HOMOGENEOUS SPACE WITH POSITIVE RICCI CURVATURES

BY

HENG-LUNG LAI* (賴恒隆)

Abstract. We prove that a homegeneous space M = G/H carries a G-invariant metric with strictly positive Ricci curvatures if and only if M allows a compact semisimple group S acts transitively on it.

1. Introduction. Let M be a Riemannian manifold on which a connected Lie group G acts transitively, so that M is a homogeneous space G/H, where H is the isotropy subgroup at some fixed point. We like to study the problem when does M carry a G-invariant metric with strictly positive Ricci curvature?

According to the classical theorem of Myers, such a homogeneous space must be compact with finite fundamental group. In case M=G is a connected Lie group, this implies that G must be compact semisimple, it is well known that the converse is also true. The purpose of this note is to prove that a similar result holds for G/H to admit G-invariant metric of positive Ricci curvature:

THEOREM. Let G be a connected Lie group, H a closed subgroup. Then M = G/H admits an invariant metric with strictly positive Ricci curvatures if and only if M allows a compact semisimple group S acts transitively on it.

We consider a similar problem for M = G/H to carry an invariant metric with nonnegative Ricci curvature. Goto-Uesu [3] gives a complete answer for the case M = G is a Lie group, using the decomposition theorem of Cheeger-Gromoll. Their proof can be easily carried over to the general case, and their result can be

Received by the editors August 5, 1981.

^{*} Partially supported by the National Science Council, R.O.C.

stated as follows: A homogeneous space M on which G acts effectively and transitively admits a G-invariant metric of nonnegative Ricci curvature if and only if 1) G = AB (semidirect), A carries biinvariant metric acting orthogonally on \mathfrak{B} (the Lie algebra of B), B an abelian normal subgroup; and 2) the isotropy subgroup H is contained in A except possibly central elements of G. If the first condition is satisfied, G carries a left invariant metric of nonnegative sectional curvature. When the second condition also holds, so does M = G/H.

I like to thank Prof. H.S. Lue for valuable discussions in the preparation of this paper.

2. Let us prove the easy direction first. Let G be a (connected) compact semisimple Lie group with Lie algebra \mathfrak{G} , H a closed subgroup of G with Lie subalgebra \mathfrak{h} . The biinvariant metric on G induces a normal metric on G/H which is G-invariant. We are going to show that with respect to this normal metric, the Ricci curvature is positive in any direction.

Identify the tangent space to G/H at eH with the orthogonal complement $\mathfrak p$ of $\mathfrak h$ in $\mathfrak G$. Note that $[\mathfrak h, \mathfrak p] \subset \mathfrak p$.

According to the submersion formula of O'neill [6], for orthonormal vectors x, y in \mathfrak{p} , the sectional curvature of the plane determined by x, y is given by

$$k(x, y) = \frac{1}{4} \|[x, y]_{\mathfrak{p}}\|^2 + \|[x, y]_{\mathfrak{h}}\|^2,$$

where $[x, y]_{\mathfrak{h}}$, $[x, y]_{\mathfrak{p}}$ are the \mathfrak{h} - and \mathfrak{p} -components of [x, y] respectively. In particular, $k(x, y) \geq 0$.

For any fixed unit vector $x \in \mathfrak{p}$, let $\{e_1, \dots, e_n\}$ be an orthonormal basis of \mathfrak{p} with $e_1 = x$. Then the Ricci curvature in the direction x is

$$r(x) = \sum_{i=1}^n k(x, e_i).$$

Since $k(x, e_i) \ge 0$, so that $r(x) \ge 0$, and r(x) = 0 if and only if $k(x, e_i) = 0$ for any i. This happens if and only if $[x, e_i]_{\mathfrak{h}} = [x, e_i]_{\mathfrak{p}} = 0$ for $i = 1, \dots, n$, i. e. $[x, e_i] = 0$ for $i = 1, \dots, n$. But $\{e_1, \dots, e_n\}$ is an orthonormal basis for \mathfrak{p} , this implies that

$$[x, p] = 0.$$

Consider the Lie subalgebra u of S generated by the subspace p

$$u = p + [p, p] + [p, [p, p]] + \cdots$$

Note that $[\mathfrak{h}, \mathfrak{p}] \subset \mathfrak{p}$, and Jacobi's identity implies that

$$[\mathfrak{h}, [\mathfrak{p}, \mathfrak{p}]] \subset [[\mathfrak{h}, \mathfrak{p}], \mathfrak{p}] \subset [\mathfrak{p}, \mathfrak{p}],$$

and similarly

$$[\mathfrak{h}, [\mathfrak{p}, [\mathfrak{p}, \mathfrak{p}]]] \subset [\mathfrak{p}, [\mathfrak{p}, \mathfrak{p}]], \cdots$$

i.e.

$$[\mathfrak{h}, u] \subset u$$
.

