Cheeger-Gromoll. Their proof can
be easily carried over to the general case, and their result. can be
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stated as follows: A homogeneous space M on which G acts
effectively and transitively admits a G-invariant metric of nonnegative
Ricci curvature if and only if 1) G = AB (semidirect), A carries
biinvariant metric acting orthogonally on B (the Lie algebra of B),
B an abelian normal subgroup; and 2) the isotropy subgroup H is
contained in A except possibly central elements of G. If the first
condition is satisfied, G carries a left invariant metric of
nonnegative sectional curvature, When the second condition also
holds, so does M = G/H.

I like to thank Prof. H.S. Lue for valuable discussions in the
preparation of this paper.

2. Let us prove the easy direction first. Let G be a (connected)
compact semisimple Lie. group with Lie algebra &, H a closed
subgroup of G with Lie subalgebra §). The biinvariant metric on
G induces a normal metric on G/H which is G-invariant. We are
going to show that with respect to this normal metric, the Ricci
curvature is positive in any direction.

’ Identify the tangent space to G/H at eH with the orthogonal
complement p of § in @. Note that [§, p] c p.

According to the submersion formula of O’neill [6], for
orthonormal vectors x, ¥ in p, the sectional curvature of the plane
determined by x, ¥ is given by

k(zx, ¥) = % iCz, 91,12 + [z, y1slI%

where [z, ]y, [, y] v are the h- and p-components of [z, v]
respectively. In particular, k(zx, ) = 0. ;
For any fixed unit vector & € p, let {es,---, es} be an orthonormal

basis of p with e; = 2. Then the Ricci curvature in the direction
x is

7(x) = Z k(z, e:) .
Since k(x, ¢;) =0, so that r(2) >0, and »(x) =0 if and only
if A(x,e)=0 for any 4  This happens if and only if

[z, ei]t) =[x, e,-]p =0fori=1,--, n i.e [x,e]= () for z'=1’...’ 7.
But {es,--, e,} is an orthonormal basis for p, this implies that
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[z, p]=0.
Consider the Lie subalgebra # of & generated by the subspace p

w=p-+[p, pl+[p, [p, plI+---.
Noté that_ [9, p] € p, and Jacobi’s identity implies that
[6, [p, p11 C [[8, pl, p1cIp, pl,

and similarly
9, [p. [y, p111 < Ly, [y, pIL, ---
i.e.
[h, ulcu.

It is clear to see that [p, ] cu. Since ® ﬁﬁé—)p V(as‘ vector
spaces), we conclude that # is an ideal of ®. Therefore # must be
a semisimple Li_e algebra becuase & is so. But x € # (because
zeyp), and [z, p] =0 implies that [x, #]=0. This is absurd.
Thus () must be positive for any unit vector z.

3. Assume that M = G/H carries a G-invariant metric, i.e. an
inner product <,> on &/f (identified as the tangent space to M at
eH) which are invariant under the action of Adk on &/h
(he H, Ad: G— GL(@) the adJomt representation).

First, note that we may assume that G acts effectively on
M = G/H (G acts on M via left translation L ,(xH) = gxH), i.e.
L, is the identity map only when g =e. Suppose the action is
not effective, let H, be the largest subgroup of H which is normal
in G. Set G* = G/H,, H* = H/H,. Then G* acts transitively and
effectively on G*/H*. It is easy to see that G*/H?* is diffeomorphic
to G/H, and (®/8e)/(6/5o) is isomorphic with &/f. The action
Adr (k€ H) induces an action on &/fh,, which induces an action
on (®/H)/(5/5.), the tangent space to G*/H* at eH*. If we
define an inner product on this space by the given one on &/), it
is clear that this inner product is invariant under the action of
Adh (B € H). Therefore, replacing G with G* H with H*, we
may assume that G acts transitively and effectively on M = G/H.

Since G/H carries a G-invariant metric, the Lie group G may
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be identified with a Lie subgroup of I,(M): the identity component
of the group of all isometries of M. In particular, the Lie algebra
& of G ~may be considered as a Lie subalgebra of &, the Lie
algebra of Io(M ).