It is clear to see that $[p, u] \subset u$. Since $\mathfrak{G} = \mathfrak{h} \oplus \mathfrak{p}$ (as vector spaces), we conclude that u is an ideal of \mathfrak{G} . Therefore u must be a semisimple Lie algebra becuase \mathfrak{G} is so. But $x \in u$ (because $x \in \mathfrak{p}$), and $[x, \mathfrak{p}] = 0$ implies that [x, u] = 0. This is absurd. Thus r(x) must be positive for any unit vector x.

3. Assume that M = G/H carries a G-invariant metric, i. e. an inner product \langle , \rangle on $\mathfrak{G}/\mathfrak{h}$ (identified as the tangent space to M at eH) which are invariant under the action of Adh on $\mathfrak{G}/\mathfrak{h}$ ($h \in H$, $Ad: G \to GL(\mathfrak{G})$ the adjoint representation).

First, note that we may assume that G acts effectively on M=G/H (G acts on M via left translation $L_g(xH)=gxH$), i.e. L_g is the identity map only when g=e. Suppose the action is not effective, let H_0 be the largest subgroup of H which is normal in G. Set $G^*=G/H_0$, $H^*=H/H_0$. Then G^* acts transitively and effectively on G^*/H^* . It is easy to see that G^*/H^* is diffeomorphic to G/H, and $(\mathfrak{G}/\mathfrak{h}_0)/(\mathfrak{h}/\mathfrak{h}_0)$ is isomorphic with $\mathfrak{G}/\mathfrak{h}$. The action Adh ($h \in H$) induces an action on $\mathfrak{G}/\mathfrak{h}_0$, which induces an action on $(\mathfrak{G}/\mathfrak{h}_0)/(\mathfrak{h}/\mathfrak{h}_0)$, the tangent space to G^*/H^* at eH^* . If we define an inner product on this space by the given one on $\mathfrak{G}/\mathfrak{h}$, it is clear that this inner product is invariant under the action of Adh ($h \in H$). Therefore, replacing G with G^* , H with H^* , we may assume that G acts transitively and effectively on M=G/H.

Since G/H carries a G-invariant metric, the Lie group G may

be identified with a Lie subgroup of $I_0(M)$: the identity component of the group of all isometries of M. In particular, the Lie algebra \mathfrak{G} of G may be considered as a Lie subalgebra of \mathfrak{L} , the Lie algebra of $I_0(M)$.

If the Ricci curvature corresponding to the given invariant metric is positive, Myers' theorem implies that M is compact with finite fundamental group. For a compact manifold M, the identity component of the isometry group $I_0(M)$ is a compact Lie group. Therefore, the Lie algebra $\mathfrak L$ of $I_0(M)$ is a compact Lie algebra, so that $\mathfrak L$ is also a compact Lie algebra. Being compact, $\mathfrak L$ has a direct sum decomposition of ideals $\mathfrak L = s \oplus z$, where $s = [\mathfrak L, \mathfrak L]$ is (compact) semisimple, z the center of $\mathfrak L$.

Let \tilde{G} be the universal covering group of G. The simply connected group \tilde{G} has a direct product decomposition into closed normal subgroups corresponding to the direct sum decomposition of its Lie algebra \mathfrak{G} : $\tilde{G} = S \times Z$, where S is compact semisimple, Z the radical of \tilde{G} , which is exactly the identity component of the center of \tilde{G} , and isomorphic to a vector group R^n for some (fixed) n.

Let $\widetilde{H} = p^{-1}(H)$, where $p \colon \widetilde{G} \to G$ is the covering map, Then $\widetilde{G}/\widetilde{H}$ is diffeomorphic to G/H. Note that \widetilde{G} cannot be considered as a Lie subgroup of $I_0(M)$, which is the only property destroyed by considering the universal covering group. We still have a homogeneous manifold M of positive Ricci curvature, and \widetilde{G} acts transitively on M.

Let $\tilde{H_e}$ be the identity component of \tilde{H} . Then $\tilde{G}/\tilde{H_e} \to \tilde{G}/\tilde{H}$ is a covering, and the induced metric on $\tilde{G}/\tilde{H_e}$ has the same curvature properties as that of \tilde{G}/\tilde{H} . Changing notation, we are given: a homogeneous manifold G/H of positive Ricci curvature, where G is simply connected with compact Lie algebra \mathfrak{G} , H a connected closed subgroup of G. $G = S \times Z$, S compact semisimple, Z the radical of G ($\simeq \mathbb{R}^n$ vector group).

The connected Lie group H has a similar decomposition corresponding to the decomposition of its Lie algebra $\mathfrak{h}=s_1\oplus z_1$ (which is also compact),

 $H = S_1 C_1$ ($S_1 \cap C_1$ is finite),

where S_1 is compact semisimple (so is closed), C_1 the radical of H (so is closed, connected, abelian, normal in H). The connected abelian group C_1 can be further decomposed into the direct product of a torus T and a vector group C_2 . So we have

$$H=KC_2$$

where K is maximal compact in H, C_2 is a closed vector subgroup R^1 , and $K \cap C_2 = \{e\}$. Since H is closed in G, so C_2 is a closed vector subgroup of G. The compact subgroup K must be contained in the maximal compact subgroup S of G.

Consider the adjoint representation $Ad: G \to GL(\mathfrak{G})$. It is easy to see that C_2 is the identity component of the inverse image of AdC_2 , and Z is the identity component of the inverse image of AdZ. Thus the vector group C_2Z is the identity component of the inverse image of $AdC_2 \cdot AdZ = Ad(C_2 Z)$, the later subgroup is a torus, which is compact, and therefore is closed. In particular, the vector group $C = C_2Z$ is closed in G. Since K is compact, $HZ = K C_2Z = KC$ is also closed in G. This implies that $H/H \cap Z$ is closed in G/Z because $\pi^{-1}(H/H \cap Z) = HZ$, where $\pi: G \to G/Z$ denotes the canonical map. But $G/Z \simeq S$ is compact, so $H/H \cap Z$ is compact.

On the other hand, $H \cap Z$ is closed normal in H, K is maximal compact in H, a theorem of Iwasawa implies that $K/H \cap Z$ is maximal compact in $H/H \cap Z$. The above discussion implies that $K/H \cap Z = H/H \cap Z$, and $H = K(H \cap Z) = KZ_1$ which is indeed a direct product, as is easy to see.

We have proved that

 $G = S \times Z$, S compact semisimple, $Z \simeq \mathbb{R}^n$;

 $H = K \times Z_1, \quad K = S \cap H, \quad Z_1 = Z \cap H \simeq \mathbb{R}^l.$

Consider $M' = S/K \times Z/Z_1 \simeq S/K \times R^{n-1}$. For $g = sx \in G$, $m' = (tK, yZ_1) \in M'$, we define g m' to be (stK, xyZ_1) . This gives a transitive action of G on M'. The isotropy subgroup of this action at $m_0 = (eK, eZ_1)$ is exactly H. (When $gm_0 = m_0$ with g = sx, then sK = K, $xZ_1 = Z_1$, so $s \in K$, $x \in Z_1$ and $g \in H$. Conversely, if $g = sx \in H$, then $s \in K$, $x \in Z_1$ and $gm_0 = m_0$.) Therefore

M'=G/H, ie, $M=G/H\simeq S/K\times R^{n-l}$. The compactness of M implies that n=l, or, $Z=Z_1\subset H$, and $G/H\simeq S/K$. Hence M allows a compact semisimple group S acting transitively on it This finishes our proof.

BIBLIOGRAPHY

- 1. J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, North Holland, N.Y. 1975.
 - 2. M. Goto and F. Grosshans, Semisimple Lie Algebras, Marcel Dekker, N.Y. 1978.
- 3. M. Goto and K. Uesu, Lie groups with left invariant metrics of nonnegative curvature, Mem. Fac. Sci. Kyushu Univ.
- 4. S. Helgason, Diff. Geometry, Lie Group, and Symmetric Spaces, Academic Press, N.Y. 1978.
- 5. J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), 293-329.
- 6. B. O'neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.

MATHEMATICS DEPARTMENT, TSING-HUA UNIVERSITY, HSIN-CHU, TAIWAN, R.O.C.

이 그들은 🔐 가게 하는 사람들은 사이를 가게 되었다.