If the Ricci curvature corresponding to the given invariant
metric is positive, Myers’ theorem implies that M is compact with
finite fundamental groﬁp. For a compact manifold M, the identity
component of the isometry group I (M) is a compact Lie group.
Therefore, the Lie algebra £ of (M) is a compact Lie algebra,
so that & is also a compact Lie algebra. Being compact, ® has
a direct sum decomposition of ideals & =s@ z, where s=[®, &]
is (compact) semisimple, 2z the center of ®.

Let G be the universal covering group of G. The simply
connected group G has a direct product decomposition into  closed
normal subgroups corresponding to the direct sum decomposit'ion’;
of its Lie algebra ®: G =8 x Z, where S is compact semisimple,
Z the radical of -G, which is exactly the identity -component of
the center of G, and 1somorph1c to a vector group R” for some
(fixed) 2.

Let H = P H), where p: GG is the covering map; Then
G/H is ‘diffeomorphic to G/H. Note that G cannot be _considered
as a Lie subgroup of I(M), which is the only property 'dest'royéd
by consid.ering the universal covering group. We still have a
homogeneous man'ifold_' M of positive Ricci curvature, and G acts
transitively on M. ‘ |

Let H, be the 1dent1ty component of . Then G/H,— G/H is
a covering, and the induced metric on G/H, has the same curvature
properties as that of G/H. Changing notation, we are given: a
homogeneous manifold G/H of positive Ricci curvature, where G
is simply connected with compact Lie algebra &, H a connected
closed subgroup of G. G =8.x Z, 8 compact’ sem1s1mple, Z the
radical of G (=~ R" vector group).

The connected ‘Lie group H has a similar decomposition
corresponding to, the decomposmon of 1ts Lie algebra §h=135@ 2
(which' is also compact), - ' :
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H = S1 C1 (Sl N C1 is: ﬁnite), :

where S; is compact semisimple (so is closed), C; the radical of H
(so is closed, connected, abelian, normal in H). The connected
abelian group C: can be further decomposed into the direct product
of a torus T and a vector group C;. So we have
H = KC,,

where K is maximal compact in H, C; is a closed vector subgroup
R', and K N C;={e}. Since H is closed in G, so C. is a closed
vector subgroup of G. The compact subgroup K must be contained
in the maximal compact subgroup S of G.

Consider the adjoint representation Ad: G — GL(®). It is éasy
to see that C. is the identity component of the inverse image of
AdC,;, and Z is the identity component of the inverse image of
AdZ. Thus the vector group C.Z is the identity component of
the inverse image of AdC: -+« AdZ = Ad(C. Z), the later subgroup
is a torus, which is compact, and therefore is closed. In particular,
the vector group C = C:Z is closed in G. Since K is compact,
HZ = K C;,Z = KC is also closed in G. This implies that H/H N Z
is closed in G/Z because =~ (H/H N Z) = HZ, where n: G-G/Z
denotes the canonical map. But G/Z ~=S is compact, so H/HNZ
is compact.

On the other hand, H n Z is closed normal in H, K is maximal
compact in H, a theorem of Iwasawa implies that K/H N Z is
maximal compact in H/H N Z. The above discussion implies that
K/HNZ=H/HnNZ and H =K(H n Z) = KZ; which is indeed
a direct product, as is easy to see.

We have proved that

G=S8x%x2Z, S compact semisimple, Z ~R"
H=K=xZ, K=SnH, 1=Z N H>~R'.
Consider M’ =S8/K x Z/Z,~S8/K x R", For ¢g=sreG,
m' = (K, yZ,) € M’, we define g m’ to be (sitK, 2y Z,). This gives
a transitive action of G on M’. The isotropy subgroup of this action
at mo = (eK, eZ,) is exactly H (When gmy, = m, with ¢ = sx, then

sK=K, xZ:=2;, so s€ K, xreZ and g H Conversely, if
g=sr <€ H then se€K x<Z and gm= m,.) Therefore
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=G/H, ie, M =G/H ~S/K x R*'. The compactness of M
implies that =1, or, Z=2Z,c H, and G/H=~=S/K. Hence M
allows a compact semisimple group S acting trans1t1vely on it
This finishes our proof.
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